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Abstract
The manuscript is an extension of the investigations concerning θ -contractions
which have been newly proposed in (Jleli and Samet in J. Inequal. Appl. 2014:38,
2014). The authors generalize the notion of θ -contractions to the case of nonlinear
θb-contraction mappings and prove multi-valued fixed point theorems based on the
b-Bianchini–Grandolfi gauge function in b-metric spaces. The manuscript consists of a
tangible example which displays the motivation for such investigations. The work is
compiled by the application of the proposed nonlinear θb-contractions to
Liouville–Caputo fractional differential equations.
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1 Introduction
The Banach fixed point (or contraction) theorem is one of the most useful tools in func-
tional analysis and its applications. It states conditions sufficient for the existence and
uniqueness of a fixed point, and the theorem also provides an iterative system by which we
can approximate to the fixed point and error bounds. This classical result of Banach has
been described in different classes of distance spaces. In 1969, Nadler [19] generalized the
concept of contraction theorem based on multi-valued mappings. He used the Hausdorff
metric on it. Following the module of distance spaces, a number of authors have extended
several results in this direction (see [1–30]). In 2007, Proinov [22] extended a contraction
theorem with high order of iterative convergence of successive approximation by a new
approach of contractive condition with respect to gauge function, high order of gauge
function, and Bianchini–Grandolfi gauge function.

In 1989 Bakhtin [6] and in 1993 Czerwik [12] generalized for the first time the concept of
metric space by reorganizing just the triangle inequality and called it a b-metric space. Af-
ter that, Aydi et al. in [5] constituted common fixed point theorems for single-valued and
set-valued contractions gratifying a weak structure of ϕ-contraction in b-metric spaces
(see [8, 13–15, 20]).

In 2012 Wardowski [27] developed the concept of new contraction mappings named
F-contraction and proved some fixed point theorems, which were a generalization of the
contraction theorem. In the recent time, Jleli and Samet [17] provided the idea of a new
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class contraction called θ -contraction, which is a new aspect of the contraction theorem
in the associated approach.

2 Preliminaries
Firstly, we recall the Hausdorff–Pompeiu b-metric and some basic manners of b-metric
space for the main sequel.

Let (�,ð) be a b-metric space. For κ ∈ �, A ⊆ � and let ðb(κ ,�1) = inf{ð(κ , y) : y ∈ �2}.
Define a mapping Ĥb : CB(�) × CB(�) → [0, +∞) by

Ĥb(�1,�2) = max
{

sup
κ∈�1

ðb(κ ,�2), sup
y∈�2

ðb(y,�1)
}

for all �1,�2 ∈ CB(�). Then Ĥb is known as Hausdorff–Pompeiu b-metric induced by
ð on CB(�), where CB(�) is the class of all nonempty closed and bounded subsets of �.
A point κ ∈ � is called a fixed point of Ì : � → CL(�) such that κ ∈ Ìκ , where CL(�)
is the class of all nonempty closed subsets of �. If for κ0 ∈ � there is {κi} in � such that
κi ∈ Ìκi–1, then O(Ì,κ0) = {κ0,κ1,κ2, . . .} is called an orbit of Ì : � → CL(�). A map f : � →R

is called Ì-orbitally lower semi-continuous if {κi} ∈ O(Ì,κ0) and κi → �, which implies
f (�) ≤ lim infi f (κi).

Definition 2.1 ([12]) A b-metric space on a nonempty set M is a function b : �×� → R+ ∪
{0} such that for each κ1,κ2,κ3 ∈ � with s ≥ 1 being a given real number, if the following
hold true:

(bi) ð(κ1,κ2) = 0 if and only if κ1 = κ2;
(bii) ð(κ1,κ2) = ð(κ2,κ1);
(biii) ð(κ1,κ3) ≤ s[ð(κ1,κ2) + ð(κ2,κ3)]. The pair (�,ð) is known as a b-metric space.

Example 2.1 ([12]) Let � = Lp[0, 1] be the space of all real-valued functions κ(r), 0 ≤ r ≤ 1
such that

∫ 1
0 |κ(r)| 1

p dr < +∞. Define b : � × � → R+ by b(κ1,κ2) = (
∫ 1

0 |κ1(r) – κ2(r)|p)
1
p ,

then (�,ð) is known as a b-metric space with s = 2
1
p .

Lemma 2.1 Let (�,ð) be a b-metric space and �1, �2 ∈ CB(�) with Ĥb(�1,�2) > 0. Then,
for every h > 1 and κ ∈ �1, there is y = y(κ) ∈ �2 such that

ð(κ , y) < hĤb(�1,�2).

Lemma 2.2 ([12]) Let (�,ð) be a b-metric space. For any �1, �2 ∈ CB(�) and any κ , y ∈ �

such that
(i) ðb(κ ,�2) ≤ ð(κ , z) for every z ∈ �2;
(ii) ðb(κ ,�2) ≤ Ĥb(�1,�2);
(iii) ðb(κ ,�1) ≤ s[ð(κ , y) + ðb(κ ,�2)].

Some other related recent developments are being recalled. Proinov [22] put forward
the following concept.

Definition 2.2 Let i ≥ 1. The function ϑ : J → J is called a gauge function of order i on J ,
where J = R+ ∪ {0}, if the following conditions are satisfied:
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(a) ϑ(λκ) < λiϑ(κ) for each λ ∈ (0, 1) and κ ∈ J ;
(b) ϑ(κ) < κ ∀κ ∈ J – {0}.
Easily, we conclude that the first case of Definition 2.2 is equivalent to (i) ϑ(0) = 0 and

(ii) ϑ(κ)/κ i is nondecreasing on J – {0}.

Definition 2.3 ([22]) A gauge function ϑ : J → J is called a Biachini–Grandolfi gauge func-
tion on J if

σ (κ) =
+∞∑
i=0

ϑ i(κ) < ∞, ∀κ ∈ J = R+ ∪ {0}.

In view of the above observations, a Biachini–Grandolfi gauge function also satisfies the
following functional equation:

σ (κ) = σ
(
ϑ(κ)

)
+ κ .

Lemma 2.3 ([22]) For given κ0 ∈ � (� is a closed subset of �) such that ð(κ0, Ìκ0) ∈ J and
κi ∈ � for some i ≥ 0. Then ð(κi, Ìκi) ∈ J .

Definition 2.4 Let κ0 ∈ � and ð(κ0, Ìκ0) ∈ J . Then, for each iterate κi(i ≥ 0) ∈ �, define
the closed ball b(κi,ρ) with center κi and center ρ > 0.

Lemma 2.4 If an element κ0 ∈ � such that ð(κ0, Ìκ0) ∈ J and b(κi,ρ) ⊂ � for some i ≥ 0,
then κi+1 ∈ � and b(κi+1,ρ) ⊂ b(κi,ρ).

In light of the above hypothesis the structure of a b-metric space in the class of Biachini–
Grandolfi gauge function ϑ proceeds as follows.

Definition 2.5 A nondecreasing function ϑ : J → J is called a b-Biachini–Grandolfi gauge
function on J if

σ (κ) =
+∞∑
i=0

siϑ i(κ) < ∞, ∀κ ∈ J , (1)

where J = R+ and s ≥ 1. In light of the above observation, a b-Biachini–Grandolfi gauge
function also satisfies the following functional equation:

σ (κ) = sσ
(
ϑ(κ)

)
+ κ . (2)

Remark 1 Every b-Biachini–Grandolfi gauge function is also a Biachini–Grandolfi gauge
function, but the converse may not be true in general. Furthermore, some definition of a
gauge function in a b-metric space is the following:

ϑ(κ) =

⎧⎨
⎩

sϑ(κ)
κ

if κ ∈ J ,

0 if κ = 0,

where s is the coefficient of a b-metric space.
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Example 2.2 (i) ϑ(κ) = λκ
s for each λ ∈ (0, 1) is a gauge function of order 1 on κ ∈ J ;

(ii) ϑ(κ) = λκk

s (λ > 0, k > 0) is a gauge function of order k on J = (0, l) where l = ( 1
λ

)
1

1–k .

Definition 2.6 Suppose κ0 ∈ � and ð(κ0, Ìκ0) ∈ J . Then, for every iterate κi(i ≥ 0) ∈ �, we
define the closed ball b(κi,ρi) with center κi and radius ρi = σ (ð(κi, Ìκi)).

From now on, Jleli and Samet [17] examined the idea of a θ -contraction as follows.

Theorem 2.5 Let (�,ð) be a complete metric space and Ì : � → � be a mapping. Suppose
that there are θ ∈  and k ∈ (0, 1) such that

κ1,κ2 ∈ �, ð(Ìκ1, Ìκ2) > 0 imply θ
[
ð(Ìκ1, Ìκ2)

]≤ [
θ
(
ð(κ1,κ2)

)]k ,

where  is the set of mappings θ : (0,∞) → (1,∞) that satisfy (θi)–(θiii):
(θi) θ is nondecreasing and right-continuous;
(θii) for all {si} in (0,∞), limi→∞ θ (si) = 1 if and only if limi→∞(si) = 0;
(θiii) there are r ∈ (0, 1) and κ ∈ (0, +∞] such that lims→0+ θ (s)–1

sr = κ . Then Ì has at least
one fixed point.

Example 2.3 The functions θ : (0,∞) → (1,∞) defined by θ1(r) = er , θ2(r) = e
√

r , θ3(r) =
erer , θ4(r) = e

√
rer , and θ5(r) = 1 +

√
r are in .

The main purpose of this manuscript is to introduce a new concept of θb-contraction
in a b-metric space, which is an extension of θ -contraction [17]. We prove multi-valued
fixed point theorems via the b-Bianchini–Grandolfi gauge function in the class of b-metric
spaces. As our generalized results are based on b-Bianchini–Grandolfi gauge function in-
stead of the conventional operator, our newly proved works are the generalization of Ali
et al. [2] and Proinov [22].

3 Main result
Further aspects of θ -contraction [17]. First, we give the following generalized definition.

We denote by b the class of functions θb : (0,∞) → (1,∞) satisfying the following state-
ments:

(θi) θb is nondecreasing;
(θii) for each {κn} ⊂ (0,∞), limn→∞ θb(κn) = 1 ⇔ limn→∞(κn) = 0;
(θiii) there are r ∈ (0, 1) and l ∈ (0, +∞] such that limκ→0+

θb(κ)–1
κr = l;

(θiv) θb is right-continuous;
(θv) for each {κn} ⊂ (0,∞) such that θb(sκn) ≤ [θb(sκn–1)]k ∀n ∈ N , s ≥ 1 and k ∈ (0, 1),

we have

θb
(
snκn

)≤ [
θb
(
sn–1κn–1

)]k ∀n ∈ N .

Before going to our main exposition, first we prove an auxiliary lemma for our main
sequel.
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Lemma 3.1 Let (�,ð, s) be a b-metric space and {κn} be any sequence of � for which there
are k ∈ (0, 1) and θ ∈  such that

θb
[
sð(κn,κn+1)

]≤ [
θb
(
ð(κn–1,κn)

)]k , n ∈ N .

Then {κn} is a Cauchy sequence in �.

Proof In view of the given hypothesis, we have

θb
[
sð(κn,κn+1)

]≤ [
θb
(
ð(κn–1,κn)

)]k , n ∈ N . (3)

From (3), together with the equation (θv), we write

θb
[
sn
ð(κn,κn+1)

]≤ [
θb
(
sn–1

ð(κn–1,κn)
)]k , n ∈ N .

Consequently, we obtain

1 < θb
(
sn
ð(κn,κn+1)

)≤ [
θb
(
sn–1

ð(κn–1,κn)
)]k ≤ · · · ≤ [

θb
(
ð(κ0,κ1)

)]kn
. (4)

Taking the limit as n → ∞ in (4), by appealing to θb ∈ b, we can write

lim
n→∞θb

(
sn
ð(κn,κn+1)

)
= 1.

In view of (θii), we have

lim
n→∞ sn

ð(κn,κn+1) = 0. (5)

Now, we examine that {κn} is a Cauchy sequence in �. Upon setting δn := ð(κn,κn+1) and
in light of (θiii), there are r ∈ (0, 1) and κ ∈ (0,∞] such that

lim
n→∞

θb(snδn) – 1
(snδn)r = κ .

Taking λ ∈ (0,κ) and from the definition of limit, there is n0 ∈N such that

[
snδn

]r ≤ λ–1[θb
(
snδn

)
– 1

]
, (∀n > n0).

Using (3) and in view of the above inequality, we obtain

n
[
snδn

]r ≤ λ–1n
([

θb
(
snδ0

)]kn
– 1

)
, (∀n > n0),

which yields

lim
n→∞n

[
snδn

]r = lim
n→∞n

[
snδn

]r = 0.

Hence, there is n1 ∈N such that

δn ≤ 1
n1/r (∀n > n1). (6)
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Let p > n > n1. Then, using the triangular inequality and (6), we get

ð(κn,κp) ≤
p–1∑
j=n

sn
ð(κj,κj+1) ≤

∞∑
j=n

sn
ð(κj,κj+1) ≤

∞∑
j=n

1
j1/r <

∞∑
j=n

1
j1/r .

Based on the convergence of the series
∑∞

j=n
1

j1/r , we get {κn} is a Cauchy sequence in �. �

We start with the following.

Definition 3.1 Let (�,ð, s) be a b-metric space, � be a closed subset of �, and ϑ be a
Bianchini–Grandolfi gauge function on J . A mapping Ì : � → CB(�) is called multi-valued
θb-contraction, if there is θb ∈ b such that, for Ìκ ∩ � �= ∅,

1
2s

min
{
ðb(κ , Ìκ ∩ �),ðb(y, Ìy ∩ �)

}
< ð(κ , y)

implies that

θb
[
sHb(Ìκ ∩ �, Ìy ∩ �)

]≤ [
θb
(
ϑ
(
�(κ , y)

))]k , (7)

where

�(κ , y) = max

{
ð(κ , y),ðb(κ , Ìκ),ðb(y, Ìy),

ðb(κ , Ìy) + ðb(y, Ìκ)
2s

}

for each κ ∈ �, y ∈ Ìκ ∩ � with ð(y, Ìκ) ∈ J , where k ∈ (0, 1).

Remark 2 Let (�,ð, s) be a b-metric space and Ì : � → CB(�) be a multi-valued θb-
contraction mapping satisfying (7) such that

ln θb
(
Hb(Ìκ1 ∩ �, Ìκ2 ∩ �)

)≤ k ln θb
(
�(κ1,κ2)

)
< ln θb

(
�(κ1,κ2)

)
.

Owing to θb ∈ b, we have

Hb(Ìκ1 ∩ �, Ìκ2 ∩ �) < �(κ1,κ2) for all κ1,κ2 ∈ κ , Ìκ1 ∩ � �= Ìκ2 ∩ �.

Theorem 3.2 Let (�,ð, s) be a complete b-metric space and Ì : � → CB(�) be a multi-
valued θb-contraction. Suppose κ0 ∈ � such that ð(κ0, c∗) ∈ J for some c∗ ∈ Ìκ0 ∩ �. Then
there is an orbit {κi} of Ì in � and ϑ∗ ∈ � such that limi→∞ κi = ϑ∗. In addition, ϑ∗ is a fixed
point of Ì if and only if the function g(κ) := ð(κ , Ìκ ∩�) is Ì-orbitally lower semi-continuous
at ϑ∗.

Proof Upon setting κ1 = c∗ ∈ Ì(κ0) ∩ �. In the case that ð(κ0,κ1) = 0, then our proof of
Theorem 3.2 proceeds as follows. Thus, we assume that ð(κ0,κ1) �= 0. On the other hand,
we obtain

1
2s

min
{
ðb
(
κ0, Ì(κ0) ∩ �

)
,ðb

(
κ1, Ì(κ1) ∩ �

)}
< ð(κ0,κ1). (8)



Ali et al. Journal of Inequalities and Applications         (2022) 2022:37 Page 7 of 19

Define ρ = σ (ð(κ0,κ1)). From (2), we have σ (r) ≥ r. Hence ð(κ0,κ1) ≤ ρ and so κ1 ∈ b(κ0,ρ).
Since ð(κ0,κ1) ∈ J , from (7) and (8) it follows that

θb
[
sHd

(
Ì(κ0) ∩ �, Ì(κ1) ∩ �

)]≤ [
θb
(
sϑ
(
ð(κ0,κ1)

))]k <
[
θb
(
�(κ0,κ1)

)]k . (9)

By the right continuity of θb, there is a real number h1 > 1 such that

θb
[
sh1Hd

(
Ì(κ0) ∩ �, Ì(κ1) ∩ �

)]≤ [
θb
(
�(κ0,κ1)

)]k . (10)

From Lemma 2.2, we can write

sðb
(
κ1, Ì(κ1) ∩ �

)≤ sHd
(
Ì(κ0) ∩ �, Ì(κ1) ∩ �

)
< sh1Hd

(
Ì(κ0) ∩ �, Ì(κ1) ∩ �

)
.

In the light of Lemma 2.1, there is κ2 ∈ Ì(κ1) ∩ � such that ð(κ1,κ2) ≤ h1Hd(Ì(κ0) ∩
�, Ì(κ1) ∩ �). Due to (θi) and (10), this inequality gives that

θb
(
sð(κ1,κ2)

)≤ θb
[
sh1Hd

(
Ì(κ0) ∩ �, Ì(κ1) ∩ �

)]≤ [
θb
(
�(κ0,κ1)

)]k , (11)

where

�(κ0,κ1) = max

{
ð(κ0,κ1),ðb

(
κ0, Ì(κ0)

)
,ðb

(
κ1, Ì(κ1)

)
,
ðb(κ0, Ì(κ1)) + ðb(κ1, Ì(κ0))

2s

}

≤ max

{
ð(κ0,κ1),ðb

(
κ1, Ì(κ1)

)
,
ðb(κ0, Ì(κ1))

2s

}

≤ max
{
ð(κ0,κ1),ðb

(
κ1, Ì(κ1)

)}
.

Now, we claim that

θb
(
sð(κ1,κ2)

)≤ θb
[
sh1Hd

(
Ì(κ0) ∩ �, Ì(κ1) ∩ �

)]≤ [
θb
(
ð(κ0,κ1)

)]k .

Let � = max{ð(κ0,κ1),ðb(κ1, Ì(κ1))}. If � = ðb(κ1, Ì(κ1)). Since κ2 ∈ Ì(κ1) ∩ �, we have

θb
(
sð(κ1,κ2)

)≤ θb
[
sh1Hd

(
Ì(κ0) ∩ �, Ì(κ1) ∩ �

)]≤ [
θb
(
ð(κ1,κ2)

)]k ,

which is a contradiction. Thus, we get � = ð(κ0,κ1). We consider ð(κ1,κ2) �= 0, otherwise
our proof of Theorem 3.2 proceeds as follows. From Remark 2, we have ð(κ1,κ2) < ð(κ0,κ1)
and so ð(κ1,κ2) ∈ J . Next, κ2 ∈ b(κ0,ρ) because

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ð(κ0,κ2) ≤ sð(κ0,κ1) + sð(κ1,κ2)

≤ sð(κ0,κ1) + s2ð(κ1,κ2)

≤ sð(κ0,κ1) + s2ϑ(ð(κ0,κ1))

= s[ð(κ0,κ1) + sϑ(ð(κ0,κ1))]

≤ sσ (ð(κ0,κ1))

≤ ð(κ0,κ1) + sσ (ð(κ0,κ1))

= σ (ð(κ0,κ1))

= ρ.
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Also, by appealing to the above hypothesis, we have

1
2s

min
{
ðb
(
κ1, Ì(κ1) ∩ �

)
,ðb

(
κ2, Ì(κ2) ∩ �

)}
< ð(κ1,κ2),

using (7), we have

θb
[
sHd

(
Ì(κ1) ∩ �, Ì(κ2) ∩ �

)]≤ [
θb
(
sϑ
(
ð(κ1,κ2)

))]k <
[
θb
(
�(κ1,κ2)

)]k . (12)

Since θb is right continuous, there exists a real number h2 > 1 such that

θb
[
sh2Hd

(
Ì(κ1) ∩ �, Ì(κ2) ∩ �

)]≤ [
θb
(
�(κ1,κ2)

)]k . (13)

Further, from Lemma 2.2, we have

sðb
(
κ2, Ì(κ2) ∩ �

)≤ sHd
(
Ì(κ1) ∩ �, Ì(κ2) ∩ �

)
< sh2Hd

(
Ì(κ1) ∩ �, Ì(κ2) ∩ �

)
,

and by Lemma 2.1, there is κ3 ∈ Ì(κ2) ∩ � such that ð(κ2,κ3) ≤ h2Hd(Ì(κ1) ∩ �, Ì(κ2) ∩ �).
By (13), this inequality gives that

θb
(
sð(κ2,κ3)

)≤ θb
[
sh2Hd

(
Ì(κ1) ∩ �, Ì(κ2) ∩ �

)]≤ [
sθb

(
�(κ1,κ2)

)]k

≤ [
θb
(
�(κ0,κ1)

)]k2
,

where

�(κ1,κ2) = max

{
ð(κ1,κ2),ðb

(
κ1, Ì(κ1)

)
,ðb

(
κ2, Ì(κ2)

)
,
ðb(κ1, Ì(κ2)) + ðb(κ2, Ì(κ1))

2s

}

≤ max

{
ð(κ1,κ2),ðb

(
κ2, Ì(κ2)

)
,
ðb(κ1, Ì(κ2))

2s

}

≤ max
{
ð(κ1,κ2),ðb

(
κ2, Ì(κ2)

)}
.

Again, we claim that

θb
(
sð(κ2,κ3)

)≤ θb
[
sh2Hd

(
Ì(κ1) ∩ �, Ì(κ2) ∩ �

)]≤ [
θb
(
sð(κ1,κ2)

)]k

≤ [
θb
(
ð(κ0,κ1)

)]k2
.

Let � = max{ð(κ1,κ2),ðb(κ2, Ì(κ2))}. If � = ðb(κ2, Ì(κ2)), since κ3 ∈ Ì(κ2) ∩ �, we have

θb
(
sð(κ2,κ3)

)≤ θb
[
sh2Hd

(
Ì(κ1) ∩ �, Ì(κ2) ∩ �

)]≤ [
θb
(
ð(κ2,κ3)

)]k ,

which is a contradiction. Thus, we get � = ð(κ1,κ2). We consider ð(κ2,κ3) �= 0, otherwise
κ2 is a fixed point of Ì . From Remark 2 we have ð(κ2,κ3) < ð(κ1,κ2), and so ð(κ2,κ3) ∈ J .
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Also, we have κ3 ∈ b(κ0,ρ) since

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ð(κ0,κ3) ≤ sð(κ0,κ1) + s2ð(κ1,κ2) + s3ð(κ2,κ3)

= s[ð(κ0,κ1) + sð(κ1,κ2) + s2ð(κ2,κ3)]

≤ s[ð(κ0,κ1) + ϑ(ð(κ0,κ1)) + ϑ2(ð(κ0,κ1))]

≤ sσð(κ0,κ1)

≤ ð(κ0,κ1) + sσ (ð(κ0,κ1))

= σ (ð(κ0,κ1)) = ρ.

Continuing this set up, we have two sequences {κi} ⊂ b(κ0,ρ) and {hi} ⊂ (1,∞) such that
κi+1 ∈ Ì(κi) ∩ �, κi �= κi+1 with ð(κi,κi+1) ∈ J and

1 < θb
(
sð(κi,κi+1)

)≤ θb
(
shiHd

(
Ì(κi–1) ∩ �, Ì(κi) ∩ �

))

≤ [
θb
(
ð(κi–1,κi)

)]k < θb
(
ð(κi–1,κi)

)

for all i ∈N. It follows with (θv) that

1 < θb
(
si
ð(κi,κi+1)

)≤ θb
(
sihiHd

(
Ì(κi–1) ∩ �, Ì(κi) ∩ �

))

≤ [
θb
(
si–1

ð(κi–1,κi)
)]k < θb

(
si–1

ð(κi–1,κi)
)
.

Further, we obtain

1 < θb
(
si
ð(κi,κi+1)

)≤ θb
(
sihiHd

(
Ì(κi–1) ∩ �, Ì(κi) ∩ �

))

≤ [
θb
(
si–1

ð(κi–1,κi)
)]k

≤ [
θb
(
si–2

ð(κi–1,κi–2)
)]k2

≤ · · · ≤ [
θb
(
ð(κ0,κ1)

)]ki
,

which yields

1 < θb
(
si
ð(κi,κi+1)

)≤ [
θb
(
ð(κ0,κ1)

)]ki
(∀i ∈N). (14)

By Lemma 3.1, {κi} is a Cauchy sequence in b(κ0,ρ). Since (κ ,ð, s) is complete and b(κ0,ρ)
is closed in �, there is ϑ∗ ∈ b(κ0,ρ) such that κi → ϑ∗. Note that ϑ∗ ∈ �, because κi+1 ∈
Ìκi ∩ �. Now, we claim that

1
2s

min
{
ðb(κi, Ìκi ∩ �),ðb

(
σ ∗, Ìσ ∗ ∩ �

)}
< ð

(
κi,σ ∗) (15)

or

1
2s

min
{
ðb
(
σ ∗, Ìσ ∗ ∩ �

)
,ðb(κi+1, Ìκi+1 ∩ �)

}
< ð

(
κi+1,σ ∗) (16)
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for every i ∈N. Based on the contrary there is i′ ∈N such that

1
2s

min
{
ðb(κi′ , Ìκi′ ∩ �),ðb

(
σ ∗, Ìσ ∗ ∩ �

)}≥ ð
(
κi′ ,σ ∗) (17)

and

1
2s

min
{
ðb
(
σ ∗, Ìσ ∗ ∩ �

)
,ðb(κi′+1, Ìκi′+1 ∩ �)

}≥ ð
(
κi′+1,σ ∗). (18)

By (17), we have

2sð
(
κi′ ,σ ∗)≤ min

{
ðb(κi′ , Ìκi′ ∩ �),ðb

(
σ ∗, Ìσ ∗ ∩ �

)}

≤ min
{

s
[
ð
(
κi′ ,σ ∗) + ðb

(
σ ∗, Ìκi′ ∩ �

)]
,ðb

(
σ ∗, Ìσ ∗ ∩ �

)}

≤ s
[
ð
(
κi′ ,σ ∗) + ðb

(
σ ∗, Ìκi′ ∩ �

)]

< s
[
ð
(
κi′ ,σ ∗) + ðb

(
σ ∗, Ìκi′

)]

≤ s
[
ð
(
κi′ ,σ ∗) + ð

(
σ ∗,κi′+1

)]
,

which implies

ð
(
κi′ ,σ ∗)≤ ð

(
σ ∗,κi′+1

)
.

From which together with (18), we have

ð
(
κi′ ,σ ∗)≤ ð

(
σ ∗,κi′+1

)
(19)

≤ 1
2s

min
{
ðb
(
σ ∗, Ìσ ∗ ∩ �

)
,ðb(κi′+1, Ìκi′+1 ∩ �)

}
.

Since

1
2s

min
{
ðb(κi′ , Ìκi′ ∩ �),ðb(κi′+1, Ìκi′+1 ∩ �)

}
< ð(κi′ ,κi′+1),

by appealing to (7), we have

0 < θb
[
sð(κi′+1,κi′+2)

]≤ θb
[
sh2Hb(Ìκi′ ∩ �, Ìκi′+1 ∩ �)

]≤ θb
[
ϑ
(
ð(κi′ ,κi′+1)

)
)
]k , (20)

where

�(κi′ ,κi′+1) = max

{
ð(κi′ ,κi′+1),ðb(κi′ , Ìκi′ ),ðb(κi′+1, Ìκi′+1),

ðb(κi′ ,Ìκi′+1)+ðb(κi′+1,Ìκi′ )
2s

}

≤ max

{
ð(κi′ ,κi′+1),ð(κi′+1,κi′+2),

ð(κi′ ,κi′+2)
2s

}

≤ max
{
ð(κi′ ,κi′+1),ð(κi′+1,κi′+2)

}
,

which yields

θb
[
sð(κi′+1,κi′+2)

]≤ θb
[
sh2Hb(Ìκi′ ∩ �, Ìκi′+1 ∩ �)

]≤ θb
[
ϑ
(
ð(κi′ ,κi′+1)

)
)
]k . (21)
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Let � = max{ð(κi′ ,κi′+1),ð(κi′+1,κi′+2)}. If � = ð(κi′+1,κi′+2), since κi′+2 ∈ Ìκi′+1 ∩�, we have

θb
[
sð(κi′+1,κi′+2)

]≤ θb
[
sHb(Ìκi′ ∩ �, Ìκi′+1 ∩ �)

]≤ θb
[
ϑ
(
ð(κi′ ,κi′+1)

)
)
]k ,

which is a contradiction. Thus, we conclude that � = ð(μi′ ,μi′+1). From Remark 2, we have

ð(κi′+1,κi′+2) < ð(κi′ ,κi′+1). (22)

From (18), (19), and (22), we obtain

ð(κi′+1,κi′+2) < ð(κi′ ,κi′+1)

≤ s
[
ð
(
κi′ ,σ ∗) + ð

(
σ ∗,κi′+1

)]

≤
[

1
2 min{ðb(σ ∗, Ìσ ∗ ∩ �),ðb(κi′+1, Ìκi′+1 ∩ �)}

+ 1
2 min{ðb(σ ∗, Ìσ ∗ ∩ �),ðb(κi′+1, Ìκi′+1 ∩ �)}

]

≤ min
{
ðb
(
σ ∗, Ìσ ∗ ∩ �

)
,ð(κi′+1,κi′+2)

}

= ð(κi′+1,κi′+2),

which is a contradiction. Hence (15) holds true, that is,

1
2s

min
{
ðb(κi, Ìκi ∩ �),ðb

(
σ ∗, Ìσ ∗ ∩ �

)}
< ð

(
κi,σ ∗) ∀i ≥ 2. (23)

In light of (23), we obtain

1
2s

min
{
ðb(κi, Ìκi ∩ �),ðb(κi+1, Ìκi+1 ∩ �)

}
< ð(κi,κi+1).

Moreover, ð(κi,κi+1) ∈ E ∀i. Thus, from (7) we have

θb
[
sðb(κi+1, Ìκi+1 ∩ �)

]≤ θb
[
sHb(Ìκi ∩ �, Ìκi+1 ∩ �)

]

≤ [
θb
(
ϑ
(
�(κi,κi+1)

))]k

<
[
θb
(
�(κi,κi+1)

)
)
]k ,

where

�(κi,κi+1) = max

{
ð(κi,κi+1),ðb(κi, Ìκi),ðb(κi+1, Ìκi+1),

ðb(κi ,Ìκi+1)+ðb(κi+1,Ìκi)
2s

}

≤ max

{
ð(κi,κi+1),ð(κi+1,κi+2),

ð(κi ,κi+2)
2s

}

≤ max
{
ð(κi,κi+1),ð(κi+1,κi+2)

}

implies

θb
[
sð(κi+1,κi+2)

]≤ θb
[
sHb(Ìκi ∩ �, Ìκi+1 ∩ �)

]
<
[
θb
(
ð(κi,κi+1)

)]k . (24)
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Let � = max{ð(κi,κi+1),ð(κi+1,κi+2)}. If � = ð(κi+1,κi+2), since κi+2 ∈ Ìκi+1 ∩ �, we have

θb
[
sð(κi+1,κi+2)

]≤ θb
[
sHb(Ìκi ∩ �, Ìκi+1 ∩ �)

]
<
[
θb
(
ð(κi+1,κi+2)

)]k ,

which is a contradiction. Based on Remark 2, we can write

ðb(κi+1, Ìκi+1 ∩ �) < ð(κi,κi+1). (25)

Taking limit as i → +∞ in (25), we find

lim
i→+∞ðb(κi+1, Ìκi+1 ∩ �) = 0.

Since g(κ) = ðb(κ , Ìκ ∩ �) is Ì-orbitally lower semi-continuous at σ ∗, then

ðb
(
σ ∗, Ìσ ∗ ∩ �

)
= g

(
σ ∗)≤ lim inf

i
g(κi+1) = lim inf

i
ðb(κi+1, Ìκi+1 ∩ �) = 0.

Since Ìσ ∗ is closed, we have σ ∗ ∈ Ìσ ∗. Conversely, if σ ∗ is a fixed point of Ì , then g(σ ∗) =
0 ≤ lim infi g(κi) since σ ∗ ∈ �. �

Corollary 1 Let (�,ð, s) be a complete b-metric space, ϑ be a b-Bianchini–Grandolfi gauge
function on J , and let Ì : � → CB(�) be a given set-valued mapping. If there exist θb ∈ b

and k ∈ (0, 1) such that

1
2s

min
{
ðb(κ , Ìκ ∩ �),ðb(y, Ìy ∩ �)

}
< ð(κ , y), (26)

⇒ θb
[
sHb(Ìκ , Ìy)

]≤ [
θb
(
ϑ
(
ð(κ , y)

))]k

for every κ ∈ κ , y ∈ Ìκ with ð(κ , y) ∈ J . Suppose that κ0 ∈ κs.tð(κ0, c∗) ∈ J for some c∗ ∈ Ìκ0.
Then there is an orbit {κi} of Ì in � that converges to the fixed point ϑ∗ ∈ F = {κ ∈ � :
ð(κ ,ϑ∗) ∈ J} of Ì .

Corollary 2 Let (�,ð, s) be a complete b-metric space, ϑ be a b-Bianchini–Grandolfi gauge
function on J , and let Ì : � → CB(�) be a given set-valued mapping. If there are θb ∈ b

and k ∈ (0, 1) such that

1
2s
ðb(κ , Ìκ ∩ �) < ð(κ , y), (27)

⇒ θb
[
sHb(Ìκ , Ìy)

]≤ [
θb
(
ϑ
(
ð(κ , y)

))]k

for each κ ∈ κ , y ∈ Ìκ with ð(κ , y) ∈ J . Suppose that κ0 ∈ κs.tð(κ0, c∗) ∈ J for some c∗ ∈ Ìκ0.
Then there is an orbit {κi} of Ì in � that converges to the fixed point ϑ∗ ∈ F = {κ ∈ � :
ð(κ ,ϑ∗) ∈ J} of Ì .

Corollary 3 Let (�,ð, s) be a complete b-metric space, ϑ be a b-Bianchini–Grandolfi gauge
function on an interval J , and let Ì : � → CB(�) be a given set-valued mapping. If there are
θb ∈ b and k ∈ (0, 1) such that, for Ìκ ∩ � �= ∅,

θb
[
sHb(Ìκ ∩ �, Ìy ∩ �)

]≤ [
θb
(
ϑ
(
ð(κ , y)

))]k , (28)
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∀κ ∈ �, y ∈ Ìκ ∩ � with ð(κ , y) ∈ J . Suppose κ0 ∈ �s.tð(κ0, c∗) ∈ J for some c∗ ∈ Ìκ0 ∩ �.
Then there exists an orbit {κi} of Ì in � and ϑ∗ ∈ � such that limi→∞ κi = ϑ∗. Moreover, ϑ∗

is a fixed point of Ì ⇔, the function g(κ) := ðb(κ , Ìκ ∩�) is Ì-orbitally lower semi-continuous
at point ϑ∗.

Corollary 4 Let (�,ð, s) be a complete b-m.s and ϑ be a b-Bianchini–Grandolfi gauge
function on an interval J , and let Ì : � → CB(�) be a multi-valued θb-contraction mapping.
If there are θb ∈ b and k ∈ (0, 1) such that, for Ìκ ∩ � �= ∅,

1
2(1 + σ )

min
{
ðb(κ , Ìκ ∩ �),ðb(y, Ìy ∩ �)

}
< ð(κ , y) (29)

implies that

θb
[
sHb(Ìκ ∩ �, Ìy ∩ �)

]≤ [
θb
(
ϑ
(
�(κ , y)

))]k ,

where

�(κ , y) = max

{
ð(κ , y),ðb(κ , Ìκ),ðb(y, Ìy),

ðb(κ , Ìy) + ðb(y, Ìκ)
2s

}

for all κ ∈ �, y ∈ Ìκ ∩ �, σ > 0 with ð(κ , y) ∈ J . Moreover, suppose κ0 ∈ � such that
ð(κ0, c∗) ∈ J for some c∗ ∈ Ìκ0 ∩ �. Then there exists an orbit {κi} of Ì in �, ϑ∗ ∈ � such
that limi→∞ κi = ϑ∗ and ϑ∗ is a fixed point of Ì ⇔, the function g(κ) := ðb(κ , Ìκ ∩ �) is
Ì-orbitally lower semi-continuous at ϑ∗.

Corollary 5 Let (�,ð, s) be a complete b-metric space and ϑ be a b-Bianchini–Grandolfi
gauge function on an interval J , and let Ì : � → CB(�) be a multi-valued θb-contraction
mapping. If there are θb ∈ b and k ∈ (0, 1) such that, for Ìκ ∩ � �= ∅,

1
2(1 + σ )

min
{
ðb(κ , Ìκ ∩ �),ðb(y, Ìy ∩ �)

}
< ð(κ , y) (30)

implies that

θb
[
sHb(Ìκ ∩ �, Ìy ∩ �)

]≤ [
θb
(
ϑ
(
ð(κ , y)

))]k

for all κ ∈ �, y ∈ Ìκ ∩ �, σ > 0 with ð(κ , y) ∈ J . In addition, suppose κ0 ∈ � such that
ð(κ0, c∗) ∈ J for some c∗ ∈ Ìκ0 ∩ �. Then ∃ an orbit {κi} of Ì in �, ϑ∗ ∈ �s.t limi→∞ κi = ϑ∗

and ϑ∗ is a fixed point of Ì ⇔ the function g(κ) := ðb(κ , Ìκ ∩ �) is Ì-orbitally lower semi-
continuous at ϑ∗.

Example 3.1 Let � = [–10, +∞) be an b-metric ð defined by ð(κ , y) = |κ – y|2 for every
κ , y ∈ �, and let J = (0,∞). Mapping Ì : � → CB(�) is defined as

Ì(κ) =

⎧
⎨
⎩

[0, κ
8 ], κ ∈ [0, 4],

{0,κ}, κ ∈ [–10, 0) ∪ (4,∞).
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Clearly, 1
2s min{ðb(κ , Ìκ ∩�),ðb(y, Ìy∩�)} < ð(κ , y) ⇔ κ , y ∈ [0, 4]. Let κ0 = 4, then we have

c∗ = 1
2 ∈ Ìκ0 such that ð(κ0, c∗) ∈ J . Firstly, we claim that Ì satisfies inequality (26) with

setting θb(r) = e
√

rer , ϑ(r) = r
2 , and k = 1

2 . For κ ∈ [0, 4] and y ∈ Ìκ , we obtain

θb
[
Hb(Ìκ , Ìy)

]
= θb

( |κ – y|2
8

)
≤ e

1
2

√
|κ–y|2

2 e
|κ–y|2

2 =
[
θb
(
ϑ
(
ð(κ , y)

))]k .

Hence, the requirements of Corollary 1 are fulfilled and 0 is a fixed point of Ì . For κ = 0
and y = 5,

θb
[
Hb(Ìκ , Ìy)

]
= θb

[
Hd(Ì0, Ì5)

]
= θb(25) >

[
θb(25)

]k =
[
θb
(
ð(κ , y)

)]k

∀θb ∈  and k ∈ (0, 1). Therefore, Corollary 1 cannot satisfied.

Example 3.2 Let � = {κ1,κ2,κ3} be a b-metric ð with coefficient s ≥ D2

D2–1 > 1 where D ≥ 3
is any positive integers defined by

ð(κ1,κ2) =
1

D2 , ð(κ2,κ3) =
1

D – 1
, ð(κ1,κ3) =

1
D

.

The mapping Ì : � → CB(�) is defined as

Ìκi =

⎧
⎪⎪⎨
⎪⎪⎩

{κ1} if i = 1;

{κ1} if i = 2;

{κ2} if i = 3.

Upon setting ϑ(r) = r2 and θb(r) = e
√

rer , then ϑ is a b-Bianchini–Grandolfi gauge function
on the interval J = (0, 1

D–1 ] with coefficient D2

D2–1 having order 2. Hence, in light of the above
example it is easy to conclude that all conditions of Corollary 1 are satisfied.

4 An application
In this frame of study, we summarize by the application of the proposed nonlinear θb-
contractions to Caputo fractional derivatives. Some new aspects of Liouville–Caputo frac-
tional differential equations (L.C.F.D.E) in the module of complete b-metric space are pre-
sented. Define the L.C.F.D.E based on order κ(Ď(c,κ)) by

Ď(c,κ)
(
α(g)

)
=

1
�(i – κ)

∫ g

0
(g – t)i–κ–1α(i)(t) dt, (31)

where i – 1 < κ < i, i = [κ] + 1, α ∈ Ci([0, +∞]), the collection [κ] represents positive real
number and � represents the gamma function. Let a b-metric space δς : C(I) × C(I) → R+

be given by

δς (εi–1, εi) =
∥∥(ε1 – ε2)2∥∥∞ = sup

a∈I

∣∣ε1(a) – ε2(a)
∣∣2 (32)



Ali et al. Journal of Inequalities and Applications         (2022) 2022:37 Page 15 of 19

with setting s = 2. Now, consider the following fashion of F.D.E and its integral boundary
valued problem:

Ď(c,κ)
(
β(g)

)
= L

(
g,β(g)

)
, (33)

where g ∈ (0, 1), κ ∈ (1, 2] and

⎧⎨
⎩

β(0) = 0,

β(1) =
∫ ϑ

0 β(g) dg, ϑ ∈ (0, 1),
(34)

where I = [0, 1], β ∈ C(I, R) and L : I × R → R is a continuous function. Let P : � → � be
defined by

Pv(r) =

⎧⎪⎪⎨
⎪⎪⎩

1
�(κ)

∫ g
0 (g – t)κ–1L(t, v(t)) dt

– 2g
(2–ϑ2)�(κ)

∫ 1
0 (1 – t)κ–1L(t, v(t)) dt

+ 2g
(2–ϑ2)�(κ)

∫ ϑ

0 (
∫ g1

0 (g1 – t1)κ–1L(t1, v(t1)) dt1) dt

(35)

for v ∈ � and g ∈ [0, 1]. Now, we start the main result.

Theorem 4.1 Let L : I × R → R be a continuous function and nondecreasing on the second
variable. There is θb ∈ b such that, for ε1, ε2 ∈ �, g ∈ [0, 1], and α ∈ [0, 1),

1
2s

min
{
ðb(ε1, Ìε1 ∩ �),ðb(ε2, Ìε2 ∩ �)

}
< ð(ε1, ε2)

implies that

∣∣Pε1(r) – Pε2(r)
∣∣≤ �

([
1 +

√
max

g∈I
V (ε1, ε2)(r)

]α

– 1
)2

, (36)

where � = (2κ–1)(�(κ+1))
2(5κ+2) and

V (εi–1, εi)(r) = max

{∣∣ε1(r) – ε2(r)
∣∣2,

∣∣ε1(r) – ϒε1(r)
∣∣2,

∣∣ε2(r) – ϒε2(r)
∣∣2,

|ε1(r)–ϒε2(r)|2+|ε2(r)–ϒε1(r)|2
2s

}
.

Then equations (33) and (34) have precisely one solution, i.e., ε∗ ∈ �.

Proof For each g ∈ I and owing to operator P, we write

∣∣Pε1(r) – Pε2(r)
∣∣

=
∣∣∣∣
(

1
�(κ)

∫ g

0
(g – t)κ–1L

(
t, ε1(t)

)
dt

–
2g

(2 – ϑ2)�(κ)

∫ 1

0
(1 – t)κ–1L

(
t, εi–1(t)

)
dt

+
2g

(2 – ϑ2)�(κ)

∫ ϑ

0

(∫ g1

0
(g1 – t1)κ–1L

(
t1, ε1(t1)

)
dt1

)
dt
)
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– (
(

1
�(κ)

∫ g

0
(g – t)κ–1L

(
t, ε2(t)

)
dt

–
2g

(2 – ϑ2)�(κ)

∫ 1

0
(1 – t)κ–1L

(
t, ε2(t)

)
dt

+
2g

(2 – ϑ2)�(κ)

∫ ϑ

0

(∫ g1

0
(g1 – t1)κ–1L

(
t1, ε2(t1)

)
dt1

)
dt
)∣∣∣∣,

which implies

∣∣Pε1(r) – Pε2(r)
∣∣

≤ 1
�(κ)

∫ g

0
(g – t)κ–1∣∣L(t, ε1(t)

)
– L

(
t, ε2(t)

)∣∣dt

+
2g

(2 – ϑ2)�(κ)

∫ 1

0
(1 – t)κ–1∣∣L(t, ε1(t)

)
– L

(
t, ε2(t)

)∣∣dt

+
2g

(2 – ϑ2)�(κ)

∫ ϑ

0

∣∣∣∣
∫ g1

0
(g1 – t1)κ–1(L(t1, ε1(t1)

)
– L

(
t, ε2(t)

))
dt1

∣∣∣∣dt

≤ 1
�(κ)

∫ g

0
(g – t)κ–1�

([
1 +

√
max

g∈I
V (ε1, ε2)(r)

]α

– 1
)2

dt

+
2g

(2 – ϑ2)�(κ)

∫ 1

0
(1 – t)κ–1�

([
1 +

√
max

g∈I
V (ε1, ε2)(r)

]α

– 1
)2

dt

+
2g

(2 – ϑ2)�(κ)

∫ ϑ

0

∫ g1

0
(g1 – t1)κ–1�

([
1 +

√
max

g∈I
V (ε1, ε2)(r)

]α

– 1
)2

dt1 dt

≤ �

�(κ)

([
1 +

√
max

g∈I
V (ε1, ε2)(r)

]α

– 1
)2

⎧⎪⎨
⎪⎩

∫ g
0 (g – t)κ–1 dt

+ 2g
(2–ϑ2)

∫ 1
0 (1 – t)κ–1 dt

+ 2g
(2–ϑ2)

∫ ϑ

0
∫ g1

0 (g1 – t1)κ–1 dt1 dt

⎫⎪⎬
⎪⎭

,

which yields

∣∣Pε1(r) – Pε2(r)
∣∣≤ �

�(κ)

([
1 +

√
max

g∈I
V (ε1, ε2)(r)

]α

– 1
)2

×
{

gκ

κ
+

2g
(2 – ϑ2)

1
κ

+
2g

(2 – ϑ2)
ϑκ+1

κ(κ + 1)

}

≤ �
([

1 +
√

max
g∈I

V (ε1, ε2)(r)
]α

– 1
)2

× sup
g∈(0,1)

{
gκ +

2g
(2 – ϑ2)

+
2g

(2 – ϑ2)
ϑκ+1

(κ + 1)

}

=
(2κ – 1)

2(5κ + 2)

([
1 +

√
max

g∈I
V (ε1, ε2)(r)

]α

– 1
)2

× sup
g∈(0,1)

{
gκ +

2g
(2 – ϑ2)

+
2g

(2 – ϑ2)
ϑκ+1

(κ + 1)

}

=
(2κ – 1)

2(5κ + 2)

([
1 +

√
max

g∈I
V (ε1, ε2)(r)

]α

– 1
)2

.
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So, we have

∣∣Pε1(r) – Pε2(r)
∣∣≤

([
1 +

√
max

g∈I
V (ε1, ε2)(r)

]α

– 1
)2

. (37)

Therefore,

δς

(
Pε1(r) – Pε2(r)

)
= sup

a∈I

∣∣Pε1(r) – Pε2(r)
∣∣2 (38)

≤
([

1 +
√

max
g∈I

V (ε1, ε2)(r)
]α

– 1
)2

.

By (38), we have

1 +
√
ð(�1,�2) ≤ [

1 +
√
ð(�1,�2)

]α .

Now, by contractive condition (7) with setting of ϑ(ε) = 1 for all ε ∈ R and θb(ε) = 1 +
√

ε,
we get

θb
[
sHb(Ìε1 ∩ �, Ìε2 ∩ �)

]≤ [
θb
(
ϑ
(
�(ε1, ε2)

))]k

∀ε1 ∈ �, ε2 ∈ Ìκ ∩� with ð(ε2, Ìε1) ∈ J , where k ∈ (0, 1). Thus, all the required hypotheses
of Theorem 3.2 are satisfied, and we approached that equations (33) and (34) have at least
one solution of P. �

Example 4.1 Let L.C.F.D.E be based on order κ(Ď(c,κ)) and its integral boundary valued
problem

Ď(c, 3
2 )
(
α(g)

)
=

1
(g + 3)2

|α(g)|
1 + |α(g)| (39)

and

⎧⎨
⎩

β(0) = 0,

β(1) =
∫ 3

4
0 β(g) dg, ϑ ∈ (0, 1),

(40)

where κ = 3
2 , ϑ = 3

4 and L(t, v(t)) = 1
(g+3)2

|α(g)|
1+|α(g)| . So, the above setting is an example of equa-

tions (3.3) and (3.4). Hence, clearly, equations (39) and (40) have at least one solution.

5 Concluding remarks
The paper deals with θb-contraction in b-metric spaces, which is an extension of θ -
contraction. We prove multi-valued fixed point theorems of some generalized contrac-
tions which are defined on b-metric spaces that satisfy a θv-type condition. Our gener-
alized results are based on b-Bianchini–Grandolfi gauge function instead of the conven-
tional operator. Finally, we present an application dealing with the existence of solutions
for Liouville–Caputo fractional differential equations.
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