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Abstract
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1 Introduction
For r ∈ (0, 1), Legendre’s complete elliptic integrals of the first kind K(r) and second kind
E(r) [1–8] are defined by

K = K(r) =
∫ π/2

0

(
1 – r2 sin2 θ

)–1/2 dθ

and

E = E(r) =
∫ π/2

0

(
1 – r2 sin2 θ

)1/2 dθ ,

respectively.
It is well known that K(r) is strictly increasing from (0, 1) onto (π/2,∞) and E(r) is

strictly decreasing from (0, 1) onto (1,π/2), they satisfy the derivative formulas

dK
dr

=
E – r′2K

rr′2 ,

dE
dr

=
E – K

r
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and Landen identities

K
(

2
√

r
1 + r

)
= (1 + r)K(r), E

(
2
√

r
1 + r

)
=

2E – r′2K
1 + r

,

where and in what follows we denote r′ =
√

1 – r2 for r ∈ (0, 1).
Let a, b > 0 with a �= b. Then the harmonic mean H(a, b), geometric mean G(a, b),

arithmetic mean A(a, b), arithmetic–geometric mean AG(a, b) [9–11], and Toader mean
TD(a, b) [12–15] are given by

H(a, b) =
2ab

a + b
, G(a, b) =

√
ab, A(a, b) =

a + b
2

, (1.1)

AG(a, b) =
π

2
∫ π/2

0 (a2 cos2 θ + b2 sin2 θ )–1/2 dθ
=

⎧⎪⎨
⎪⎩

πa
2K(

√
1–(b/a)2)

, a > b,

πb
2K(

√
1–(a/b)2)

, a < b,

and

TD(a, b) =
2
π

∫ π/2

0

(
a2 cos2 θ + b2 sin2 θ

)1/2 dθ =

⎧⎨
⎩

2a
π
E(

√
1 – (b/a)2), a > b,

2b
π
E(

√
1 – (a/b)2), a < b.

Recently, the complete elliptic integrals K(r) and E(r) of the first and second kinds have
attracted the attention of many researchers [16–22] because they have wide applications
in many branches of mathematics including the geometric function theory, differential
equations, number theory, and mean value theory. For instance, the perimeter L(a, b) of
an ellipse with semi-axes a, b and eccentricity e =

√
1 – b2/a2 is given by

L(a, b) = 4
∫ π/2

0

√
a2 cos2 θ + b2 sin2 θ dθ = 4aE(e). (1.2)

Many remarkable inequalities and properties for the complete elliptic integrals K(r) and
E(r) can be found in the literature [23–31]. Barnard et al. [32] and Alzer and Qiu [33]
proved that λ = 3/2 and μ = log 2/ log(π/2) are the best possible constants such that the
double inequality

π

2

(
1 + r′λ

2

)1/λ

< E(r) <
π

2

(
1 + r′μ

2

)1/μ

(1.3)

holds for all r ∈ (0, 1).
Later, Wang and Chu [34] improved the lower bound of (1.3) and proved that the double

inequality

π [(α + (1 – α)r′)2 + (1 – α + αr′)2]2

(1 + r′)3 < E(r)

<
π

2

[
(β + (1 – β)r′)2 + (1 – β + βr′)2

2

]1/2

holds for all r ∈ (0, 1) with the best possible constants α = 4+
√

2
8 and β = 1+

√
(4/π )–1
2 .
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Very recently, Yang et al. [35] found the high accuracy asymptotic bounds for E(r) and
proved that

π

2
J
(
r′) –

(
51π

160
– 1

)
r16 < E(r) <

π

2
J
(
r′) –

5π

3 × 231 r16

for all r ∈ (0, 1), where

J(r) =
51r2 + 20r

√
r + 50r + 20

√
r + 51

16(5r + 2
√

r + 5)
.

The following Seiffert-like elliptic integral mean

V (a, b) =
πH(a, b)
2E( |a–b|

a+b )
=

πH(a, b)

2E(
√

1 – G2(a,b)
A2(a,b) )

=
πG2(a, b)

2
∫ π/2

0

√
A2(a, b) cos2 θ + G2 sin2 θ dθ

(1.4)

was introduced by Witkowski in [36], in which Witkowski investigated the so-called
Seiffert-like means

Mf (a, b) =

⎧⎨
⎩

|a–b|
2f ( |a–b|

a+b )
, a �= b,

a, a = b,

where the function f : (0, 1) �→R (called Seiffert function) satisfies the double inequality

x
1 + x

≤ f (x) ≤ x
1 – x

.

From (1.3) we clearly see that

r′ <
2
π
E(r) < 1

for r ∈ (0, 1), which in conjunction with (1.4) gives

H(a, b) < V (a, b) < G(a, b) < A(a, b) (1.5)

for all a, b > 0 with a �= b.
Inspired by (1.5), the main purpose of the article is to find the optimal bounds for V (a, b)

in terms of the harmonic combinations of H(a, b) and G(a, b) (or H(a, b) and A(a, b)). Our
main results are the following Theorems 1.1 and 1.2.

Theorem 1.1 The double inequality

α1

H(a, b)
+

1 – α1

G(a, b)
<

1
V (a, b)

<
β1

H(a, b)
+

1 – β1

G(a, b)
(1.6)

holds for all a, b > 0 with a �= b if and only if α1 ≤ 1/2 and β1 ≥ 2/π = 0.6366 . . . .
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Theorem 1.2 The double inequality

α2

H(a, b)
+

1 – α2

A(a, b)
<

1
V (a, b)

<
β2

H(a, b)
+

1 – β2

A(a, b)
(1.7)

holds for all a, b > 0 with a �= b if and only if α2 ≤ 2/π and β2 ≥ 3/4.

To further improve and refine the lower bound in (1.6) and the upper bound in (1.7), we
also establish the following Theorems 1.3 and 1.4.

Theorem 1.3 The double inequality

α3

[
3

4H(a, b)
+

1
4A(a, b)

]
+ (1 – α3)

[
1

2H(a, b)
+

1
2G(a, b)

]
<

1
V (a, b)

< β3

[
3

4H(a, b)
+

1
4A(a, b)

]
+ (1 – β3)

[
1

2H(a, b)
+

1
2G(a, b)

]

holds for all a, b > 0 with a �= b if and only if α3 ≤ 1/4 and β3 ≥ 2(4/π – 1) = 0.5464 . . . .

Theorem 1.4 The double inequality

[
3

4H(a, b)
+

1
4A(a, b)

]α4[ 1
2H(a, b)

+
1

2G(a, b)

]1–α4

<
1

V (a, b)

<
[

3
4H(a, b)

+
1

4A(a, b)

]β4[ 1
2H(a, b)

+
1

2G(a, b)

]1–β4

holds for all a, b > 0 with a �= b if and only if α4 ≤ 1/4 and β4 ≥ [log(4/π )]/ log(3/2) =
0.5957 . . . .

2 Lemmas
In order to prove our main results, we need several lemmas which we present in this sec-
tion.

Lemma 2.1 (See [1, Theorem 1.25]) Let –∞ < a < b < ∞, and f , g : [a, b] → R be contin-
uous and differentiable on (a, b) such that f (a) = g(a) = 0 or f (b) = g(b) = 0. Assume that
g ′(x) �= 0 for each x ∈ (a, b). If f ′/g ′ is (strictly) increasing (decreasing) on (a, b), then so is
f /g .

Lemma 2.2 The functions
(i) r �→ (E – r′2K)/r2 is strictly increasing from (0, 1) onto (π/4, 1);

(ii) r �→ (K – E)/r2 is strictly increasing from (0, 1) onto (π/4,∞);
(iii) r �→ (E2 – r′2K2)/r4 is strictly increasing from (0, 1) onto (π2/32, 1);
(iv) r �→ [(1 + r′2)K – 2E)/r4 is strictly increasing from (0, 1) onto (π/16,∞);
(v) r �→ �(r) = [(1 – r′)(3 + r′)]/r2 is strictly increasing from (0, 1) onto (2, 3);

(vi) r �→ ρ(r) = (1 – r′)E/r2 is strictly increasing from (0, 1) onto (π/4, 1).
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Proof Parts (i)–(iv) can be found in [1, Theorem 3.21 (1) and Exercise 3.43 (11), (16), (29)].
For part (v), �(r) can be rewritten as

�(r) =
(1 – r′)(3 + r′)

r2 = 1 +
2

1 + r′ ,

which gives the monotonicity of �(r). Note that �(0+) = 2 and �(1–) = 3.
For part (vi), differentiating ρ(r) and making use of part (iii), we get

ρ ′(r) =
r(1 – r′)

r′(E + r′K)
· E

2 – r′2K2

r4 > 0.

This in conjunction with ρ(0+) = π/4 and ρ(1–) = 1 gives the desired result. �

Lemma 2.3 The function

ϕ(r) =
r′[(1 + r′2)E – 2r′2K]

r4

is strictly decreasing from (0, 1) onto (0, 3π/16).

Proof Differentiating ϕ(r) yields

ϕ′(r) =
(3r4 – 11r2 + 8)K + (7r2 – 8)E

r′r5 =
ϕ1(r)
r′r5 , (2.1)

where

ϕ1(r) =
(
3r4 – 11r2 + 8

)
K +

(
7r2 – 8

)
E .

Simple computations lead to

ϕ1(0) = 0, (2.2)

ϕ′
1(r) = –9r5

[
(1 + r′2)K – 2E

r4

]
. (2.3)

Therefore, Lemma 2.3 follows easily from (2.1)–(2.3) and Lemma 2.2(iv) together with
ϕ(0+) = 3π/16 and ϕ(1–) = 0. �

Lemma 2.4 The function

φ(r) =
r′[(3 + r′2)K – (4 + r2)E]

r4

is strictly decreasing from (0, 1) onto (0, 3π/8).

Proof Let

φ1(r) =
(
3r4 – 16r2 + 16

)
K – 8

(
2 – r2)E ,

φ2(r) =
(
8 – 7r2)E –

(
1 – r2)(8 – 3r2)K.
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Then simple computations lead to

φ1(0) = φ2(0) = 0, (2.4)

φ′(r) = –
φ1(r)
r′r5 , (2.5)

φ′
1(r) =

3r
r′2 φ2(r), (2.6)

φ′
2(r) = 9r5

[
(1 + r′2)K – 2E

r4

]
. (2.7)

Therefore, Lemma 2.4 follows easily from (2.4)–(2.7) and Lemma 2.2(iv) together with
φ(0+) = 3π/8 and φ(1–) = 0. �

3 Proofs of Theorems 1.1–1.4
In this section, we assume that a > b > 0 because all the bivariate means H(a, b), G(a, b),
A(a, b), and V (a, b) are symmetric and homogeneous of degree one.

Proof of Theorem 1.1 Let r = (a – b)/(a + b) ∈ (0, 1). Then from (1.1) and (1.4) we obtain

H(a, b) = A(a, b)
(
1 – r2), G(a, b) = A(a, b)

√
1 – r2,

V (a, b) = A(a, b)
π (1 – r2)

2E .
(3.1)

From (3.1), inequality (1.6) can be rewritten as

1
V (a,b) – 1

G(a,b)
1

H(a,b) – 1
G(a,b)

=
2E
πr′2 – 1

r′
1

r′2 – 1
r′

= 1 – f (r), (3.2)

where

f (r) =
1 – 2E/π

1 – r′ .

Let f1(r) = 1 – 2E/π and f2(r) = 1 – r′. Then we clearly see that f (r) = f1(r)/f2(r) and f1(0) =
f2(0) = 0, and simple computations lead to

f ′
1(r)

f ′
2(r)

=
2
π

r′(K – E)
r2 , (3.3)

[
r′(K – E)

r2

]′
= –

2[(1 + r′2)K – 2E]
πr′r3 . (3.4)

Lemma 2.1 and Lemma 2.2(iv) together with (3.3) and (3.4) lead to the conclusion that
f (r) is strictly decreasing on (0, 1). Note that

f
(
0+)

=
1
2

, f
(
1–)

= 1 –
2
π

. (3.5)

Therefore, Theorem 1.1 follows from (3.2) and (3.5) together with the monotonicity of
f (r). �
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Proof of Theorem 1.2 Let r = (a – b)/(a + b) ∈ (0, 1). Then it follows from (3.1) that

1
V (a,b) – 1

A(a,b)
1

H(a,b) – 1
A(a,b)

=
2E
πr′2 – 1

1
r′2 – 1

= 1 – g(r), (3.6)

where

g(r) =
1 – 2E/π

r2 .

Let g1(r) = 1 – 2E/π and g2(r) = r2. Then elementary computations lead to

g(r) =
g1(r)
g2(r)

, g1(0) = g2(0) = 0, (3.7)

g ′
1(r)

g ′
2(r)

=
1
π

K – E
r2 . (3.8)

Lemma 2.1 and Lemma 2.2(ii) together with (3.7) and (3.8) lead to the conclusion that
g(r) is strictly increasing on (0, 1). Note that

g
(
0+)

=
1
4

, g
(
1–)

= 1 –
2
π

. (3.9)

Therefore, Theorem 1.2 follows easily from (3.6) and (3.9) together with the monotonic-
ity of g(r). �

Proof of Theorem 1.3 Let r = (a – b)/(a + b) ∈ (0, 1). Then from (3.1) we get

1
V (a,b) – [ 1

2H(a,b) + 1
2G(a,b) ]

[ 3
4H(a,b) + 1

4A(a,b) ] – [ 1
2H(a,b) + 1

2G(a,b) ]

=
2E
πr′2 – ( 1

2r′2 + 1
2r′ )

( 3
4r′2 + 1

4 ) – ( 1
2r′2 + 1

2r′ )
= 1 – h(r), (3.10)

where

h(r) =
3 + r′2 – 8E/π

(1 – r′)2 .

Let h1(r) = 3 + r′2 – 8E/π , h2(r) = (1 – r′)2, h3(r) = 4(K–E)/(πr2) – 1, and h4(r) = 1/r′ – 1.
Then we clearly see that h1(0) = h2(0) = h3(0) = h4(0) = 0. Simple computations lead to

h(r) =
h1(r)
h2(r)

,
h′

1(r)
h′

2(r)
=

h3(r)
h4(r)

, (3.11)

h′
3(r)

h′
4(r)

=
4r′[(1 + r′2)E – 2r′2K]

πr4 =
4
π

ϕ(r), (3.12)

where ϕ(r) is defined in Lemma 2.3.
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Lemmas 2.1 and 2.3 together with (3.11) and (3.12) lead to the conclusion that h(r) is
strictly decreasing on (0, 1). Moreover, by Taylor’s formula, one has

h
(
0+)

= lim
r→0+

(1 + r′)2[3r4/16 + o(r4)]
r4 =

3
4

, h
(
1–)

= 3 –
8
π

. (3.13)

Therefore, Theorem 1.3 follows easily from (3.10) and (3.13) together with the mono-
tonicity of h(r). �

Proof of Theorem 1.4 Let r = (a – b)/(a + b) ∈ (0, 1). Then it follows from (3.1) that

log[ 1
V (a,b) ] – log[ 1

2H(a,b) + 1
2G(a,b) ]

log[ 3
4H(a,b) + 1

4A(a,b) ] – log[ 1
2H(a,b) + 1

2G(a,b) ]

=
log[(2E)/(πr′2)] – log[(1 + r′)/(2r′2)]

log[(3 + r′2)/(4r′2)] – log[(1 + r′)/(2r′2)]
:= 1 – j(r), (3.14)

where

j(r) =
log[(3 + r′2)/4] – log[(2E)/π ]

log[(3 + r′2)/4] – log[(1 + r′)/2]
.

Let j1(r) = log[(3 + r′2)/4] – log[(2E)/π ] and j2(r) = log[(3 + r′2)/4] – log[(1 + r′)/2]. Then
elaborated computations lead to

j(r) =
j1(r)
j2(r)

=
j1(r) – j1(0)
j2(r) – j2(0)

, (3.15)

j′1(r)
j′2(r)

=
r′[(4 – r2)K – (4 + r2)E]

(1 – r′)2(r′ + 3)E =
φ(r)

�(r)ρ(r)
, (3.16)

where �(r), ρ(r), and φ(r) are defined as in Lemma 2.2(v), (vi) and Lemma 2.4, respectively.
Lemma 2.1, Lemma 2.2(v), (vi), and Lemma 2.4 together with (3.15) and (3.16) lead to

the conclusion that j(r) is strictly decreasing on (0, 1). Moreover, by L’Hôpital’s rule we get

j
(
0+)

= lim
r→0+

j′1(r)
j′2(r)

=
3
4

, j
(
1–)

=
log(3π ) – 3 log 2

log 3 – log 2
. (3.17)

Therefore, Theorem 1.4 follows easily from (3.14) and (3.17) together with the mono-
tonicity of j(r). �

As a consequence of Theorems 1.1–1.4, we can derive the following Corollary 3.1 im-
mediately.

Corollary 3.1 Let l(r) = (1 + r)/2 and u(r) = (3 + r2)/4. Then the double inequalities

π

2
l
(
r′) < E(r) < 1 +

(
π

2
– 1

)
r′,

1 +
(

π

2
– 1

)
r′2 < E(r) <

π

2
u
(
r′),
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π

2

[
u(r′)

4
+

3l(r′)
4

]
< E(r) <

π

2
[
σu

(
r′) + (1 – σ )l

(
r′)],

π

2
u
(
r′)1/4l

(
r′)3/4 < E(r) <

π

2
u
(
r′)τ l

(
r′)1–τ

hold for all r ∈ (0, 1), where σ = 2(4/π – 1) and τ = [log(4/π )]/ log(3/2) are given in Theo-
rems 1.3 and 1.4, respectively.

In order to compare the lower and upper bounds in Corollary 3.1, we provide Theo-
rem 3.2 as follows.

Theorem 3.2 The double inequality

max
r∈(0,1)

{
1 +

(
π

2
– 1

)
r′2,

π

32
(
3 + r′)2

}
< E(r) <

π

4
r′(3 – r′) +

(
1 – r′)2

holds for all r ∈ (0, 1).

Proof We clearly see that the function

r �→ u(r)
l(r)

=
1
2

(
r + 1 +

4
r + 1

– 2
)

is strictly decreasing on (0, 1). Therefore, u(r)/l(r) ∈ (1, 3/2) and

u(r′)
4

+
3l(r′)

4
> l

(
r′), σu

(
r′) + (1 – σ )l

(
r′) < u

(
r′). (3.18)

It is well known that

u(r′)
4

+
3l(r′)

4
> u

(
r′)1/4l

(
r′)3/4. (3.19)

It is not difficult to verify that the functions 1 + ( π
2 – 1)r′2 and π

2 [ u(r′)
4 + 3l(r′)

4 ] are not
comparable on (0, 1) due to

1 + ( π
2 – 1)r′2 – π

2 [ u(r′)
4 + 3l(r′)

4 ]
r2 →

⎧⎨
⎩

1 – 3π
8 < 0, r → 0+,

1 – 9π
32 > 0, r → 1–.

This in conjunction with (3.18) and (3.19) implies that

max
r∈(0,1)

{
π

2
l
(
r′), 1 +

(
π

2
– 1

)
r′2,

π

2

[
u(r′)

4
+

3l(r′)
4

]
,
π

2
u
(
r′)1/4l

(
r′)3/4

}

= max
r∈(0,1)

{
1 +

(
π

2
– 1

)
r′2,

π

32
(
3 + r′)2

}
.

We now claim that

s(x) = σx1–τ + (1 – σ )x–τ < 1 (3.20)
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for x ∈ (1, 3/2). Indeed, differentiating s(x) yields

s′(x) = σ (1 – τ )x–1–τ

[
x –

τ (1 – σ )
σ (1 – τ )

]
,

which together with τ (1 – σ )/[σ (1 – τ )] = 1.223 . . . enables us to know that s(x) is convex
on (1, 3/2). Therefore, inequality (3.20) follows from s(1) = s(3/2) = 1.

It follows from (3.20) and 1 < u(r)/l(r) < 3/2 that

σu(r) + (1 – σ )l(r) – u(r)τ l(r)1–τ

= u(r)τ l(r)1–τ

[
σ

(
u(r)
l(r)

)1–τ

+ (1 – σ )
(

l(r)
u(r)

)τ

– 1
]

= u(r)τ l(r)1–τ
[
s
(
u(r)/l(r)

)
– 1

]
< 0. (3.21)

Moreover, it is not difficult to verify that

π

2
[
σu

(
r′) + (1 – σ )l

(
r′)] –

[
1 +

(
π

2
– 1

)
r′
]

= –
(

1 –
π

4

)
r′(1 – r′) < 0.

This in conjunction with (3.18) and (3.21) implies that

min
r∈(0,1)

{
1 +

(
π

2
– 1

)
r′,

π

2
u
(
r′),

π

2
[
σu

(
r′) + (1 – σ )l

(
r′)],

π

2
u
(
r′)τ l

(
r′)1–τ

}

=
π

4
r′(3 – r′) +

(
1 – r′)2. �
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