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Abstract
In this paper, we establish the Caccioppoli estimates for the nonlinear differential
equation

–D(|Dv|p–2Dv) = λ|v|p–2v, 1 < p <∞,

where D is the Dirac operator. Moreover, we obtain general weighted versions of the
Caccioppoli-type inequalities for the Dirac operators.

MSC: 22E30; 43A80

Keywords: Caccioppoli inequality; Quaternions; Dirac operator; Picone identity

1 Introduction
In the Euclidean setting, we recall the Caccioppoli inequality

∫
�

φp|∇v|p dx ≤ pp
∫

�

vp|∇φ|p dx (1.1)

for all nonnegative functions φ ∈ C∞
0 (�), where a positive function v is a subsolution of

the Dirichlet boundary value problem for p-Laplacian

⎧⎨
⎩

∇ · (|∇v|p–2∇v) = λ|v|p–2v in �,

v = 0 on ∂�.
(1.2)

See, for example, [4] for the problem in the Euclidean setting. We also refer to [1, 5, 6, 8,
10] and references therein for discussions on the Caccioppoli-type estimates in different
settings.

The main aim of this paper is to obtain the Caccioppoli-type inequality for the nonlinear
equation

⎧⎨
⎩

–D(|Dv|p–2Dv) = λ|v|p–2v in �,

v = 0 on ∂�,
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where v is the subsolution, D is the usual Dirac operator, and D is its conjugate. Also, we
obtain weighted versions of the Caccioppoli-type inequality for the Dirac operator.

In what follows, we will work in H, the skew-field of the quaternion. This means that
each element x′ ∈H has the following representation:

x′ = x0 +
n∑

i=1

eixi,

where 1, e1, . . . , en are the basis elements of H. For these elements, we have the multiplica-
tion rules

• e2
1 = · · · = e2

n = –1,
• eiej + ejei = –2δ + ij for all i, j = 1, . . . , n.

The conjugate element x′ is given by x′ = x0 –
∑n

i=1 eixi, and we have the properties

∣∣x′∣∣2 = xx′ = x′x = x2
0 +

n∑
i=1

x2
i

and

|x|q =

√√√√ n∑
i=1

x2
i (1.3)

for the norm on H.
We recall the usual Dirac operator, which factorizes the n-dimensional Laplace operator,

Df =
n∑

i=1

ei
∂f
∂xi

and its conjugate operator

Df = –
n∑

i=1

ei
∂f
∂xi

.

The products of these operators

DD = DD = �n,

where �n is the Laplacian for functions defined over domains in R
n. For further discus-

sions in this direction, we refer, for example, to [9] (see also [3] for theory of QDEs).
In Sect. 2, we discuss Picone’s identity for the Dirac operator. The main results of this

paper are presented in Sect. 3.

2 Picone’s identity for the Dirac operator
Lemma 2.1 Let u, v be a differentiable functions defined a.e. in � ⊂H such that v > 0 a.e.
in � and u ≥ 0. Define

R(u, v) := |Du|p – D
(

up

vp–1

)
|Dv|p–2Dv, (2.1)
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L(u, v) := |Du|p – p
(

u
v

)p–1

|Dv|p–2DvDu

+ (p – 1)
(

u
v

)p

|Dv|p,

where p > 1. Then

L(u, v) = R(u, v) ≥ 0. (2.2)

Also, L(u, v) = 0 a.e. in � if and only if u = cv a.e. in � with positive constant c.

Proof of Lemma 2.1 A direct computation gives

R(u, v) = |Du|p – D
(

up

vp–1

)
|Dv|p–2Dv

= |Du|p –
pup–1Duvp–1 – up(p – 1)vp–2Dv

(vp–1)2 |Dv|p–2Dv

= |Du|p – p
up–1

vp–1 |Dv|p–2DvDu + (p – 1)
up

vp |Dv|p

= L(u, v).

This proves the equality in (2.2). Now we rewrite L(u, v) to see that L(u, v) ≥ 0:

L(u, v) = |Du|p – p
up–1

vp–1 |Dv|p–1|Du| + (p – 1)
up

vp |Dv|p

+ p
up–1

vp–1 |Dv|p–2(|Dv||Du| – DvDu
)

= S1 + S2,

where

S1 := p
[

1
p
|Du|p +

p – 1
p

((
u
v
|Dv|

)p–1) p
p–1

]

– p
up–1

vp–1 |Dv|p–1|Du|

and

S2 := p
up–1

vp–1 |Dv|p–2(|Dv||Du| – DvDu
)
.

We can see that S2 ≥ 0 due to |Dv||Du| ≥ DvDu. To check that S1 ≥ 0, we need to use
Young’s inequality

ab ≤ ap

p
+

bq

q
, a ≥ 0, b ≥ 0, (2.3)
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where p > 1, q > 1, and 1
p + 1

q = 1. The equality holds if and only if ap = bq, that is, if a = b
1

p–1 .
Let us take a = |Du| and b = ( u

v |Dv|)p–1 in (2.3) to get

p|Du|
(

u
v
|Dv|

)p–1

≤ p
[

1
p
|Du|p +

p – 1
p

((
u
v
|Dv|

)p–1) p
p–1

]
. (2.4)

From this we see that S1 ≥ 0, which proves that L(u, v) = S1 + S2 ≥ 0. It is easy to see that
u = cv implies R(u, v) = 0. Now let us prove that L(u, v) = 0 implies u = cv. Due to u(x) ≥ 0
and L(u, v)(x0) = 0, x0 ∈ �, we consider the two cases u(x0) > 0 and u(x0) = 0.

(1) In the case u(x0) > 0, from L(u, v)(x0) = 0 it follows that S1 = 0 and S2 = 0. Then
S1 = 0 implies

|Du| =
u
v
|Dv|, (2.5)

and S2 = 0 implies

|Dv||Du| – DvDu = 0, (2.6)

Combination of (2.5) and (2.6) gives

Du
Dv

=
u
v

= c with c 	= 0. (2.7)

(2) Let us denote �∗ := {x ∈ �|u(x) = 0}. If �∗ 	= �, then suppose that x0 ∈ ∂�∗. Then
there exists a sequence xk /∈ �∗ such that xk → x0. In particular, u(xk) 	= 0, and hence
by case (1) we have u(xk) = cv(xk). Passing to the limit, we get u(x0) = cv(x0). Since
u(x0) = 0 and v(x0) 	= 0, we get that c = 0. Then by case (1) again, since u = cv and
u 	= 0 in �\�∗, it is impossible that c = 0. This contradiction implies that �∗ = �.

This completes the proof of Lemma 2.1. �

3 Caccioppoli-type inequalities
Let us consider the Dirichlet boundary problem for the Dirac operator

⎧⎨
⎩

–D(|Dv|p–2Dv) = λ|v|p–2v in �,

v = 0 on ∂�.
(3.1)

We say that a weak solution of equation (3.1) means a function v ∈ W 1,p
loc (�) such that

∫
�

|Dv|p–2DvDφ dx′ – λ

∫
�

|v|p–2vφ dx′ = 0 (3.2)

for all functions φ ∈ W 1,p
0 (�) ∩ C(�). The supsolution and subsolution of equation (3.1)

mean a function v ∈ W 1,p
loc (�) such that

∫
�

|Dv|p–2DvDφ dx′ – λ

∫
�

|v|p–2vφ dx′ ≥ 0 (3.3)
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and
∫

�

|Dv|p–2DvDφ dx′ – λ

∫
�

|v|p–2vφ dx′ ≤ 0 (3.4)

for the test functions φ ∈ W 1,p
0 (�) ∩ C(�) with φ ≥ 0, respectively.

If we take the test function as φ = v, then for the supsolution and subsolution, we have

∫
�

|Dv|p dx′ ≥ λ

∫
�

|v|p dx′ (3.5)

and
∫

�

|Dv|p dx′ ≤ λ

∫
�

|v|p dx′. (3.6)

Now we are ready to establish a Caccioppoli-type inequality.

Theorem 3.1 Let � ∈ H. Let v be a positive subsolution of equation (3.1) in �. For any
fixed q > p – 1 and q < p < ∞, we have

∫
�

vq–pφp|Dv|p dx′ ≤
(

p
q – p + 1

)p ∫
�

vq|Dφ|p dx′ +
λp

q – p + 1

∫
�

vqφp dx′ (3.7)

for all nonnegative functions φ ∈ C∞
0 (�).

Remark 3.2 Note that Theorem 3.1 for the Finsler norm was obtained in [2].

• For the case q = p and λ = 0 in Theorem 3.1, we have

∫
�

φp|Dv|p dx′ ≤ pp
∫

�

vp|Dφ|p dx′. (3.8)

• For the case q = 0 in Theorem 3.1, we have

∫
�

φp|D log v|p dx′ ≤
(

p
1 – p

)p ∫
�

|Dφ|p dx′ +
λp

1 – p

∫
�

φp dx′. (3.9)

Proof of Theorem 3.1 Let us begin the proof by replacing u = v
q
p φ in L(u, v), which gives

∫
�

L
(
vq/pφ, v

)
dx′ =

∫
�

∣∣D(
vq/pφ

)∣∣p dx′ + (p – 1)
∫

�

vq–pφp|Dv|p dx′

– p
∫

�

(
v

q–p
p φ

)p–1|Dv|p–2D
(
vq/pφ

)
dx′

=
∫

�

∣∣D(
vq/pφ

)∣∣p dx′ + (p – 1)
∫

�

vq–pφp|Dv|p dx′

– p
∫

�

(
v

q–p
p φ

)p–1|Dv|p–2
(

q
p

v
q–p

p φDv + vq/pDvDφ

)
dx′

=
∫

�

∣∣D(
vq/pφ

)∣∣p dx′ – (q – p + 1)
∫

�

vq–pφp|Dv|p dx′
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+ p
∫

�

(
v

q–p
p φ

)p–1|Dv|p–1vq/p|Dφ|dx′.

In the last line, we have used the Schwarz inequality. Now we apply the Young inequality
of the form

abp–1 ≤ ap

pτ p–1 +
p – 1

p
τbp, a, b ≥ 0, τ > 0.

By choosing a = vq/p|Dφ| and b = v
q–p

p φ|Dv| and using inequality (3.6) we arrive at

0 ≤
∫

�

∣∣D(
vq/pφ

)∣∣p dx′ – (q – p + 1)
∫

�

vq–pφp|Dv|p dx′

+ τ 1–p
∫

�

vq|Dφ|p dx′ + (p – 1)τ
∫

�

vq–pφp|Dv|p dx′

≤ λ

∫
�

vqφp dx′ –
(
q – p + 1 – τ (p – 1)

)∫
�

vq–pφp|Dv|p dx′

+ τ 1–p
∫

�

vq|Dφ|p dx′.

Thus we have the following inequality:

∫
�

vq–pφp|Dv|p dx′ ≤ τ 1–p

(q – p + 1 – τ (p – 1))

∫
�

vq|Dφ|p dx′

+
λ

(q – p + 1 – τ (p – 1))

∫
�

vqφp dx′. (3.10)

Taking a suitable constant τ = q–p+1
p leads to

∫
�

vq–pφp|Dv|p dx′ ≤
(

p
q – p + 1

)p ∫
�

vq|Dφ|p dx′ +
λp

q – p + 1

∫
�

vqφp dx′.

This proves the theorem. �

4 Weighted versions
Let us consider the following weighted operator:

�p,wf = D
(
w(x)|Df |p–2Df

)
, 1 < p < ∞, (4.1)

where 0 ≤ w ∈ C1(H).

Theorem 4.1 Let 2 ≤ p < ∞. Let 0 ≤ F ∈ C∞(H) and 0 ≤ η ∈ L1
loc(H) be such that

ηFp–1 ≤ –�p,wF a.e. in H. (4.2)

Then we have
∫
H

η(x)
∣∣f (x)

∣∣p dx′ + Cp

∫
H

w(x)
∣∣F(x)

∣∣p∣∣D(f /F)
∣∣p dx′ ≤

∫
H

w(x)
∣∣Df (x)

∣∣p dx′ (4.3)

for all real-valued functions f ∈ C∞
0 (H). Here Cp is a positive constant.
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Note that the Carnot group version of Theorem 4.1 was obtained in [7].

Proof of Theorem 4.1 For all a, b ∈R
n, there exists a positive number Cp such that

|a|p + Cp|b|p + p|a|p–2a · b ≤ |a + b|p, 2 ≤ p < ∞. (4.4)

Using this by taking a = g(x)DF(x) and b = F(x)Dg(x), we get

∣∣g(x)
∣∣p∣∣DF(x)

∣∣p + Cp
∣∣F(x)

∣∣p∣∣Dg(x)
∣∣p + F(x)

∣∣DF(x)
∣∣p–2DF(x) · D

∣∣g(x)
∣∣p

≤ ∣∣g(x)DF(x) + F(x)Dg(x)
∣∣p =

∣∣Df (x)
∣∣p, (4.5)

where g = f /F . It follows that

∫
H

w(x)
∣∣Df (x)

∣∣p dx′ ≥
∫
H

w(x)
∣∣DF(x)

∣∣p∣∣g(x)
∣∣p dx′

+ Cp

∫
H

w(x)
∣∣Dg(x)

∣∣p∣∣F(x)
∣∣p dx′

–
∫
H

D
(
w(x)F(x)

∣∣DF(x)
∣∣p–2DF(x)

)∣∣g(x)
∣∣p dx′

≥ Cp

∫
H

w(x)
∣∣Dg(x)

∣∣p∣∣F(x)
∣∣p dx′

+
∫
H

–D
(
w(x)

∣∣DF(x)
∣∣p–2DF(x)

)
F(x)

∣∣g(x)
∣∣p dx′.

Using (4.2), this implies that

∫
H

η(x)
∣∣g(x)

∣∣p∣∣F(x)
∣∣p dx′ + Cp

∫
H

w(x)
∣∣Dg(x)

∣∣p∣∣F(x)
∣∣p dx′

≤
∫
H

w(x)
∣∣Df (x)

∣∣p dx′. (4.6)

Since g = f /F , we arrive at

∫
H

η(x)
∣∣f (x)

∣∣p dx′ + Cp

∫
H

w(x)
∣∣F(x)

∣∣p∣∣D(f /F)
∣∣p dx′ ≤

∫
�

w(x)
∣∣Df (x)

∣∣p dx′, (4.7)

which proves (4.3). �

Remark 4.2 For p = 2, we have equality in inequality (4.4) with C2 = 1, that is, the above
proof gives the following remainder formula:

∫
H

w(x)
∣∣F(x)

∣∣2∣∣D(f /F)
∣∣2 dx′ =

∫
H

w(x)
∣∣Df (x)

∣∣2 dx′ –
∫
H

η(x)
∣∣f (x)

∣∣2 dx′. (4.8)

Remark 4.3 For 1 < p < 2, inequality (4.4) can be stated as for all a, b ∈ R
n, there exists a

positive number Cp such that

|a|p + Cp
|b|p

(|a| + |b|)2–p + p|a|p–2a · b ≤ |a + b|p, 1 < p < 2. (4.9)
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In turn, from the proof it follows that

∫
H

w(x)
∣∣Df (x)

∣∣p dx′

≥
∫
H

η(x)
∣∣f (x)

∣∣p dx′

+ Cp

∫
H

w(x)
(∣∣∣∣ f (x)

F(x)
DF(x)

∣∣∣∣ + F
∣∣∣∣D f (x)

F(x)

∣∣∣∣
)p–2∣∣F(x)

∣∣2|D(f (x)/F(x)|2 dx′ (4.10)

for all real-valued functions f ∈ C∞
0 (H).

Proposition 4.4 For f ∈ C∞
0 (H), we have

∫
�

|f (x)|p
|x|pq dx′ ≤

(
p

γ – p – 2

)p ∫
�

∣∣Df (x)
∣∣p dx′, (4.11)

where 1 < p < γ – 2 and γ ≤ 2 + n with γ ∈R.

Proof of Proposition 4.4 In Theorem 4.1, we take w = 1 and

Fε = |xε|–
γ –p–2

p
q =

(
(x1 + ε)2 + · · · + (xn + ε)2)– γ –p–2

2p

for a given ε > 0. A direct computation gives

D|xε|αq = α|xε|α–2
q

n∑
i=1

eixi,

|D|xε|αq |p–2
q = |α|p–2|xε|(α–2)(p–2)+(p–2)

q ,

D
(|D|xε|αq |p–2

q D|xε|αq
)

= D

(
α|α|p–2|xε|αp–α–p

q

n∑
i=1

eixi

)

= α|α|p–2(αp – α – p + n)|xε|αp–α–p
q .

By taking α = – γ –p–2
2p we compute

–�p,1Fε = –D
(|DFε|p–2DFε

)

= –D
(|D|xε|–

γ –p–2
p

q |p–2
q D|xε|–

γ –p–2
p

q
)

=
γ – p – 2

p

∣∣∣∣γ – p – 2
p

∣∣∣∣
p–2(

γ – p – 2
p

– γ + 2 + n
)

|xε|–
(γ –p–2)(p–1)

p –p
q

=
(∣∣∣∣γ – p – 2

p

∣∣∣∣
p

+
γ – p – 2

p

∣∣∣∣γ – p – 2
p

∣∣∣∣
p–2

(–γ + 2 + n)
)

|xε|–
(γ –p–2)(p–1)

p –p
q .

If 1 < p < γ – 2 and γ ≤ 2 + n, then the above expression gives

–�p,1Fε ≥
∣∣∣∣γ – p – 2

p

∣∣∣∣
p 1
|xε|pq Fp–1

ε , (4.12)
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that is, according to the assumption in Theorem 4.1, we can put

η(x) =
∣∣∣∣γ – p – 2

p

∣∣∣∣
p 1
|xε|pq , (4.13)

which shows that (4.3) implies (4.11). �
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