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1 Introduction
Simpson’s inequality plays an important role in many areas of mathematics. The classi-
cal Simpson’s inequality is expressed as follows for four-times continuously differentiable

functions:

Theorem 1 Suppose that F : [k1, k3] — R is a four-times continuously differentiable map-

ping on (k1,k3), and let | ) = sup |F P (x)| < co. Then, one has the inequality
x€(k1,k2)

1 F(K1)+F(K2) K1+ Ky 1 k2
s (050t [

K1

<
= 2880

FOY e —ser)*.

In recent years, many writers have focused on Simpson-type inequalities in various cat-
egories of work. Specifically, some mathematicians have worked on the results of the
Simpson- and Newton-type inequalities by using convex mappings, because convexity
theory is an effective and powerful way to solve a large number of problems from dif-
ferent branches of pure and applied mathematics. For example, Dragomir et al. [11] pre-
sented new Simpson-type results and their applications to quadrature formulas in numer-
ical integration. Also, new Newton-type inequalities for functions whose local fractional
derivatives are generalized convex are given by Iftikhar et al. in [20]. For more recent de-
velopments, one can consult [1-5, 9, 12-15, 19, 28-30, 35].
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The aim of this paper is to obtain several generalized inequalities for differentiable map-
pings by utilizing generalized fractional integrals and some nonnegative parameters. By
special choice of parameters, the obtained results reduce some well-known Simpson-,
midpoint- and trapezoid-type inequalities obtained by several authors in [10, 16, 17, 23,
33, 34].

2 Generalized fractional integral operators
In this section, we mention the generalized fractional integrals defined by Sarikaya and
Ertugral in [32].

Let ¢ : [0,00) — [0, 00) be a function satisfying the following condition:

1
/ @dtkoo.
0 t

The left-sided and right-sided generalized fractional integral operators are defined, re-
spectively, as follows:

whb@= [ C D wan s, 1)
o doF (%) = / N g”Y__x’“)F(;r) dt, x<is. (2.2)

These fractional operators genralize several fractional integrals such as Riemann-—
Liouville fractional integrals, k-Riemann-Liouville fractional integrals, Katugampola frac-
tional integrals, conformable fractional integrals, Hadamard fractional integrals, etc.
These important special cases of the integral operators (2.1) and (2.2) are mentioned be-
low.

(1) If we choose ¢(t) = t, the operators (2.1) and (2.2) reduce to the Riemann integral.

(2) Considering ¢(t) = % and « > 0, the operators (2.1) and (2.2) reduce to the
Riemann-Liouville fractional integrals ¢ , F (x) and Ji, _F (), respectively. Here, I
is the Gamma function.

(3) For ¢(t) = mt% and a, k > 0, the operators (2.1) and (2.2) reduce to the
k-Riemann-Liouville fractional integrals [27] JeyoxF (x) and Jey-icF (%), respectively.
Here, I'y is the k-Gamma function.

Sarikaya and Ertugral also established the following Hermite—Hadamard inequality for

the generalized fractional integral operators:

Theorem 2 ([32]) Let F : [k1,k2]) — R be a convex function on [k, k2] with k1 < Kk, then
the following inequalities for fractional integral operators hold:

1 F k1) + F
F<K1 i KZ) =< 2A—(1)[K1+I¢F(K2) + KZ—I(/)F(KI)] =< M’ (23)

2 2

where the mapping A : [0,1] — R is defined by

A(t):/twdu,
0

u

In the literature there are several papers on inequalities for generalized fractional inte-
grals. For some of these please refer to [6, 7, 16, 18, 21, 22, 24-26, 31, 36].



Budak et al. Journal of Inequalities and Applications (2022) 2022:40

3 An identity for generalized fractional integrals
In this section, we offer a parameterized identity involving an ordinary first derivative via

generalized fractional integrals.

Lemma 1 Let F : [k1,k3] — R be a differentiable function on (k1,k3). If F' is continuous

and integrable on [k1, k3], then for p,o > 0, one has the identity

(A=) () + (0 + m%%) (1= P)F (k) (3.1)

1 K1+ Ko K1t K2
- W[K“I‘”F(—z )’F< 2 >]
i —kr [ [ S1-t 1+t

1 _
+/0 (Ao - A(t))F(%;q + ¥K2) dt:|,

where the mapping A : [0,1] — R is defined by

A(t):/t@du'
0

u

Proof Applying the fundamental rules of integration, we have

1
/ (A@) - A(I)P)F/(¥K1 + 1 ; t/@) dt (3.2)
0

2
(e (25) - (5°)]

and
/"I(A(l)a ) A(t))F(%’“ ’ %"2) dt (3.3)
2 oo (52) ar (23]
By adding (3.2) and (3.3), we obtain the required equality (3.1). .

Corollary 1 Ifwe assume ¢(t) =t in Lemma 1, then we obtain the following equality:

%[(1 o) () + (0 + p)F(”l ;”2> e p)F(m] - / Yt
K2 =K1 Jiy
p— 1 pa—
e 4K1 [/0 (t—/o)F/(—l2 t/q + —1;t/<2>dt

! 1+t 11—t
+/0‘ (O' - t)F’(TKl + TKZ) dt]

Page 3 of 23
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Corollary 2 In Lemma 1, if we set ¢(t) = %, then we obtain the following new identity for
the Riemann—Liouville fractional integral:

(L=0) () + (o + m%%) (1= ) ()
2T+, K1+ Ko o K1+ Ko
P |:/K1J < 5 >+1K2_f < 5 )]
1
= Kz;q [/ (t“ - p)F'(%m + %Kz) dt
0
1 —_—
+/ (o - t“)P(%/q + %IQ) dti|.
0

o

Corollary 3 In Lemma 1, if we take ¢(t) = klfk%, then we obtain the following new identity

for the k-Riemann—Liouville fractional integral:

K1+ Ko
2

2fr k
_k(i“:)[&k/f('ﬁﬂz)+]g_‘kF(K1+K2)]
(ke —rc)& L7V 2 2 2

1
Ky — K1 o 1=t 1+t
= tk — —_— dt
2 [/o( p)F(2“+2”2)
1 1+¢ 1-t¢
+/0‘ (O'—t )F/(TKl-FTKz)dt].

4 Some parameterized inequalities for generalized fractional integral
operators
In this section, we establish some new generalized inequalities for differentiable convex

(A=) () + (0 + p>r( ) + (1= P)F (ko)

IR

functions via generalized fractional integrals.

Theorem 3 We assume that the conditions of Lemma 1 hold. If the mapping |F'| is convex
on [k1, k2], then the following inequality holds for generalized fractional integrals:

K1 + K2

‘(1 —0o)F (k1) + (o + p)F(

1 K1+ Ko K1t K2
- K+I K*I
A(l)[l WE( 2 )+ ’ ¢F< 2 >]‘

< —ZZA‘(I”; [|F ()| (TT19(p) + TIS(0)) + | F () | (T4 (o) + TTE(p)) ],

) + (1= p)F (k2) (4.1)

where
1
M{(7) = / (1-8)|A®) - A()T]de
0
and

1
n;’(r):/o (1+9)|A®) - A()T|de



Budak et al. Journal of Inequalities and Applications (2022) 2022:40 Page 5 of 23

Proof By taking the modulus in Lemma 1 and using the properties of the modulus, we
obtain that

K1 + K

‘(1 —0)F (k1) + (o + p)F< 2) + (1= p)F (ik2) (4.2)

1 K1+ Ko K1t K2
‘m[ﬂw(—z )”2“( 2 )”
2A(1) [/‘ A(l’)“ <—t“+1;tk2>
/|A Do — At)]‘ ( I;t@) dt].

Since the mapping |F’| is convex on [«1, k2], we have

dt

‘(1 — o) (k) + (0 + p)F<K1 : "2) + (1= p)F (k2)

2
1 K1+ Ko K1t K2
—— |l | —— | + n-L,
s oot (25 vt (25

Ko

=< 4A(1 [!F fq)\(/ (1-1)|A@r) - A1) pydn/ 1+0]AM)o - A(t)|dt)

1
+|F/(K2)\(/O (1+t)|A(t)—A(1)p|dt+f0 (1—t)|A(1)a—A(t){dt)i|

Ko — K

= A(l; [|F/6e2)| (T4 (o) + TI(0)) + | F (o) (TT¢ () + T (0) ],

which ends the proof. O

Corollary 4 Under the assumption of Theorem 3 with ¢(t) = t, we obtain the following
inequality:

H(l o) (1) + (0 + p)F(“ ;“) f(1- ,O)F(Kz)} S / Cre dt‘
K2 — K1 Jiy

K

<2 ;“ [/ ()| (T (o) + Ta(0) + |F (1) | (T (o) + T ()],

where
3 7 1
My(t)=t>-— =+ -
1(7) 3 3te

and
3 3r 5
My(t)= — + 12— —+ =
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e

Corollary 5 Under the assumption of Theorem 3 with ¢(t) = Ty e obtain the following

inequality for Riemann—Liouville fractional integrals:

K1+ K2
2

2T+ 1), K1+ K> N K1+ K>
(k- k1) []KTF< 2 )”KZF( 2 )]'

(L-0)F (k1) + (o +/>)F( )+(1—/>)F(Kz)

Ko — K1
= [[F' ()] (T (p) + T3 (0)) + | F ' (k2)| (115 (o) + 15 (p)) ],
where
() 200 asl o a2 T 1
7) = T o — Ta6 -
! a+1 oa+2 2 (@+2)(ax+1)
and
o a+2 3T 200+ 3 200 asl
I5(r) = T ——+ + T
o+2 2 (a+D(a+2) a+1

a

Corollary 6 In Theorem 3, if we take ¢(t) = ﬁfﬂ), then we obtain the following inequality

for k-Riemann—Liouville fractional integrals:

u—aw(mwa+pv(55;2)+u—pw<n)

2%I‘(a+k) - K1+ K2 o K1+ K2
mnr o (457 o (257

= 220w (1 () + 1 @) + F 6] (T @)+ 115 (0))],

where
H%() 200 ask o a2k T k2

T)= T ——T ¢ ———
1 a+k o+ 2k 2 (o +2k)(x+k)

and
P4 o a+2k 3t 20[/( + 3/(2 2o a+k
Mf(r)=——1 ¢« ——+ + T o

2 (7) o+ 2k 2 (@+2b)(@+k)  a+k

Theorem 4 We assume that the conditions of Lemma 1 hold. If the mapping |F |F*, p1 > 1,
is convex on [k1, k2], then we have the following inequality for generalized fractional inte-

grals:

K1+ K2

‘u—wfwo+w+mf( )+ﬂ—MFWﬂ

1 K1+ Ko K1t K2
- K +I K—I
Mn[le( 2 )+2wF< 2 >”
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<5a0 [(/1|A(t) ~ AW dt>1-;—1 (Hf(p)'F’(mlpl ; n%’(ﬁ)'ﬁ(m”m);_l
0

= 2A(1) 2

5 4 1 / 1 1%
*(/ 1|A<1>o—A<t>|df) m(nf(a)'”“)'p +‘Tg(")'FWl)lp) }
0 2

where T1% (t) and 11 (t) are defined as in Theorem 3.

Proof Reutilizing inequality (4.2) and from the power mean inequality, we have

) + (1= p)F (k2)

1 Lr K1+ Ko Lr K1+ K2
T A | Kt tip—
A(l) 1+7¢ 2 2=7¢ 2
1

’(1 — o) (k) + (0 + p)F<K1 b

X

1+t 1-t

|A(1)O‘ A(t)|‘ (TKl + TK2>

X

1-L
( Ao - A(t)|dt) "

Using the convexity of |F'|P1, we have

K1+ K2

72 )+ 0= (e

ol (252 e (2]
<= 2A(1 [(/ |A®) - A1) ,0|dt>
1 p—
x (\F’(/q)!‘”/o <%>|A(t)—A(1)p|dt
+|f’(:<z)|'“/ <1+t>|A(t) A(I)P|dt>
0
1 1--L
A(l)o — A(t)| d
+(/0| (Lo - A@)| t)
><(|F’(/q)|"‘/O <1+ )|A(1)a A(t)|dt
! z
+|F’(Kz)|‘m/0 <%>|A(1)U—A(t)|dt> }

‘(1 o) (K1)+(a+p)F<

Page 7 of 23
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_r-kal( ! A (I )P + TSI )l \
~2A() [(/o |A(t)_A(1)p|dt> ( 2 )

)173 (n‘f(a)wxznm + T (0 F (k)P )‘}

1
+ (/0 |A()o - At)|dt 5

which finishes the proof. d

Corollary 7 Ifwe assume that ¢(t) = t in Theorem 4, then we obtain the following inequal-
ity:

K1+ K2
2

H(l—wnfcln(mpv( )+<1—p)F(K2>}— ! /QF(t)dt‘
K2 =K1 Jiy
Ko — K1

=73 (M) + Ma(0)) 7 ()| F ()| + TLa(p)| (e ) 71

1

+ (o) + Ma(0)) 71 (T ()| F (e + Tha(o) | Ge) 1) 71 ],

where T11(t) and T1,(t) are defined as in Corollary 4.

Corollary 8 If we take ¢(t) = % in Theorem 4, then we have the following inequality for

Riemann—Liouville fractional integrals:

K1+ K3

(L-0)F (k1) + (o + p)F(

2T+ 1)[ K1+ K> a K1+ K3
_(Kz—Kl)“ |:]K1+F< 2 >+]K2_F< 2 ):H

<2 ;Kl [(115(p) + TI5(0)) 1 (TS ()| ) + T o) ()| 78

) + (1= p)F (k2) (4.3)

+ (T (o) + TI2(0)) 71 (TT(0) | /(1) [P + IS0 1" (h)[P1) 71 ),

where I15 (1) and I15(t) are defined as in Corollary 5.

a

Corollary 9 If we take ¢(t) = #;(a) in Theorem 4, then we have the following inequality
for k-Riemann—Liouville fractional integrals:

K1+ K2

(L=0)F (k1) + (o + p)F<

2T (c+1)[, K1+ K o K1+ K
et st (55 o (252
(k2 — K1) % ! 2 2

<2 ;Kl (0] () + 11 () 0 (E ()] F )P + 11 ()] )P0

+ (11 (0)+ 1 @) (1 )| F ) + T )] G077,

) + (1= p)F (k2) (4.4)

where T1{ (t) and Y1 () are described in Corollary 5.

Theorem 5 We assume that the conditions of Lemma 1 hold. If the mapping |F'|", r1 > 1,
is convex on [k, k2], then we have the following inequality for generalized fractional inte-
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grals:

K1+ K2

|(1—o>r<x1)+(a+p)r( ' ) (1= P)F (k2) (5)

1 K1+ Ko K1t K2
_A(l)[“”’ ( )+ < >”
o\ (BIE el + 1F () \
<= 2A(1 [(/ |A@) - A(1)p] dt) < 2 )
1 P31 Ge) I + 1 (o) \ 7
P1
+(/0 |A()o - A®)| dt) ( 2 ) }

where L + L =1.
r1 r

Proof Reutilizing inequality (4.2) and from the well-known Hoélder’s inequality, we have

’(1 —0)F (k1) + (o + p)F ("1 “’2) + (L= p)F (k)

2
1 K1+ K3 K1+ K2
gt (45 ot (257
<K2_K1[(/1|A(t) A(I)P’pldt>;l(f1,f/<1_t N )
< - —K1+ —K
2A(1 0 ! 2

2 2

(f ’A 1o — A(t|p1dt) (/‘ (£K1+ ;th)

Using the fact that |F'|" is convex, we have

noNA
at)
no\A
)" |

‘(1 o) <~1)+(o+p)F( ' ) (1= P)F (k2)

= atia K1+ K2
() s (-57)
= KZZA_(’;)I [(/ |A@) - AQ)p[” dt)
<[ [(5)atror [ () a)’
+ (/01|A(1)o NOI& dt)m
x (IF’(xl)yn/O (1;t>dt+{F ()] f;(%)@’a]
_ K;A_(f)l [(/01|A(t) — A" d,;)‘”ll (3|F'(K2)|r14+ |F,(K1)|,1)r11

1 p% / r / i
+(/ IA(l)o—A(t)l’”dt) (3'F(K1)l + 1 ()l ) }
0

4
which completes the proof. d

==
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Corollary 10 [n Theorem 5, if we set ¢(t) = t, then we obtain the following inequal-
ity:

K1+ K2

H(l—a)f (1) + (o + p)F ( ) S A=) (Kz):| —;/Kzf (t)dt’
K2 =K1 Jiy

1
-k |: 1 <3|F’('€2)|r1 + |F/(K1)|”>H
4

(Ms(p)) 21 2

+ (M3(0)) 71 (3|F/(/<1)|r14+ |F,(K2)|,l)ﬁ]’

where

1l (1 - )i+l

3(7) = ol
1

Corollary 11 In Theorem 5, if we take ¢(t) = %, then we obtain the following inequality

for Riemann—Liouville fractional integrals:

K1+ K2

‘u—wfwo+w+mf( )+ﬂ—MFWﬂ

2T+, K1+ Ko o K1+ Ko
e e () e (257)
1 1
< K9 — K1 [(/1|ta _p|171 dt)pl (3|F’('62)|r1 + |F’(K1)|r1>’1
2 0 4
L ! T / T i
N (/1|0 _ g dt)pl (BIF (1) 4+ I (ic2)| )}
0

o

Corollary 12 In Theorem 5, if we set ¢(t) = ﬁﬁ(a), then we obtain the following inequality

for k-Riemann—Liouville fractional integrals:

K1 + K2

‘(1 ~0)F (ki) + (0 + p)F< ) +(1= p)F (k)

ZiFk(a+k)|:a <K1+K2) o (K1+K2>]‘
(o —rf Ul U0 ) el A5
1

L 1
<e-n [(/M ~ ol dt)pl (3|F/(K2)|” . |F'<K1)|’1>n
2 o 4
L r 4 r +
N (/1’6 e dt)pl (3|F/(K1)| 4+ |F(k2)| )}
0

5 Special cases

In this section, we give some special cases of our main results.

Remark 1 From Lemma 1, we give the following identities:
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1.Forp=0= %, we have the following identity:

1 K1+ K2 1 o K1+ K9 o K1+ K2
oo (52) ] sdglir () (557)]
ko—kr [ [LUAGR) AQ)\ ,[(1-t 1+¢
:ZA(I) [/0 <T_ 3 )F( 5 K1+ 2 K2>dt
1 —
(050 (2 )]

which is given by Ertugral and Sarikaya in [16].

2. For p = 0 =1, we have the following identity:

K1+ K> 1 o K1+ K2 ” K1+ K2
f( 2 )_2A<1>[]“*F< 2 )”“Z‘F( 2 )}
_ 1 (1-t 1+t (Lt 1-t
i [ea-sofr (5t ) (e )

which is given by Ertugral et al. in [17].

3. For p = 0 = 0, we have the following identity:

F (k1) + F (k9) 1 a K1+ Ko a K1+ Ko
2 _2A(1)[]””F( 2 )”“Z‘F( 2 )}

1 1
Ky — K1 [ 1-t 1+t / 1+t 1-t
- Alt e )de- | A == dt |,
4A(1)/0[()F(2K1+ 2K2) o OF (5 ar =

which is given by Ertugral et al. in [17].

Remark 2 From Corollary 1, we have the following identities:

1l.Forp=0= %, we have the following new identity:

1 + 1 K2
_[F(K1)+4F<’“ K2>+F(K2):|— / F(t)dt
6 2 K2 =K1 Jiy
1
Ko — K1 t 2 , 1-t 1+t
S LG (e e a
/1 2t o 1+t -t \
+ ——= — Kkt —— .
s \37 2 y Ty

2. For p = o = 0, we have the following identity:

f(K1)+f(K2)_ 1 /K2

2 Ky — K1

F(t)dt

K1

Kz—KlfltF, 1-t 1+t o 1+t 1-t¢ Ut
= K1+ —Ky ) — — K1+ —K .
4 J 2 P 2 P
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3. For p = 0 =1, we have the following identity:

K1 + K 1 “2
F(l 2)— / F(¢)dt
2 K2 — K1 Jiy

- 1 1-t 1+t 1+t 1-t
:%‘/0 (t—l)[F’( 5 K1+%K2>—F/( ; K1+TK2)i|dt.

Remark 3 From Corollary 2, we have the following identities:

l.Forp=0= %, we have the following new identity:

1 K1+ K
elrerar (252) s re)]
2@+ 1), K1+ K2 N K1+ Ko
T (k- |:]K1+F< 2 >+]K2_F( 2 >:|
Ko — k1 /1 1 o 1-t 1+t
= — - = —K1+ —K
2 |Jo\2 73 g T
/1 1 o Lot 1-t
o \2 73 gy AT Ty )

which is given by Chen and Huang in [8].

2. For p = o = 0, we have the following identity:

Fc)+F (ko) 227 T(@+ 1), K1+ K> " K1+ K>
2 (k- k1) |:]K1+F< 2 >+]K2F( 2 >:|

1 1
Ko — K1 o 1-t 1+t / o 1 1+t 1-t
= t — —_— dt — t + — dt |,
2 [/o F( 2 K1+ 2 K2 ; F 2 K1 2 K2

which is given by Ertugral et al. in [17].

3. For p = o =1, we have the following identity:
ki+k2\ 27T+ 1)[ K1 + Ko " K1 + Ko
P(50) - T D (57 e (5
1
Ky — K1 1-¢ 1+¢
= -1 — ——ky | dt
2 [/0( )F(2/<1+ 2/c2>

1 1+t 1-t
_A (f"-l)r’(—; o+ — Kg)dt:|,

which is given by Ertugral et al. in [17].

Remark 4 From Corollary 3, we have the following identities:

l.Forp=0= %, we have the following identity:

el (252) e re)]

25 (e + k)T, K1+ Koy o K1+ K
VN |:]K1+,kF<T + K'Q—,](F )
(k2 — K1)k

Page 12 of 23
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4

1
- tk 1 1-t¢ 1+¢
:K2 K1 / ooz F/ —K1+LK2 dt
2 | \2 3 2 2
1 a
tk 1 1+t 1-1¢
—/ - == F/ +K1+—K2 dl’,
o L2 3 2 2

which is given by Ertugral and Sarikaya in [16].

2. For p = o =0, we have the following identity:

Fla)+Fle) 277 T+, Kitka\ K1+ K
2 B (ky — 1) % |:]K1+’kr( 2 )+]K2_’kr( 2 )]

1
Ko — K1 a 1-t¢ 1+¢
= t)F' — — dt
2 [/0( )F( 2 K1+ 5 K2>

! A1+t 11—t
_'/O (t )F (TK1+TK2>dt],

which is given by Ertugral et al. in [17].

R

3. For p = o =1, we have the following identity:

K1+ Ko 2%‘1I‘k(a+k) " K1+ Ko " K1+ Ko
F( 2 ) - (ky — k1) askl 2 i 2

which is given by Ertugral et al. in [17].

Remark 5 From Theorem 3, we have the following new inequalities:

1l.Forp=0= %, we have the following inequality:

St (B52) s r )

1 K1+ K2 K1+ Ko

_m[i{ﬁIwF( ) >+K2_I¢F( 5 )]’
ceTihlge 2 ¢ 2 , /

<sam |M5) r {5 | el + [ ],

which is given by Ertugral and Sarikaya in [16].

2. For p = o = 0, we have the following inequality:

F (k1) + F (k2) 1 K1+ K2 K1+ ko
- el F [ ——— ) + 4,1
’ 2 2A(1) |7 o\ ta-leh | 5

_ 1
- M(/ |A(t)]dt)[|ﬁ/(xz)| 1]
0

= 4A(1)

which is given by Ertugral et al. in [17].
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3. For p = 0 =1, we have the following inequality:

K1+ Ky 1 K1+ Ky K1+ K2
_—K+I K—I
(%57) -z (2572 ot (5]

4A(1) (/ @) - A(1)|‘”>[|F('<z| F' )],

which is given by Ertugral et al. in [17].

Remark 6 From Corollary 4, we have the following inequalities:
1. For p = 0 = 2, we have the following Simpson’s inequality for Riemann integrals:

3,
1 k2
”)+Hmﬁ— / rmd4
K2 =K1 Jiy

< 22 )+ )]

72
which is given by Sarikaya et al. in [33, 34].

e (s

2. For p = 0 = 0, we have the following trapezoid inequality for Riemann integrals:

)] +

I

F (k1) + F (k2) 1 2
‘ 2 e /Kl F(t)dt‘ =

which is proved by Dragomir and Agarwal [10].
3. For p = 0 =1, we have the following midpoint inequality for Riemann integrals:

1 K9
’F(Kl +K2> - / F(t)dt| <
2 Ko — K1

which is given by Kirmaci in [23].

2]+ [ (e

]

Remark 7 From Corollary 5, we have the following inequalities:
1.Forp=0= %, we have the following Simpson’s inequality for Riemann—Liouville frac-

Hﬂm rar (52 ) |

2@+ 1)[, K1+ K2 N K1 + Ko
- (kg — Kk1)* |:]K1+F< 2 )+]K2_F( 2 )”

a+l
K9 — K1 o 2\ « 1 1 ,
< Z __
=7 <a+1<3) a1 3)“* (e

which is given by Ertugral and Sarikaya in [16].

tional integrals:

]

2. For p = 0 = 0, we have the following trapezoidal-type inequality for Riemann—
Liouville fractional integrals:

Fla)+Fa) 2T+ D[, K1+ K2 o K1+ K2
‘ 2 - (k2 — Kk1)* I:]K”F( 2 >+]K2_F( 2 )]'

K
- 4(a+ 1)

SUF Gl + [ Ge)]]

Page 14 of 23



Budak et al. Journal of Inequalities and Applications (2022) 2022:40

3. For p = 0 = 1, we have the following midpoint-type inequality for generalized frac-

tional integrals:

K1+ K> 2 T+, K1+ Ko " K1+ K
’F< 2 >_ (k2 = K1)* []K”F< 2 )+]K2_F< 2 ):H

0[(/{2 _Kl) ]
T 4(x+1) ’

[|F/(K1)| + |F’(K2)

which is given by Ertugral et al. in [17].

Remark 8 From Corollary 6, we have the following inequalities:
1. For p =0 = %, we have the following Simpson-type inequality for k-Riemann-—

Liouville fractional integrals:

1

Hf (k1) +4f (”1 ;”2> o (Kz)i|
25 @ + M) T, K1+ K N K1+ Ko
et e (52 o (252 |

a+k
_ 2\ « k 1 / ’
S%((xik<§> +2(oe+k)_§>[|F(Kl)|+|F(K2)|]'

2. For p = 0 = 0, we have the following trapezoidal-type inequality for k-Riemann-—

Liouville fractional integrals:

‘F(Kl) + F (k2) B 257 T (a + k) [ fﬁ,kF(Kl +K2) +]52_'kF</<1 + /<2>]‘

2 (o — kp) ¥ 2 2
k( - ) ’ ’
< ﬁﬂf (k)| + |FG2)|]-

3. For p = 0 = 1, we have the following midpoint-type inequality for k-Riemann—

Liouville fractional integrals:

K1+ K2 2%_1Fk(a+k) <K1+K2) (K1+K2>
2F - e i F +J8 ik
’ ( 2 ) (Kg—l(l)? ]1 k 2 ]2 k 2

I

k) — K

)i, ,
< 4((“/5 [|F ()| + |F ()

which is given by Ertugral et al. in [17].

Remark 9 From Theorem 4, we have the following new inequalities:

l.Forp=0= %, we have the following Simpson-type inequality for generalized frac-

tional integrals:

1 1
s (252 st (452) (252
1
Ky — K1
=2A0) (/0

2|\
Alt) - A(l)g‘dt)
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Page 16 of 23

y [( DY ()P + 5 G)IF () P! )rﬁ
2

; (“‘f(%w@)lpl G /(“)'m)p_ll]
. .

2. For p = 0 = 0, we have the following trapezoidal-type inequality for generalized frac-
tional integrals:

‘F(K1)+F(Kz) 1

K1+ Ko K1t K2
2 _2A(1)[K“I“’F( 2 )+”2'1‘”F( 2 )”
=950 (/ |At)|dt>

)| F (k)P + TIL(0)[F(ky) Pt \ T
X

2

MY ()1 ()Pt + TI(O) ()P \ 71
+ 5 )

o =1, we have the following midpoint-type inequality for generalized frac-
tional integrals:

3. For p =

K1+ K2 1 K1 + K2 K1+ K2
-— I e _I
(5) - gamLoee (152 oo (452

2
Ko — K
< 2 1

S [T (k) Pt + TS Q)| F (k) Pt
= ([ 1a0-sola) " ( ; )
. (nf(l)w(xz)w + TS D)IF (k)|

z )}

which is given by Ertugral et al. in [17]

Remark 10 From Corollary 7, we have the following inequalities

1. For p = o = 3, we have the following Simpson-type inequality for Riemann integrals

Hp(m) rar (52 ) e - o [ F(t)dt’
-k (5)1“ [(29|F (k)" + 6117 (K2)|p1>
- 8 9

162
(29|F'<x2)|m + 61|F’(K1)|m>%}
+ ,

324

which is given by Sarikaya et al. in [33, 34]

2. For p = 0 =0, we have the following trapezoid-type inequality for Riemann integrals

F (k1) + F (x2) 1 2
‘ 5 _K2_K1 /Kl F(t)dt’

Lok [<|F’(m|m + 51 o)

”_11+ F (k2P + 51F ()P \ o1
8 6 6 ’
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3. For p = 0 =1, we have the following midpoint-type inequality for Riemann integrals:

K1 + K 1 k2
(%52)- ot [ roal
2 K2 — K1 K1

_- [(u )l +21F /(Kz)lm>”11 <|f )l +21F /(K1)|p1);1}
; .

- 8 3 3

Remark 11 From Corollary 8, we have the following inequalities:

l.Forp=0= %, we have the following Simpson-type inequality for Riemann-Liouville
fractional integrals:

Hﬂm var (52 ) 4|
22T+, K1+ K>y N K1+ K>y
C (ky— k) []K‘J < 2 > -t ( 2 )]‘

ko—ky [ 4o 2\ 2 4\'Ar
< + - —
- a+1 3 a+l 3

1

4
(G Gyrar)’
( (>|F Kz)}pl+H“(§)|F/(K1)|pl>pll]‘

2. For p = 0 = 0, we have the following trapezoidal-type inequality for Riemann—

Liouville fractional integrals:
27 (a + 1
Fla) +F (k) (+1) pop () e (e
2 (ke — K1) 1 2 2 2

2 1-L
— P
<K2 K1 (04 1
- 4 o+1

x [(IP(:«»V’I + 0+ 3)IF () ) . (|F/(K2)|p‘ + (0 4+ 3)IF ()" ) }

(a+ 1)(a +2) (a+1)(a+2)

3. For p = 0 =1, we have the following midpoint-type inequality for generalized frac-

tional integrals:

K1+ Ko 2% (o + 1) K1+ Ko N K1+ Ko
H 2 ) (o2 — )" [J*F< 2 )””Z‘F( 2 )]'

2 \ A
Ky — K o P1
S2 1

o+1

4
[(a a+3)[F (k)P + a(Ba + 5)|F (K2)|p1>

2 + 1) +2)

a(o + 3)F (k)P +(3a +5)|F (mm) i }
2+ D +2) '
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Remark 12 From Corollary 9, we have the following inequalities:
1. For p =0 = %, we have the following Simpson-type inequality for k-Riemann-—

Liouville fractional integrals:

Hr(fq) + 4F<K1 ;K2> " f(Kz)}
2%_1Fk(a +1)[, K1+ Ko N K1+ Ko
B (ky — K1) |:]K1+’kF< 2 >+]K2’kF( 2 ):H
at+k 1-L
<IC2—K1( 4o (g) « . 2k _é) 1
" a+k\3 a+k 3
1
a /9 a /) 1
x [(nf (g)}F’(Kl)!"l + 11§ <§>|F’(;<2)\”1)p1
1
a /) a (9 P1
+ (Hlk <§)|'L /(/(2)|p1 + 15 <§>|f ,(K1)|p1>m].

2. For p = 0 = 0, we have the following trapezoidal-type inequality for k-Riemann—

Liouville fractional integrals:

£-1
|F(K1) + F (k) — w[ /(:1+,kF<K1 + ;cz) +/,‘32,kF<K1 +K2>]‘

K2_K1)k 2 2

_a—r (20 \' I (RIF ) + ke + 301F ()P 1
- 4 o+k (o + k) + 2k)

K2F (k) [P + k(2a + 3K) | F (k1) |1 )%
+< (@ + k)@ + 2K) }

3. For p = 0 = 1, we have the following midpoint-type inequality for k-Riemann-—

Liouville fractional integrals:

K1+ Ko 28 Mo + 1) (K1+K2) (/q+/c2) ‘
2F - o /g[+ r + /S[— <F
{ ( 2 ) (Kz—Kl)? ]1 k 2 ]2 A 2

Ko —k1 [ 2« -5 ala +3k) | F (k1) Pt + a(Ba + 5k)|F (k) |PL o
4 (ﬁ) [( 2 + k) (ax + 2K) )

=

alo +3k) | F/ (k) |PY + a(3a + 5k)| F ' (k1) |[PY P
+( 2 + k) + 2K) ) }

Remark 13 From Theorem 5, we have the following inequalities:

l.Forp=0 = %, we have the following Simpson-type inequality for generalized frac-

tional integrals:

(e (252) ]
1 K1+ Ky K1+ K3
T 2A() [“”I‘”F< 2 >+“2‘I“]F( 2 )”
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At) - %A(l)

Ky — K1 1 P1 17_11
< S/ dt)
[(ar |r/(xl>|”)% J (At |F/(K2)|”>%]
4 4 '

2. For p = 0 = 0, we have the following trapezoidal-type inequality for generalized frac-
tional integrals:

F (k1) + F (k2) 1 K1+ K K1+ K2
- el F [ ——— ) + 4,1
‘ 2 2A(1) |17 o\ taleh | 75

Ky — K1 1 1 1%
=1a0) (/o |2 dt)

x [(SW/(KZWI + |F/(K1>|”)% . <3|F'<x1)|’1 + |F/(K2)|”>%]
4 4 ’

which is given by Ertugral et al. in [17].
3. For p = 0 =1, we have the following midpoint-type inequality for generalized frac-
tional integrals:

K1+ K2 1 K1+ K2 K1+ Ko
LI N o-loF [ ———
(%3%) -z ot (5) o (257)

Ko — K1 1 1 I’Ll
<o (/o |A®) - AQ)| dt)

[(3|F/(Kz)|” ¥ IF/(Kl)I”)'ll <3|F’(K1)|’1 ¥ IF’(Kz)I”)’ll}
X + )

4 4

which is given by Ertugral et al. in [17].

Remark 14 From Corollary 10, we have the following inequalities:
l.Forp=0= %, we have the following Simpson-type inequality for Riemann integrals:

‘%[F(Iﬂ) + 4F<K1 ;”Z) . F(Kz)} - Kszl / F(t)dt‘

< Ko — K1 21+l 4 q PLI 31F (k) |™ + |F (kcy) | %
= 4 (p1 + 1)3p1+1 4

; <3|F/(K1)I” + |r/<x2>|f1>%]
. .

2. For p = 0 =0, we have the following trapezoid-type inequality for Riemann integrals:

‘F(m $Fk) 1 /

F(t)dt‘
2 Koy — K1

K1

1 1
kK Lo NP [ (BIF (k)™ + [F (k) \ T
=74 \pi+1 4

; <3|r/(m|’1 + |F/<K2>|f1)%]
. .
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3. For p = 0 =1, we have the following midpoint-type inequality for Riemann integrals:

K1 + K 1 k2
2 K2 — K1 Jiy
1
1

1
_ka—k Lo\ 3IF () + [F (k)M \ 71
- 4 p1+1 4

<3|F/(x1)|’1 ¥ |F/(x2>|f1)r11]
+ »

4
which is proved by Kirmaci in [23].

Remark 15 From Corollary 11, we have the following inequalities:
1l.Forp=0 = %, we have the following Simpson-type inequality for Riemann—Liouville
fractional integrals:

‘%[F('ﬁ) +4F<K1 ;IQ) + F(Kz)i|
2@+ 1), K1+ Ky N K1+ K
oy P () e (257)
=

_ 1 P1 =
< Ko — K1 / 2 dt P1
4 o 3

[(REer |r'<:<1>|“)'11 (2 |F’(x2)|”)r‘l}
4 4 ’

2. For p = 0 = 0, we have the following trapezoidal-type inequality for Riemann—
Liouville fractional integrals:

Flc)+ Fa) 2T+ D[, K1+ K2 N K1+ K2
‘ 2 - (k2 —Kk1)* I:]K1+F( 2 >+]K2_F< 2 )]'

1
<I(2—K1 1 pr1
- 4 O{p1+1

[(ar |r/<xl>|”)% N el |r/(xz)|”>%]
4 4 '

3. For p = 0 =1, we have the following midpoint-type inequality for generalized frac-
tional integrals:

K1+ K> 2 @+ 1), K1+ Ky " K1+ K
()T P () e (52
) 1
Sl<2—/(1 (/ (l_ta)pldt)“
4 0

[(3IF/(K2)I” ¥ |F'<K1>|’1)r11 (3IF’(K1)I’1 ¥ IF’(Kz)I”)’ll}
X + .

4 4

Remark 16 From Corollary 12, we have the following inequalities:

Page 20 of 23



Budak et al. Journal of Inequalities and Applications (2022) 2022:40 Page 21 of 23

1. For p =0 = %, we have the following Simpson-type inequality for k-Riemann-—

Liouville fractional integrals:

1 K1+ K
I— [F(fq) ¥ 4F<1—2) + F(Kz)}
6 2
25 (@ +K) [, K1+ Ko N K1 + K2
- ﬁ[ wF(T) il )
tk - =

1
_ 1 2 P1 e

< 2R / dt "
4 o 3

* |:(3|F/(Kz)|’1 * lF/("l)rl)% + <3|F/(K1)|’1 + |F’(Kz)|rl>%}
4 4 .

2. For p = 0 = 0, we have the following trapezoidal-type inequality for k-Riemann—

Liouville fractional integrals:

Fl)+Fle) 227 T+ [, Ki+ika\ K1+ 1
R e (05 o (50

1
_k-Ki k P1
- 4 ap +k

[(w o)+ |F ’(mm)% (3|f W)l + IF /(K2)|r1>’11:|
X + .

4 4

3. For p = 0 =1, we have the following midpoint-type inequality for k-Riemann—

Liouville fractional integrals:

K1 +K 25 (o + Kk K1 +K K1+ K
pate) x( a ) ffﬁkF( 1 2)+];(3sz 1 2)
2 (ko — K1) % ' 2 ’ 2

— 1 P
Ll /(l—t%)pldt "
— i

[(ar |F/(K1>|")% N el |r/(x2)|’1>%]
4 4 ‘

6 Concluding remarks

In this study, we present some generalized inequalities for differentiable convex functions
via generalized fractional integrals. It is also shown that the results proved here are the
strong generalizations of some already published ones. It is an interesting and new prob-
lem that future researchers can use the techniques of this study and obtain similar inequal-

ities for different kinds of convexity in their work.
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