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Abstract
In this article, we establish some new Hadamard-type inequalities for E-convex
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1 Introduction and basic definitions
The theory of convexity is not only important in itself but also it contributes to almost all
areas of mathematics. Convexity gives rise to inequalities, the Hadamard inequality is the
first consequence of convex functions. The book by Hardy [1] has played a key role in pop-
ularizing the subject of convex analysis. Over the years, the idea of convex sets and convex
functions has been largely generalized. Today, the study of convex functions has evolved
into a broader theory of functions including quasiconvex functions [2, 3], coordinated
convex functions [4, 5], preinvex functions [6], GA-convex functions [7], strongly convex
functions [8], (g,ϕh)-convex functions [9], E-convex functions [10] and so on. Youness [10]
defined the E-convex set and the corresponding function as follows:

Definition 1 A set S ⊂ R is called E-convex if and only if there is a function E : R −→ R

such that tE(ζ ) + (1 – t)E(η) ∈ S for each ζ ,η ∈ S and t ∈ [0, 1].

Definition 2 A function f : R −→ R is called E-convex on a set S ⊆ R if and only if there
is a map E : R −→R such that S is an E-convex set and

f
(
tE(ζ ) + (1 – t)E(η)

) ≤ tf
(
E(ζ )

)
+ (1 – t)f

(
E(η)

)
(1.1)
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holds for each ζ ,η ∈ S and t ∈ [0, 1]. On the other hand, if the inequality sign in the in-
equality (1.1) is reversed then f is called E-concave on the set S.

Every convex function f on a convex set S is an E-convex function provided that E
is an identity function. For a detailed explanation of E-convex functions see [10]. The
Hadamard-type inequality for E-convex given in [11] is as follows:

Theorem 1 Let E : J ⊂R −→R be a continuous increasing function and ζ ,η ∈ J with ζ < η.
Let f : I ⊆R −→R be an E-convex function on [ζ ,η], then we have

f
(

E(ζ ) + E(η)
2

)
≤ 1

E(η) – E(ζ )

∫ E(η)

E(ζ )
f
(
E(t)

)
dE(t) ≤ f (E(ζ )) + f (E(η))

2
, (1.2)

inequality (1.2) is Hadamard’s inequality for E-convex functions.

Convexity is mixed with other mathematical concepts such as; optimization [12], time
scale [13, 14], quantum and postquantum calculus [15, 16], and fractional calculus [3, 11,
17–19]. Fractional calculus is basically a generalization of integer-order calculus. Strictly
speaking, it is a generalization of operators beyond the integral order to real or complex
order. Many fractional models have been proposed so far [20–27]. The key drivers behind
such proposals are identified with the various real data corresponding to different systems
under consideration requiring different kernels. Raina [27] and Agarwal [26] defined the
following generalized fractional operators:

Definition 3 Let f ∈ L(ζ ,η), then for σ ,ρ > 0, ω ∈ R the right-handed and left-handed
generalized fractional integrals of f are, respectively, defined as follows:

J α
σ ,ρ,ζ+;ωf (s) =

∫ s

ζ

(s – t)ρ–1Fα
σ ,ρ

[
ω(s – t)σ

]
f (t) dt (s > ζ ),

and

J α
σ ,ρ,η–;ωf (s) =

∫ η

s
(t – s)ρ–1Fα

σ ,ρ
[
ω(t – s)σ

]
f (t) dt (s < η),

where Fα
σ ,ρ(s) is defined in [27] as follows:

Fα
σ ,ρ(s) = Fα(0),α(1),α(2),...

σ ,ρ (s) =
∞∑

n=0

α(n)
	(σn + ρ)

sn (
σ ,ρ > 0, |s| < R

)
,

where R is a real positive constant. The coefficients α(n) (n ∈ N0 = N ∪ {0}) are terms of
a bounded sequence of positive real numbers and R is the set of real numbers. Moreover,
the operators J α

σ ,ρ,ζ+;ωf and J α
σ ,ρ,η+;ωf are bounded on L(ζ ,η), i.e.,

∥
∥J α

σ ,ρ,ζ+;ωf (s)
∥
∥ ≤ P(η – ζ )ρ‖f ‖1

and

∥∥J α
σ ,ρ,η+;ωf (s)

∥∥ ≤ P(η – ζ )ρ‖f ‖1,

where P := Fα
σ ,ρ[ω(t – s)σ ] < ∞ and ‖f ‖1 =

∫ η

ζ
|f (t)|dt.
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These fractional integrals are really important because of their generality. Many other
fractional operators can be obtained by specifying the coefficients α(n). For instance, if
we set n = 0, α(0) = 1 and ω = 0, we obtain the well-known Riemann–Liouville fractional
operators

Jλ
ζ+f (s) =

1
	(λ)

∫ s

ζ

(s – t)λ–1f (t) dt (s > ζ )

and

Jλ
η–f (s) =

1
	(λ)

∫ η

s
(t – s)λ–1f (t) dt (s < η).

Lemma 1 ([28, 29]) For 0 < α ≤ 1 and 0 ≤ x < y, we have

∣
∣xα – yα

∣
∣ ≤ (y – x)α .

Fractional calculus has useful applications in almost all areas of applied mathematics
and other sciences, see [30] and the references therein. In the present work, notions of
E-convexity and generalized fractional operators are joined together. These ideas are in-
dependently utilized before, however, in combined form we obtain even more generalized
results.

2 Main outcomes
In this section, mainly the Hadamard inequality for E-convex function (1.2) is extended us-
ing Definition 3 of generalized fractional integrals. Then, an identity is established for dif-
ferentiable functions that is used to develop right Hadamard-type inequalities for the said
extended Hadamard-type inequality. Likewise, another important identity is developed
for twice-differentiable functions that is further used to develop more right Hadamard-
type inequalities for the said extended Hadamard-type inequality for E-convex functions.

In the following, we use J to represent the interval of nonnegative real numbers and I
to represent the interval of real numbers. Moreover, we use the following notations for
brevity;

� := η – ζ , E(�) := E(η) – E(ζ ),

M(J) :=
f (ζ ) + f (η)

2
–

	(λ + 1)
2(�)λ

[
Jλ
ζ+f (η) + Jλ

η–f (ζ )
]
,

M(J ) :=
f (ζ ) + f (η)

2
–

1
2(�)ρFα

σ ,ρ+1[ω(�)σ ]
[
J α

σ ,ρ,ζ+;ωf (η) + J α
σ ,ρ,η–;ωf (ζ )

]
,

M(JE) :=
f (E(ζ )) + f (E(η))

2

–
1

2(E(�))ρFα
σ ,ρ+1[ω(E(�))σ ]

[
J α

σ ,ρ,E(ζ )+;ωf
(
E(η)

)
+ J α

σ ,ρ,E(η)–;ωf
(
E(ζ )

)]
.

Theorem 2 Let E : J −→ R be a continuous increasing function and ζ ,η ∈ J with ζ < η. Let
f : I −→ R be a function such that f ∈ L[E(ζ ), E(η)], where E(ζ ), E(η) ∈ I . If f is an E-convex
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function on [ζ ,η], then the following inequality holds for generalized fractional integral
operators

f
(

E(ζ ) + E(η)
2

)

≤ 1
2(E(�))ρFα

σ ,ρ+1[ω(E(�))σ ]
[
J α

σ ,ρ,E(ζ )+;ωf
(
E(η)

)
+ J α

σ ,ρ,E(η)–;ωf
(
E(ζ )

)]

≤ f (E(ζ )) + f (E(η))
2

, (2.1)

for all σ ,ρ ∈R
+ and ω ∈R.

Proof Since f is an E-convex function on [ζ ,η], therefore for E(x), E(y) ∈ I we have

f
(

E(x) + E(y)
2

)
≤ f (E(x)) + f (E(y))

2

and we let E(x) = tE(ζ ) + (1 – t)E(η) and E(y) = (1 – t)E(ζ ) + tE(η), so that we have

2f
(

E(ζ ) + E(η)
2

)
≤ f

(
tE(ζ ) + (1 – t)E(η)

)
+ f

(
(1 – t)E(ζ ) + tE(η)

)
. (2.2)

On multiplying both sides of inequality (2.2) by tρ–1Fα
σ ,ρ[ω(E(�))σ tσ ] and then integrating

the resultant inequality with respect to t over [0, 1], we have

2f
(

E(ζ ) + E(η)
2

)∫ 1

0
tρ–1Fα

σ ,ρ
[
ω

(
E(�)

)σ tσ
]

dt

≤
∫ 1

0
tρ–1Fα

σ ,ρ
[
ω

(
E(�)

)σ tσ
]
f
(
tE(ζ ) + (1 – t)E(η)

)
dt

+
∫ 1

0
tρ–1Fα

σ ,ρ
[
ω

(
E(�)

)σ tσ
]
f
(
(1 – t)E(ζ ) + tE(η)

)
dt.

Further suppose that u = tE(ζ ) + (1 – t)E(η) and v = (1 – t)E(ζ ) + tE(ζ ) and using the defi-
nition of generalized fractional integrals

2f
(

E(ζ ) + E(η)
2

)
Fα

σ ,ρ+1
[
ω

(
E(�)

)σ ]

≤ 1
(E(�))ρ

∫ E(η)

E(ζ )

(
E(η) – u

)ρ–1Fα
σ ,ρ

[
ω

(
E(�)

)σ ]
f (u)du

+
1

(E(�))ρ

∫ E(η)

E(ζ )

(
v – E(ζ )

)ρ–1Fα
σ ,ρ

[
ω

(
E(�)

)σ ]
f (v) dv

f
(

E(ζ ) + E(η)
2

)

≤ 1
2(E(�))ρFα

σ ,ρ+1((E(�))σ )
[
J α

σ ,ρ,E(ζ )+;ωf
(
E(η)

)
+ J α

σ ,ρ,E(η)–;ωf
(
E(ζ )

)]
.

(2.3)

Considering again the E-convexity of f over the interval [ζ ,η], we have

f
(
tE(ζ ) + (1 – t)E(η)

) ≤ tf
(
E(ζ )

)
+ (1 – t)f

(
E(η)

)
, (2.4)
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f
(
(1 – t)E(ζ ) + tE(η)

) ≤ (1 – t)f
(
E(ζ )

)
+ tf

(
E(η)

)
, (2.5)

and on adding inequality (2.4) and inequality (2.5), we have

f
(
tE(ζ ) + (1 – t)E(η)

)
+ f

(
(1 – t)E(ζ ) + tE(η)

) ≤ f
(
E(ζ )

)
+ f

(
E(η)

)
. (2.6)

On multiplying both sides of inequality (2.6) by tρ–1Fα
σ ,ρ[ω(E(�))σ tσ ], integrating with

respect to t over the interval [0, 1] and finally using the definition of generalized fractional
integrals, we have

∫ 1

0
tρ–1Fα

σ ,ρ
[
ω

(
E(�)

)σ tσ
]
f
(
tE(ζ ) + (1 – t)E(η)

)
dt

+
∫ 1

0
tρ–1Fα

σ ,ρ
[
ω

(
E(�)

)σ tσ
]
f
(
(1 – t)E(ζ ) + tE(η)

)
dt

≤ [
f
(
E(ζ )

)
+ f

(
E(η)

)]∫ 1

0
tρ–1Fα

σ ,ρ
[
ω

(
E(�)

)σ tσ
]

dt,

on letting u = tE(ζ ) + (1 – t)E(η) and v = (1 – t)E(ζ ) + tE(ζ ) and then using the definition
of generalized fractional integrals, we have

1
(E(�))ρ

[
J α

σ ,ρ,E(ζ )+;ωf
(
E(η)

)
+ J α

σ ,ρ,E(η)–;ωf
(
E(ζ )

)]

≤Fα
σ ,ρ+1

[
ω

(
E(�)

)][
f
(
E(ζ )

)
+ f

(
E(η)

)]
. (2.7)

On combining inequality (2.3) and inequality (2.7), we obtain the required result. Hence
it is proved. �

Remark 1 If in Theorem 2, the function E is chosen to be an identity function, then the
following inequality holds for all σ ,ρ ∈R

+ and ω ∈R:

f
(

ζ + η

2

)
≤ 1

2(�)ρFα
σ ,ρ+1[ω(�)σ ]

[
J α

σ ,ρ,ζ+;ωf (η) + J α
σ ,ρ,η–;ωf (ζ )

] ≤ f (ζ ) + f (η)
2

,

which was given in [31].

Remark 2 If in Theorem 2, the function E is chosen to be an identity function, α(0) = 1,
ρ = λ and ω = 0, then the following inequality holds:

f
(

ζ + η

2

)
≤ 	(λ + 1)

2(�)λ
[
Jλ
ζ+f (η) + Jλ

η–f (ζ )
] ≤ f (ζ ) + f (η)

2
,

which was given in [32].

Lemma 2 Let E : J −→ R be a continuous increasing function and ζ ,η ∈ J with ζ < η. Let
f : I −→ R be a differentiable function on Io. If f ′ ∈ L([E(ζ ), E(η)]) for E(ζ ), E(η) ∈ I , then
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the following identity holds for generalized fractional operators:

M(JE) =
E(�)

2Fα
σ ,ρ+1[ω(E(�))σ ]

∫ 1

0

{
(1 – t)ρFα

σ ,ρ+1
[
ω

(
E(�)

)σ (1 – t)σ
]

– tρFα
σ ,ρ+1

[
ω

(
E(�)

)σ tσ
]}

f ′(tE(ζ ) + (1 – t)E(η)
)

dt. (2.8)

Proof Solving the subsequent integral by integration by parts, then using a change of vari-
able and finally the definition of the left generalized fractional integral operator

I1 =
∫ 1

0
(1 – t)ρFα

σ ,ρ+1
[
ω

(
E(�)

)σ (1 – t)σ
]
f ′(tE(ζ ) + (1 – t)E(η)

)
dt

=
1

E(�)
Fα

σ ,ρ+1
[
ω

(
E(�)

)σ ]
f
(
E(η)

)

–
1

E(�)

∫ 1

0
(1 – t)ρ–1Fα

σ ,ρ
[
ω

(
E(�)

)σ (1 – t)σ
]
f
(
tE(ζ ) + (1 – t)E(η)

)
dt

=
1

E(�)
Fα

σ ,ρ+1
[
ω

(
E(�)

)σ ]
f
(
E(η)

)

–
1

(E(�))ρ+1

∫ E(η)

E(ζ )

(
v – E(ζ )

)ρ–1Fα
σ ,ρ

[
ω

(
E(�)

)σ (
v – E(ζ )

)σ ]
f (v) dv

=
1

E(�)
Fα

σ ,ρ+1
[
ω

(
E(�)

)σ ]
f
(
E(η)

)
–

1
(E(�))ρ+1 J

α
σ ,ρ,η+;ωf

(
E(ζ )

)
. (2.9)

Similarly,

I2 =
∫ 1

0
tρFα

σ ,ρ+1
[
ω

(
E(�)

)σ tσ
]
f ′(tE(ζ ) + (1 – t)E(η)

)
dt

= –
1

E(�)
Fα

σ ,ρ+1
[
ω

(
E(�)

)σ ]
f
(
E(ζ )

)
+

1
(E(�))ρ+1 J

α
σ ,ρ,E(ζ )+;ωf

(
E(η)

)
(2.10)

and on subtracting inequality (2.9) and inequality (2.10), then multiplying by
E(�)

2Fα
σ ,ρ+1[ω(E(�))σ ] , we obtain

E(�)
2Fα

σ ,ρ+1[ω(E(�))σ ]
[I1 – I2] = M(JE),

and on submitting the expressions for I1 and I2, we obtain the required result. �

Theorem 3 Let E : J −→ R be a continuous increasing function and ζ ,η ∈ J with ζ < η.
Let f : I −→ R be a differentiable function on Io and f ′ ∈ L([E(ζ ), E(η)]) for E(ζ ), E(η) ∈ I .
If |f ′| is an E-convex function on [ζ ,η], then the following inequality holds for generalized
fractional integral operators:

∣
∣M(JE)

∣
∣ ≤ E(�)

2
Fα1

σ ,ρ+1[ω(E(�))σ ]
Fα

σ ,ρ+1[ω(E(�))σ ]
[∣∣f ′(E(ζ )

)∣∣ +
∣
∣f ′(E(η)

)∣∣],

for all σ ,ρ ∈R
+ and ω ∈R, where

α1(n) =
α(n)

(σn + ρ + 1)

(
1 –

1
2σn+ρ

)
for n = 0, 1, 2, . . . . (2.11)
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Proof Using Lemma 2, the properties of modulus, and the E-convexity of |f ′|, respectively,

we have

2Fα
σ ,ρ+1[ω(E(�))σ ]

E(�)
∣∣M(JE)

∣∣

=
∣∣
∣∣

∫ 1

0

{
(1 – t)ρFα

σ ,ρ+1
[
ω

(
E(�)

)σ (1 – t)σ
]

– tρFα
σ ,ρ+1

[
ω

(
E(�)

)σ tσ
]}

f ′(tE(ζ ) + (1 – t)E(η)
)

dt
∣
∣∣∣

=

∣
∣∣
∣∣

∞∑

n=0

α(n)
	(σn + ρ + 1)

[
ω

(
E(�)

)σ ]n

×
∫ 1

0

[
(1 – t)σn+ρ – tσn+ρ

]
f ′(tE(ζ ) + (1 – t)E(η)

)
dt

∣∣
∣∣
∣

≤
∞∑

n=0

α(n)
	(σn + ρ + 1)

[
ω

(
E(�)

)σ ]n

×
∫ 1

0

∣
∣(1 – t)σn+ρ – tσn+ρ

∣
∣
∣
∣f ′(tE(ζ ) + (1 – t)E(η)

)∣∣dt

≤
∞∑

n=0

α(n)
	(σn + ρ + 1)

[
ω

(
E(�)

)σ ]n

×
[∫ 1

2

0

[
(1 – t)σn+ρ – tσn+ρ

][
t
∣
∣f ′(E(ζ )

)∣∣ + (1 – t)
∣
∣f ′(E(η)

)∣∣]dt

+
∫ 1

1
2

[
tσn+ρ – (1 – t)σn+ρ

][
t
∣∣f ′(E(ζ )

)∣∣ + (1 – t)
∣∣f ′(E(η)

)∣∣]dt
]

=
∞∑

n=0

α(n)
	(σn + ρ + 1)

[
ω

(
E(�)

)σ ]n[I3 + I4]. (2.12)

Consider the following integral

I3 =
∫ 1

2

0

[
(1 – t)σn+ρ – tσn+ρ

][
t
∣∣f ′(E(ζ )

)∣∣ + (1 – t)
∣∣f ′(E(η)

)∣∣]dt

=
∫ 1

2

0

[
t(1 – t)σn+ρ – tσn+ρ+1]∣∣f ′(E(ζ )

)∣∣dt

+
∫ 1

2

0

[
(1 – t)σn+ρ+1 – tσn+ρ+1(1 – t)

]∣∣f ′(E(η)
)∣∣dt

=
[

1
(σn + ρ + 1)(σn + ρ + 2)

–
1

2σn+ρ+1(σn + ρ + 1)

]∣∣f ′(E(ζ )
)∣∣

+
[

1
(σn + ρ + 2)

–
1

2σn+ρ+1(σn + ρ + 1)

]∣
∣f ′(E(η)

)∣∣.
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Similarly,

I4 =
∫ 1

1
2

[
tσn+ρ – (1 – t)σn+ρ

][
t
∣
∣f ′(E(ζ )

)∣∣ + (1 – t)
∣
∣f ′(E(η)

)∣∣]dt

=
[

1
(σn + ρ + 2)

–
1

2σn+ρ+1(σn + ρ + 1)

]∣∣f ′(E(ζ )
)∣∣

+
[

1
(σn + ρ + 1)(σn + ρ + 2)

–
1

2σn+ρ+1(σn + ρ + 1)

]∣
∣f ′(E(η)

)∣∣

and on submitting values of integrals I3 and I4 into inequality (2.12), we have

2Fα
σ ,ρ+1[ω(E(�))σ ]

E(�)
∣∣M(JE)

∣∣

≤
∞∑

n=0

α(n)
	(σn + ρ + 1)

[
ω

(
E(�)

)σ ]n

×
[

1
σn + ρ + 1

(
1 –

1
2σn+ρ

){∣∣f ′(E(ζ )
)∣∣ +

∣
∣f ′(E(η)

)∣∣}
]

= Fα1
σ ,ρ+1

[
ω

(
E(�)

)σ ][∣∣f ′(E(ζ )
)∣∣ +

∣
∣f ′(E(η)

)∣∣],

where α1 is as defined in (2.11). On rearranging we obtain the required result.
Hence it is proved. �

Remark 3 If in Theorem 3, the function E is chosen to be an identity function, then the
following inequality holds for all σ ,ρ ∈R

+ and ω ∈R:

∣∣M(J )
∣∣ ≤ �

2
Fα1

σ ,ρ+1[ω(�)σ ]
Fα

σ ,ρ+1[ω(�)σ ]
[∣∣f ′(ζ )

∣∣ +
∣∣f ′(η)

∣∣],

which was given in [31].

Remark 4 If in Theorem 3, the function E is chosen to be an identity function, α(0) = 1,
ρ = λ and ω = 0, then the following inequality holds:

∣∣M(J)
∣∣ ≤ �

2

[
1

λ + 1

(
1 –

1
2λ

)]
[∣∣f ′(ζ )

∣∣ +
∣∣f ′(η)

∣∣],

which was given in [32].

Theorem 4 Let E : J −→ R be a continuous increasing function and ζ ,η ∈ J with ζ < η.
Let f : I −→ R be a differentiable function on Io and f ′ ∈ L([E(ζ ), E(η)]) for E(ζ ), E(η) ∈
I . If |f ′|q, q > 1, is an E-convex function on [ζ ,η], then the following inequality holds for
generalized fractional integral operators:

∣
∣M(JE)

∣
∣ ≤ E(�)

2
Fα2

σ ,ρ+1[ω(E(�))σ ]
Fα

σ ,ρ+1[ω(E(�))σ ]

[ |f ′(E(ζ ))|q + |f ′(E(η))|q
2

] 1
q
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for all σ ,ρ ∈R
+ and ω ∈R, where p, q are conjugate indices and

α2(n) = α(n)
(

2
p(σn + ρ) + 1

(
1 –

1
2p(σn+ρ)

)) 1
p

for n = 0, 1, 2, . . . . (2.13)

Proof Using Lemma 2, the properties of modulus, and the well-known Hölder’s inequality,
respectively,

2Fα
σ ,ρ+1[ω(E(�))σ ]

E(�)
∣
∣M(JE)

∣
∣

=
∣
∣∣
∣

∫ 1

0

{
(1 – t)ρFα

σ ,ρ+1
[
ω

(
E(�)

)σ (1 – t)σ
]

– tρFα
σ ,ρ+1

[
ω

(
E(�)

)σ tσ
]}

f ′(tE(ζ ) + (1 – t)E(η)
)

dt
∣∣∣
∣

=

∣∣
∣∣
∣

∞∑

n=0

α(n)
	(σn + ρ + 1)

[
ω

(
E(�)

)σ ]n

×
∫ 1

0

[
(1 – t)σn+ρ – tσn+ρ

]
f ′(tE(ζ ) + (1 – t)E(η)

)
dt

∣
∣∣
∣∣

≤
∞∑

n=0

α(n)
	(σn + ρ + 1)

[
ω

(
E(�)

)σ ]n

×
∫ 1

0

∣∣(1 – t)σn+ρ – tσn+ρ
∣∣∣∣f ′(tE(ζ ) + (1 – t)E(η)

)∣∣dt

≤
∞∑

n=0

α(n)
	(σn + ρ + 1)

[
ω

(
E(�)

)σ ]n

×
(∫ 1

0

∣∣(1 – t)σn+ρ – tσn+ρ
∣∣p dt

) 1
p
(∫ 1

0

∣∣f ′(tE(ζ ) + (1 – t)E(η)
)∣∣q dt

) 1
q

=
∞∑

n=0

α(n)
	(σn + ρ + 1)

[
ω

(
E(�)

)σ ]n(I5)
1
p (I6)

1
q . (2.14)

Solving the first integral from the right side of inequality (2.14) and using Lemma 1, we
have

I5 =
∫ 1

0

∣
∣(1 – t)σn+ρ – tσn+ρ

∣
∣p dt

=
∫ 1

2

0

[
(1 – t)σn+ρ – tσn+ρ

]p dt +
∫ 1

1
2

[
tσn+ρ – (1 – t)σn+ρ

]p dt

=
∫ 1

2

0

[
(1 – t)p(σn+ρ) – tp(σn+ρ)]dt +

∫ 1

1
2

[
tp(σn+ρ) – (1 – t)p(σn+ρ)

]
dt

=
2

p(σn + ρ) + 1

(
1 –

1
2p(σn+ρ)

)
. (2.15)
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Solving the second integral from the right side of inequality (2.14) by using the fact that
|f ′|q, for any q > 1, is E-convex, therefore we have

I6 =
∫ 1

0

∣
∣f ′(tE(ζ ) + (1 – t)E(η)

)∣∣q dt

≤
∫ 1

0

[
t
∣∣f ′(E(ζ )

)∣∣q + (1 – t)
∣∣f ′(E(η)

)∣∣q]dt

=
|f ′(E(ζ ))|q + |f ′(E(η))|q

2
.

On submitting the values of integrals I5 and I6 on the right side of inequality (2.14), we
have

∣
∣M(JE)

∣
∣ ≤ E(�)

2Fα
σ ,ρ+1[ω(E(�))σ ]

∞∑

n=0

α(n)
	(σn + ρ + 1)

[
ω

(
E(�)

)σ ]n

×
(

2
p(σn + ρ) + 1

(
1 –

1
2p(σn+ρ)

)) 1
p
( |f ′(E(ζ ))|q + |f ′(E(η))|q

2

) 1
q

=
E(�)

2
Fα2

σ ,ρ+1[ω(E(�))σ ]
Fα

σ ,ρ+1[ω(E(�))σ ]

[ |f ′(E(ζ ))|q + |f ′(E(η))|q
2

] 1
q

,

where α2 is as defined in (2.13). Hence it is proved. �

Remark 5 If in Theorem 4, the function E is chosen to be an identity function, then the
following inequality holds for all σ ,ρ ∈R

+ and ω ∈R:

∣
∣M(J )

∣
∣ ≤ �

2
Fα2

σ ,ρ+1[ω(�)σ ]
Fα

σ ,ρ+1[ω(�)σ ]

[ |f ′(ζ )|q + |f ′(η)|q
2

] 1
q

,

which was given in [33].

Remark 6 If in Theorem 4, the function E is chosen to be an identity function, α(0) = 1,
ρ = λ and ω = 0, then the following inequality holds:

∣∣M(J)
∣∣ ≤ �

2

(
2

pλ + 1

(
1 –

1
2pλ

)) 1
p
[ |f ′(ζ )|q + |f ′(η)|q

2

] 1
q

,

which was given in [33].

Theorem 5 Let E : J −→ R be a continuous increasing function and ζ ,η ∈ J with ζ < η.
Let f : I −→ R be a differentiable function on Io and f ′ ∈ L([E(ζ ), E(η)]) for E(ζ ), E(η) ∈
I . If |f ′|q, q ≥ 1, is an E-convex function on [ζ ,η], then the following inequality holds for
generalized fractional integral operators:

∣
∣M(JE)

∣
∣ ≤ E(�)

2
Fα3

σ ,ρ+1[ω(E(�))σ ]
Fα

σ ,ρ+1[ω(E(�))σ ]

[ |f ′(E(ζ ))|q + |f ′(E(η))|q
2

] 1
q
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for all σ ,ρ ∈R
+ and ω ∈R, where

α3(n) = α(n)
2

σn + ρ + 1

(
1 –

1
2σn+ρ

)
for n = 0, 1, 2, . . . . (2.16)

Proof Using Lemma 2, the well-known power mean inequality, and the E-convexity of
|f ′|q, respectively, we have

2Fα
σ ,ρ+1[ω(E(�))σ ]

E(�)
∣∣M(JE)

∣∣

=
∣
∣∣∣

∫ 1

0

{
(1 – t)ρFα

σ ,ρ+1
[
ω

(
E(�)

)σ (1 – t)σ
]

– tρFα
σ ,ρ+1

[
ω

(
E(�)

)σ tσ
]}

f ′(tE(ζ ) + (1 – t)E(η)
)

dt
∣
∣∣
∣

=

∣∣∣
∣∣

∞∑

n=0

α(n)
	(σn + ρ + 1)

[
ω

(
E(�)

)σ ]n

×
∫ 1

0

[
(1 – t)σn+ρ – tσn+ρ

]
f ′(tE(ζ ) + (1 – t)E(η)

)
dt

∣
∣∣∣
∣

≤
∞∑

n=0

α(n)
	(σn + ρ + 1)

[
ω

(
E(�)

)σ ]n

×
∫ 1

0

∣∣(1 – t)σn+ρ – tσn+ρ
∣∣∣∣f ′(tE(ζ ) + (1 – t)E(η)

)∣∣dt

≤
∞∑

n=0

α(n)
	(σn + ρ + 1)

[
ω

(
E(�)

)σ ]n
(∫ 1

0

∣∣(1 – t)σn+ρ – tσn+ρ
∣∣dt

)1– 1
q

×
(∫ 1

0

∣∣(1 – t)σn+ρ – tσn+ρ
∣∣∣∣f ′(tE(ζ ) + (1 – t)E(η)

)∣∣q dt
) 1

q

≤
∞∑

n=0

α(n)
	(σn + ρ + 1)

[
ω

(
E(�)

)σ ]n
[∫ 1

0

∣∣(1 – t)σn+ρ – tσn+ρ
∣∣dt

]1– 1
q

×
(∫ 1

0

∣∣(1 – t)σn+ρ – tσn+ρ
∣∣[t

∣∣f ′(E(ζ )
)∣∣q + (1 – t)

∣∣f ′(E(η)
)∣∣q]

) 1
q

≤
∞∑

n=0

α(n)
	(σn + ρ + 1)

[
ω

(
E(�)

)σ ]n
[

2
σn + ρ + 1

(
1 –

1
2σn+ρ

)]1– 1
q

×
[

1
σn + ρ + 1

(
1 –

1
2σn+ρ

){∣∣f ′(E(ζ )
)∣∣q +

∣
∣f ′(E(η)

)∣∣q}
] 1

q

=
∞∑

n=0

α(n)
	(σn + ρ + 1)

[
ω

(
E(�)

)σ ]n

× 2
σn + ρ + 1

(
1 –

1
2σn+ρ

)[ |f ′(ζ )|q + |f ′(η)|q
2

] 1
q

(2.17)
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and on rearranging we obtain

∣
∣M(JE)

∣
∣ =

E(�)
2

Fα3
σ ,ρ+1[ω(E(�))σ ]

Fα
σ ,ρ+1[ω(E(�))σ ]

[ |f ′(ζ )|q + |f ′(η)|q
2

] 1
q

,

where α3 is as defined in (2.16).
Hence it is proved. �

Remark 7 If in Theorem 5, the function E is chosen to be an identity function, then the
following inequality holds for all σ ,ρ ∈R

+ and ω ∈R:

∣
∣M(J )

∣
∣ ≤ �

2
Fα3

σ ,ρ+1[ω(�)σ ]
Fα

σ ,ρ+1[ω(�)σ ]

[ |f ′(ζ )|q + |f ′(η)|q
2

] 1
q

,

which was given in [33].

Remark 8 If in Theorem 5, the function E is chosen to be an identity function, α(0) = 1,
ρ = λ and ω = 0, then the following inequality holds:

∣
∣M(J)

∣
∣ ≤ �

λ + 1

(
1 –

1
2λ

)[ |f ′(ζ )|q + |f ′(η)|q
2

] 1
q

,

which was given in [33].

Lemma 3 Let E : J ⊂ R
+ ∪ {0} −→ R be a continuous increasing function and ζ ,η ∈ J

with ζ < η. Let f : I −→ R be a twice differentiable function on Io. If f ′′ ∈ L([E(ζ ), E(η)])
for E(ζ ), E(η) ∈ I , then the following identity holds for generalized fractional operators:

M(JE) =
(E(�))2

2Fα
σ ,ρ+1[ω(E(�))σ ]

×
∫ 1

0

{
Fα

σ ,ρ+2
[
ω

(
E(�)

)σ ]
– (1 – t)ρ+1Fα

σ ,ρ+2
[
ω

(
E(�)

)σ (1 – t)σ
]

– tρ+1Fα
σ ,ρ+2

[
ω

(
E(�)

)σ tσ
]}

f ′′(tE(ζ ) + (1 – t)E(η)
)

dt

for all σ ,ρ > 0 and ω ≥ 0.

Proof Solving the following integral by simple integration

I7 =
∫ 1

0
Fα

σ ,ρ+2
[
ω

(
E(�)

)σ ]
f ′′(tE(ζ ) + (1 – t)E(η)

)
dt

= Fα
σ ,ρ+2

[
ω

(
E(�)

)σ ] ∫ 1

0
f ′′(tE(ζ ) + (1 – t)E(η)

)
dt

=
1

E(�)
Fα

σ ,ρ+2
[
ω

(
E(�)

)σ ][
f ′(E(η)

)
– f ′(E(ζ )

)]
.

Solving the next integral by applying integration by parts twice, we have

I8 =
∫ 1

0
(1 – t)ρ+1Fα

σ ,ρ+2
[
ω

(
E(�)

)σ (1 – t)σ
]
f ′′(tE(ζ ) + (1 – t)E(η)

)
dt,
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I8 =
Fα

σ ,ρ+2[ω(E(�))σ ]
E(�)

f ′(E(η)
)

–
Fα

σ ,ρ+1[ω(E(�))σ ]
(E(�))2 f

(
E(η)

)

+
1

(E(�))2

∫ 1

0
(1 – t)ρ–1Fα

σ ,ρ
[
ω

(
E(�)

)σ (1 – t)σ
]
f
(
tE(ζ ) + (1 – t)E(η)

)
dt

=
Fα

σ ,ρ+2[ω(E(�))σ ]
E(�)

f ′(E(η)
)

–
Fα

σ ,ρ+1[ω(E(�))σ ]
(E(�))2 f

(
E(η)

)

+
1

(E(�))ρ+2

∫ E(η)

E(ζ )

(
x – E(ζ )

)ρ–1Fα
σ ,ρ

[
ω(E

(
x – E(ζ )

)ρ–1]f (x)dx

=
Fα

σ ,ρ+2[ω(E(�))σ ]
E(�)

f ′(E(η)
)

–
Fα

σ ,ρ+1[ω(E(�))σ ]
(E(�))2 f

(
E(η)

)

+
1

(E(�))ρ+2 J
α
σ ,ρ,η+;ωf

(
E(ζ )

)
,

and similarly

I9 =
∫ 1

0
tρ+1Fα

σ ,ρ+2
[
ω

(
E(�)

)σ tσ
]
f ′′(tE(ζ ) + (1 – t)E(η)

)
dt

= –
Fα

σ ,ρ+2[ω(E(�))σ ]
E(�)

f ′(E(ζ )
)

–
Fα

σ ,ρ+1[ω(E(�))σ ]
(E(�))2 f

(
E(ζ )

)

+
1

(E(�))ρ+2 J
α
σ ,ρ,E(ζ )+;ωf

(
E(η)

)
,

on subtracting I8 and I9 from I7, then multiplying by (E(�))2

2Fα
σ ,ρ+1[ω(E(�))σ ] , we obtain

(E(�))2

2Fα
σ ,ρ+1[ω(E(�))σ ]

[I7 – I8 – I9] = M(JE)

and on submitting the values of I7, I8 and I9 we obtain the required result. �

Theorem 6 Let E : J −→ R be a continuous increasing function and ζ ,η ∈ J with ζ < η.
Let f : I −→ R be a differentiable function on Io and f ′′ ∈ L([E(ζ ), E(η)]) for E(ζ ), E(η) ∈ I .
If |f ′′| is an E-convex function on [ζ ,η], then the following inequality holds for generalized
fractional integral operators:

∣
∣M(JE)

∣
∣ ≤ (E(�))2

2
Fα4

σ ,ρ+3[ω(E(�))σ ]
Fα

σ ,ρ+1[ω(E(�))σ ]

[ |f ′′(E(ζ ))| + |f ′′(E(η))|
2

]
,

for all σ ,ρ ∈R
+ and ω ∈R, where

α4(n) = α(n)(σn + ρ) for n = 0, 1, 2, . . . . (2.18)

Proof Using Lemma 3, the properties of modulus, and the E-convexity of |f ′′|, respectively,

∣∣M(JE)
∣∣

≤ (E(�))2

2Fα
σ ,ρ+1[ω(E(�))σ ]

∞∑

n=0

α(n)
	(σn + ρ + 2)

[
ω

(
E(�)

)σ ]n
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×
∫ 1

0

[
1 – (1 – t)σn+ρ+1 – tσn+ρ+1]∣∣f ′′(tE(ζ ) + (1 – t)E(η)

)∣∣dt

≤ (E(�))2

2Fα
σ ,ρ+1[ω(E(�))σ ]

∞∑

n=0

α(n)
	(σn + ρ + 2)

[
ω

(
E(�)

)σ ]n

×
∫ 1

0

[
1 – (1 – t)σn+ρ+1 – tσn+ρ+1][t

∣∣f ′′(E(ζ )
)∣∣ + (1 – t)

∣∣f ′′(tE(η)
)∣∣]dt

≤ (E(�))2

2Fα
σ ,ρ+1[ω(E(�))σ ]

∞∑

n=0

α(n)
	(σn + ρ + 2)

[
ω

(
E(�)

)σ ]n

×
[

σn + ρ

2(σn + ρ + 2)
{∣∣f ′′(E(ζ )

)∣∣ +
∣∣f ′′(E(η)

)∣∣}
]

≤ (E(�))2

2
Fα4

σ ,ρ+3[ω(E(�))σ ]
Fα

σ ,ρ+1[ω(E(�))σ ]

[ |f ′′(E(ζ ))| + |f ′′(E(η))|
2

]
,

where α4(n) is as defined in (2.18).
Hence it is proved. �

Remark 9 If in Theorem 6, the function E is chosen to be an identity function, then the
following inequality holds for all σ ,ρ ∈R

+ and ω ∈R:

∣∣M(J )
∣∣ ≤ (�)2

2
Fα4

σ ,ρ+3[ω(�)σ ]
Fα

σ ,ρ+1[ω(�)σ ]

[ |f ′′(E(ζ ))| + |f ′′(E(η))|
2

]
,

which was given in [33].

Remark 10 If in Theorem 6, the function E is chosen to be an identity function, α(0) = 1,
ρ = λ and ω = 0, then the following inequality holds:

∣∣M(J)
∣∣ ≤ (�)2

2
λ

(λ + 1)(λ + 2)

[ |f ′′(E(ζ ))| + |f ′′(E(η))|
2

]
,

which was given in [33].

Theorem 7 Let E : J −→ R be a continuous increasing function and ζ ,η ∈ J with ζ < η.
Let f : I −→ R be a differentiable function on Io and f ′′ ∈ L([E(ζ ), E(η)]) for E(ζ ), E(η) ∈
I . If |f ′′|q, q > 1, is an E-convex function on [ζ ,η], then the following inequality holds for
generalized fractional integral operators:

∣∣M(JE)
∣∣ ≤ (E(�))2

2
Fα5

σ ,ρ+2[ω(E(�))σ ]
Fα

σ ,ρ+1[ω(E(�))σ ]

[ |f ′′(E(ζ ))|q + |f ′′(E(η))|q
2

] 1
q

,

for all σ ,ρ ∈R
+ and ω ∈R, where

α5(n) = α(n)
(

1 –
2

p(σn + ρ + 1) + 1

) 1
p

for n = 0, 1, 2, 3, . . . . (2.19)
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Proof Using Lemma 3 and applying Hölder’s inequality, respectively,

∣∣M(JE)
∣∣

≤ (E(�))2

2Fα
σ ,ρ+1[ω(E(�))σ ]

∞∑

n=0

α(n)
	(σn + ρ + 2)

[
ω

(
E(�)

)σ ]n

×
[∫ 1

0

∣∣1 – (1 – t)σn+ρ+1 – tσn+ρ+1∣∣p dt
] 1

p
[∫ 1

0

∣∣f ′′(tE(ζ ) + (1 – t)E(η)
)∣∣q dt

] 1
q

≤ (E(�))2

2Fα
σ ,ρ+1[ω(E(�))σ ]

∞∑

n=0

α(n)
	(σn + ρ + 2)

[
ω

(
E(�)

)σ ]n

×
[∫ 1

0

[
1 – (1 – t)p(σn+ρ+1) – tp(σn+ρ+1)]dt

] 1
p

×
[∫ 1

0

[
t
∣∣f ′′(E(ζ )

)∣∣q + (1 – t)
∣∣f ′′(E(ζ )

)∣∣q]dt
] 1

q

≤ (E(�))2

2Fα
σ ,ρ+1[ω(E(�))σ ]

∞∑

n=0

α(n)
	(σn + ρ + 2)

[
ω

(
E(�)

)σ ]n

×
[

1 –
2

p(σn + ρ + 1) + 1

] 1
p
[ |f ′′(E(ζ ))|q + |f ′′(E(η))|q

2

] 1
q

=
(E(�))2

2
Fα5

σ ,ρ+2[ω(E(�))σ ]
Fα

σ ,ρ+1[ω(E(�))σ ]

[ |f ′′(E(ζ ))|q + |f ′′(E(η))|q
2

] 1
q

,

where α5 is as defined in (2.19). Hence it is proved. �

Remark 11 If in Theorem 7, the function E is chosen to be an identity function, then the
following inequality holds for all σ ,ρ ∈R

+ and ω ∈R:

∣
∣M(J )

∣
∣ ≤ (�)2

2
Fα5

σ ,ρ+2[ω(�)σ ]
Fα

σ ,ρ+1[ω(�)σ ]

[ |f ′′(ζ )|q + |f ′′(η)|q
2

] 1
q

,

which was given in [33].

Remark 12 If in Theorem 7, the function E is chosen to be an identity function, α(0) = 1,
ρ = λ and ω = 0, then the following inequality holds:

∣
∣M(J)

∣
∣ ≤ (�)2

2
1

λ + 1

(
1 –

2
p(λ + 1) + 1

) 1
p
[ |f ′′(ζ )|q + |f ′′(η)|q

2

] 1
q

,

which was given in [33].

Theorem 8 Let E : J −→ R be a continuous increasing function and ζ ,η ∈ J with ζ < η.
Let f : I −→ R be a differentiable function on Io. If |f ′′|q, q ≥ 1, is an E-convex function on
[ζ ,η], then the following inequality holds for generalized fractional integral operators:

∣
∣M(JE)

∣
∣ ≤ (E(�))2

2
Fα6

σ ,ρ+2[ω(E(�))σ ]
Fα

σ ,ρ+1[ω(E(�))σ ]

[ |f ′′(E(ζ ))|q + |f ′′(E(η))|q
2

] 1
q
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for all σ ,ρ ∈R
+ and ω ∈R, where p, q are conjugate indices and

α6(n) = α(n)
(

σn + ρ

σn + ρ + 2

)
for n = 0, 1, 2, . . . . (2.20)

Proof Using Lemma 3 and applying the well-known power mean inequality

∣∣M(JE)
∣∣

≤ (E(�))2

2Fα
σ ,ρ+1[ω(E(�))σ ]

∞∑

n=0

α(n)
	(σn + ρ + 2)

[
ω

(
E(�)

)σ ]n

×
(∫ 1

0

[
1 – (1 – t)σn+ρ+1 – tσn+ρ+1]dt

)1– 1
q

×
(∫ 1

0

[
1 – (1 – t)σn+ρ+1 – tσn+ρ+1]∣∣f ′′(tE(ζ ) + (1 – t)E(η)

)∣∣q dt
) 1

q

≤ (E(�))2

2Fα
σ ,ρ+1[ω(E(�))σ ]

∞∑

n=0

α(n)
	(σn + ρ + 2)

[
ω

(
E(�)

)σ ]n
[

1 –
2

σn + ρ + 2

]1– 1
q

×
[

σn + ρ

2(σn + ρ + 2)
{∣∣f ′′(E(ζ )

)∣∣q +
∣∣f ′′(E(η)

)∣∣q}
] 1

q

≤ (E(�))2

2Fα
σ ,ρ+1[ω(E(�))σ ]

∞∑

n=0

α(n)
	(σn + ρ + 2)

[
ω

(
E(�)

)σ ]n

×
(

σn + ρ

σn + ρ + 2

)[ |f ′′(E(ζ ))|q + |f ′′(E(η))|q
2

] 1
q

=
(E(�))2

2
Fα6

σ ,ρ+2[ω(E(�))σ ]
Fα

σ ,ρ+1[ω(E(�))σ ]

[ |f ′′(E(ζ ))|q + |f ′′(E(η))|q
2

] 1
q

,

where α6 is as defined in (2.20). Hence it is proved. �

Corollary 1 If in Theorem 8, the function E is chosen to be an identity function, then the
following inequality holds for all σ ,ρ ∈R

+ and ω ∈R:

∣∣M(J )
∣∣ ≤ (�)2

2
Fα6

σ ,ρ+2[ω(�)σ ]
Fα

σ ,ρ+1[ω(�)σ ]

[ |f ′′(E(ζ ))|q + |f ′′(E(η))|q
2

] 1
q

.

Corollary 2 If in Theorem 8, the function E is chosen to be an identity function, α(0) = 1,
ρ = λ and ω = 0, then the following inequality holds:

∣
∣M(J)

∣
∣ ≤ (�)2

2

(
λ

λ + 2

)[ |f ′′(E(ζ ))|q + |f ′′(E(η))|q
2

] 1
q

.
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