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Abstract

In this work, a proposed system of fractional boundary value problems is investigated
concerning its unbounded solutions’ existence for a class of nonlinear fractional
q-difference equations in the context of the Riemann-Liouville fractional g-derivative
on an infinite interval. The system’s solution is formulated with the help of Green’s
function. A compactness criterion is established in a special space. All the obtained
results of uniqueness and existence are investigated with the help of fixed-point
theorems. Some essential examples are illustrated to support our main outcomes.
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1 Introduction

Fractional differential equations are much better than integer ones with respect to their
nature in the descriptions of phenomena and processes of several scientific and engineer-
ing phenomena. Various studies of fractional differential equations have been recently
conducted in the context of fractional-order derivatives such as the Riemann-Liouville
fractional derivative and the Caputo fractional derivative.

Fractional calculus and g-calculus in general, and fractional differential equations in
particular, are well established in current research works. Fractional calculus belongs to a
large portion of mathematical analysis. The notion of q-difference equations goes back to
1910, where it was introduced by Jackson [1]. In the past decades, the subject has attracted
many authors, and q-difference equations have appeared as a promising research field, on
both applied and theoretical levels (see [2—7]). For more details on this subject, refer to
[8-20].

Recently, fractional boundary value problems on both bounded and unbounded do-
mains have been extensively investigated (see [21-29]). On the one hand, a large num-
ber of research works on fractional calculus are dedicated to the fractional differential
equations’ solvability on a finite interval. On the other hand, fractional boundary value
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problems on an infinite interval have been rarely studied (see [30—38]). Arara et al. [30]
investigated the bounded solutions’ existence for fractional differential equations in the
sense of the Caputo fractional derivative on the unbounded domain expressed as:

D§p(t) =w(t, (1), =0,
£(0) = o,
g is bounded on j := [0, 00),

where ¢ € (1,2),°D;. is the Caputo fractional derivative of order ¢, € R, and w :
J X R— R is continuous. From a combined Schauder fixed-point theorem with a diago-
nalization method, Su [31] discussed the solutions’ existence for the following fractional
boundary value problem:

DS, o(t) = (b, (1), tey,
p0)=0,  D§ ' p(00) = oo,

wherel<¢ <2, eC(y xE,E), o €E, ]D)(i and ]D)gf ! are Riemann—Liouville fractional
derivatives. The applied technique relies on the Kuratowski measure properties of non-
compactness and the Darbo fixed-point theorem on infinite intervals in Banach space.
Zhao et al. [32] proved the positive solutions’ existence for the following fractional differ-

ential equation:

D§, o(t) +o(t (1) =0, tey,
PO=0,  lime.o D5 9(0) = B (v),

via the Leray—Schauder nonlinear alternative theorem, where 1 < ¢ <2, tv € C(j %
R,;),0 < v < 0o and D, is the usual Riemann-Liouville fractional derivative. Zhao et
al. [2] investigated the fractional multipoint boundary value problem:

D§. o(t) + (L, (1) =0, tey,
90)=0, D p(+00) =37 cip(v),

where 1< ¢ <2,0<v; <Vy <+ <Yy <00, }D)g+ is a usual Riemann-Liouville fractional
derivative. Three positive solutions’ existence was proven via the Leggett—Williams fixed-
point theorem. Rezapour et al. investigated the multisingular fractional integrodifferential

pointwise equation

Dgp(t) = w(t, p(1), 9/ (0, D (1), " (1), (Yt e [0,1]), B

PO =p@), p1)=f)pEd,
©V0)=0j=2,...,[c] — 1, where p € C'([0,1]), y1,¥» € [2,00),a,b € (0,1), DS is the Ca-
puto fractional g-derivative of ord ¢, and tv : [0,1] x R* — R is a function such that
w(t,-, -, ) is singular at some points t € [0, 1] [6]. The authors in [24] applied the Leray—
Schauder nonlinear alternative theorem and Leggett—Williams fixed-point theorem to
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prove the positive solutions’ existence to the following fractional differential equation:

D)) + (L p()) =0, tey,
©0)=0, D§ ' p(+00) = 37 aip(vy),

where0<q<1,1<¢ <2,

i=1

Dj is a Riemann-Liouville fractional g-derivative. tv : (;,R) — ; is a continuous function.
Zhao et al. [32] applied the Altman fixed-point theorem to study the solutions’ existence
to the following fractional differential equation:

D (t) + w(t p(1), Tp() =0, 3<c=<4
©(0)='(0) = "(0) =0, 2)
D' p(o0) =vEpMm), ¢ >0,

where t € j,10 € C[j x R%,R],v € R,1 € 7, DS is the Riemann—Liouville fractional deriva-
tive of order ¢, I¢ is the Riemann-Liouville fractional integral of order ¢ and

t
To() = /0 Gt £)p() de,

with G(t,5) € C[E,R], € = {(t,s) e R?: 0 < 5 < {}. In [38], Matar et al. considered the FDE

LD (1) = (L, (1), D>’ p (1),  (Vte[0,1]),
©(0) + up(1) = 01(p(0), (1)), (n#1), (3)
#'(1) = 02(0(0), (1)),

here D" and “D**” (1) are the generalized Caputo fractional derivative of order 1 <
o1 <2and 0 < 0y < 1, respectively, p > 1, ¢,(p > 1) is a p-Laplacian operator and the non-
linear functions tv : [0, 1] x R?2 — R and by, v, : R?2 — R are given continuous functions.

The solutions’ existence for the following boundary value problem of nonlinear frac-
tional g-difference equations on an infinite interval are investigated in this work:

Dgo(t) + (4, o) =0, 3<g <4,
£(0) = 9'(0) = "(0) = 0, (4)
Dé’lso(oo) = ZZ1 13;0(M:) + 2:21 ZaiD;KJ(Zni): v >0,

wherete j,weC(y x R,R),0< M;oMi <+00,i=1,...,m, Dfl') is the Riemann—Liouville
fractional q-derivative with 0 < q < 1, 1a;, 2a; > 0 such that

¢ Ty(s) +
-1 q c-v-1
121N + ——— 2a;2M; <Tq(s),
l’gl: l l Fq(g B U) ; l l !

and w: (7,R) — R is a continuous function.
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A variable’s range is studied in this research work on the unbounded domain. A modified
compactness criterion is utilized to investigate the studied compact operator £ due to the
failure of the Arzeld—Ascoli theorem in space C. With the help of the Banach fixed-point
theorem, the Leray—Schauder nonlinear alternative theorem, and the Schauder fixed-
point theorem, the investigated system’s uniqueness and existence are proven.

The remainder of this article is organized as follows: the main definitions and lemmas
are discussed in Sect. 2 to offer a guide for proving our results by providing a necessary
background with some properties to formulate a Green’s function that is suitable for the
investigated problem on an unbounded domain. In Sect. 3, the solution’s existence and
uniqueness are investigated for the boundary value problem (4). In Sect. 4, two examples
are presented to apply our outcomes.

2 Preliminaries
Essential q-derivative and q-integral notions are presented in this section. For more back-
ground information, refer to [4, 11, 12, 33, 39, 40]. Consider the real number v and put
[vlg = (1-q")(1 - q)~". The g-analog of the power (v - V)" is (v — VO =1,
-1
(v-v) = l_[(V - \?q"), (v,veR,1 €N).

k=0

Generally, Vv,vand ¢ € R,

oo -
-9 =v]] AL
co \V TV

The q-gamma function is expressed as I'q(s) = (1 — @) V(1 - @)'5, for ¢ € R -
{...,—2,-1,0} [39]. The g-gamma function satisfies (I'q(1 + ¢) = [g]qI'q(¢)). For any
G,v >0, the g-beta function is expressed as

1
Bq(s,v) = /0 ESD(1- g Vg, qe(o,1),

where the q-beta function’s expression in terms of the g-gamma function is ([39])

Tq(6)Tq(v)

Balev) =T oy

The g-derivative of order 1 € N, of a function g is expressed as Dgp(t) =p),

# () — p(qt)

Dy (1) := Dggo(t) = 1=t

, (t#£0),
Dy (0) = lime.o Dgg(t), and Dl (t) = DD, (1), Ve € 5 [39]. Set
Jti= {tq’ i1 GN} U {o}.

The g-integral of a function g : j; — R is written as

t o0
Lp(t) = /0 pE) et =3 11 - g (i),
k=0
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iff the series converges [39]. Obviously, Dl (t) = (t). Suppose that e is continuous at 0,
then [;Dqgp(t) = p(t) — (0) [39]. The fractional g-integral of the Riemann—Liouville type
of order « > 0, of a function g : I — R is expressed as ]Iggo(t) =pt),and Vt e, [9]

= (s-1)
1500~ [ il Fq”z) () dyt.
q

Lemma 2.1 ([4]) Assume that ¢,v > 0, and g is a function defined on [0,1]. Then, the
Sollowing hold T p(t) = 15" p(t) = TT5 (1), and

¢ Fqw+1)
4 Fe(c+v+1)

S+v

, Yve(-1,00),c€,t>0.

In particular, if o = 1, then I§1(t) = mt(g),‘v’t > 0.

Definition 2.2 ([40]) The fractional q-derivative of the Riemann-Liouville type of order
¢ >0, of a function g : ;j — R is defined by Dgp(t) = (1), and

1 b p®)
DS o (4) = DEITEI=S o (¢) = / d.&,
e N R G
where 1 = [¢] is the integer part of ¢.

Lemma 2.3 ([12]) Assume that ¢ >0 and 1 € N. Then, an equality holds as follows:

s-1 _
{51
]Ing t = ]:D)l ; t ]DK 0 .
q qﬁa( ) qﬂq@( ) KE - Fq(g . ])( qSO)( )

Obviously, we have:

Fq(\)) tv—g—I'

Dt =
B rq(‘) -9)

(5)

Lemma 2.4 ([11]) Assume that jo and | are intervals involving 0 € jo C j. Assume that
1,1 € N) and o are functions defined in j lim,_, ,(t) = (1), (Yt € J), and g, tends
uniformly to & on jo. Then,

im [ p©de- [perde e

The following results are important in the remainder of the paper, where we give the

exact expression of the Green’s function associated with the system (4).

Lemma 2.5 A given function: h € C(R*) is assumed. Then, the boundary value problem:

Dgp(t) + () =0, tey, (6)
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via boundary conditions

£(0) = '(0) = "(0) = 0,

; 7)
D p(+00) = X1 1aip (1M:) + Ly 22D (M)
has a unique solution
PO = [ 168 dE
0
-1 2
+ — Z 13; / lnu ﬁ(f)dqs
5l &
P [l ®)
A3 0
with A defined by

= {Fq(s‘) - (le 1?11‘11'15_1 T (g Zzatzng . 1)} 9)

where
t§—1,(t,q5)(§ 1)
W! S E ty
le(tvﬁ) = -1
Fq(g‘)' t <s,
and
t§—V—1,(t,q5)(§—U—1)
I v = a
qu(t,ﬁ) - l;,v,l
Fq(S'—V)' t <s,

Vi, € J is the Green’s function of boundary value problem (6) and (7).
Proof By integrating both sides of (6)
IEDgp(t) = ~I3A(t).

The Definition 2.2 and Lemma 2.3, imply that

t
p) = (t—q&) S VRE) dgE +arts ™ + ot 2 43t 4 gts 74

Fq(g)
The boundary conditions implies that £(0) = £’(0) = ”(0) = 0, thus,

c=c3=¢c4=0,

hence,

t
e /0 (6= &) VR(E) dgf + it (10)

Page 6 of 27
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We obtain:
m m
Z 130(M:) = 1 Z 1aimf_1
i=1 i=1

1 m mi
SR /O (M - @) VR(E) d.
i=1

By differentiating both sides of (10) along with (5), we obtain

Zzaz (®0N:) = 61223; = ;’-‘H

1 " ’ on; | “n
B m;zafo (i — q€)“VR(E) dgE,

and Dg_lp(t) = —IA(t) + c1T4(s). Therefore,

D§ (o) =~ [ e dit + aTy(s)
0

By the second condition of (7)

[ e rars)=a ) s
0

i=1

_L - , e L (§—1)h d
Fq(g);la, /0 (1M — &)V A(E) ot

m

I'(s) —v-
+a Zzatmznf !
i=1

1 " 2M; )
T Ty(c-v) ;2%/0 (aNi — &) TVR(E) dgé.

Moreover, equation (11) implies that

:—/ h(g)ds——zl,/lm il () =@ ) e
q

m

1 M (on; —g§)e Y
—XZZai/O Wh@)dqé,

i=1

where A is given by (9). Consequently, the unique solution of problem (6) and (7) is given

by the following formula

tg—l +00
O G

g1z Mi (1m; — q€)s—
1%’/ &ﬁ(g) dq§

A& Tq(s)

(11)

(12)

Page 7 of 27
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- e e,
R

1 & . /Zni (oni — g&)tsv Y
Y Lhi=9s)” 7
0

h()d
Flc—v) (§)dqeé

i=1

s-1)
g | e e ag

1
= Fq(g)
To(e) =D 1anmi— Y i 1zazr(§ ) me |:<
m m S‘
—v-1
- 131M; + 13;1M; — 23'72115 '
izzl A I3 FZI 1 1 FZI lr(g _ v) i

m

F( ) o tg—l +00
22 lF(gi zg 1>i|1—wq(§) o h(é)dqs

1 1m
& le/ am: - () =9 ) e
q

1 & . /m- (i —g§)s Y
LR Y LIZ9S)”
0 Iq(s—v)

n H(E) dot

i=

1

t

- t—q&) VaE) dgg,
e AGEOARIGEY
t

el A GO IO

+00 gilh d
e ft (e dyt

1 &

1M
- T(g) Z la,-/(; (mf‘l -(mi- qg)(g_l))ﬁ(g) dyé
d i=1

' / MSU(E) dgt
1Mi
s-1 oMN;
AFt(g—U)Zzal/ (i = ne=a8) ) AGE) da
q

to ¢c—v-1
+ mgzai/ 2M; (&) dgé,

ni

,1 m

- /0 GalbEVA(E) dgf — —— o | 2Satm o) e
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m

2231/ ZGq(an’g)ﬁ(S) dq";:’

R

_ /0 (Gt EVE) it

The proof is completed. O
Let us now mention some Green’s function’s properties that are essential to our study.

Lemma 2.6 Suppose that 1G(t,5) and ,Gy(t,5) are the Green'’s functions of the linear sys-
tem (6) and (7) provided in Lemma 2.5. Then, we obtain:

(A1) 1Gqy(t,5) is a continuous function for (t,5) € j%

(A2) 1Gy(t,5) = 0and 1G4(t,5) < 1G4(gs,s), Vi, 5 € ;.

(A3) for (t,5) € 52,

1Gq(t,5) - 1 N ¥ 1ai1nf’1 . Y capm;
1+t 7 Tg(e) AT4(s) ATq(c —v)

Proof Clearly, (A1) and (A2) hold. Obviously, 1G4(t,5) > 0, for t,s € ;. The monotonicity

of 1G4(t, 5) indicates

CORN
sup 1Gq(t,5) = 1G4(qs, 5) = & ,
tey q(g)

Vs e J. (13)

To prove (A3), for (tq,t) € j2, we obtain
1Gq(f;5) _ 1Gq(t,5) S i a»le(lni;ﬁ)
L+ts T 14t t  A LM el

tg ! i le(an»s)
23; + o1

_ 1
5( 1 +Z;211aimf +Z Coann; ):: v.

[q(s) AT4(s) ATq(c —v)

The proof of Lemma 2.6 is completed. d

3 Main results

First, we define the norm space

Coo(1,R) = {KJ €C(),R): ﬁwo T exists },

equipped with the norm

o1l = sup 28
" e, 1+t

The space Co, is a Banach space [7]. A map p(f) € C(7, R) with its q-derivative of Riemann—
Liouville of order ¢ that exists on j is named as a solution of (6) if (7) is satisfied. For
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g € Cxo, let an operator $) be expressed as:

H(0) = /0 (Gt E)A(E) Ay

m

A ;lai/(; 2Gq(1M;, §)h(8) dg§

!

1 &

R fo 2GyloMo EV(E) gt (14)
i=1

Clearly, we have a continuous, g € C(J,R), then g is the problem (4) solution if p(t) =
Hg(t) for any t € R. The operator § compactness is shown by proving that £ has a fixed
point on Coo (7, R).

Remark 3.1 Note that to apply the Arzelda—Ascoli theorem in basic space Co,, we need to
establish the following modified compactness criterion to show that $) is compact.

Let us introduce the following hypotheses for convenience:
(A4) for each q €(0,1),

m m

- I'(s) -
0< Zﬁh’lﬂf ! +;2aim2nf ! <Tg().

i=1

(A5) Let
. () =w(t (1+t7")p),

and [to.(t, )| < W(®)p(|]), on j with nondecreasing function p € C(y,R) and
yeC())

/0 Y(&)dgé < +oo.

(A6) Jisaconstant y, forany & € 7,9, € R

Lemma 3.1 ([7]) Consider the two sets T = {p € Coo : |@ |l < u} (e > 0), and

- | e
T_{1+t§_1.gaeT}.

If Y is equicontinuous on any compact intervals of j and equiconvergent at oo, then Y is

relatively compact on Co

Remark 3.2 Y is termed equiconvergent at o iff, for any given positive number €, 3N =
N¢ >0,

t £ .
pO o0 | v ctisN
1+t 1441
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Lemma 3.2 A cone P C C, is defined by
P= {peCoozgo(t)ZO,tEJ}.
If (A4) and (A5) hold, then $ : P — P is completely continuous.

Proof This proof consists of 3 essential steps.
STEP A: Let us prove that ) : P — P is continuous. From the continuity and nonnega-
tivity of 1G4 and tv, we obtain Hg(t) > 0 for t € ;. For each p € P, by (A4), we obtain:

/ (5, 9(6)) dg& < plu) / W(E) dgf < 00,
0 0

and

$9)(1)

1m
t—>+00 1 + 51

:/0 1G(t ) (€, 9(6)) dy

m

- 2w [ atma el 0e) dog

g1

I

Y f 1GyoM E0(E, 9(8)) gt
i=1 0

Thus,

im 99)®
im

t—+00 1 + ts-17

exists. Thus, $(P) C P. Let o, (t) = 2% and

1+t5-1
n(t
Bonl(t) = 160+—1£;L
Then by (A4),
m(éx 60(%-)) =10, <$’ 182”%(5)1) = m*(é’pl(é))

Taking g, — g as n — +00 in Cw, by (A5), we obtain:

m*(t, on(t) )—m*<t, ©(t) >‘
1+ts-1 1+ts-1
= [0.(t 91,(0) - . (6 p1(8)) |

<y|p1,) —=1()| = 0 uniformly on ;.

o (t @u(t) — (L o()| =

Sow(t, (1)) — (t, o(t)) uniformly on ;. By Lemma 2.4, we obtain

lim [ (e 0,0)dit = [ wle () dee (15)
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Hence, combining (15), we obtain

Hea)  HP®)

L+ 1 14ts]

© 1Gq(t,
_ / BB o 6, u0) - (e 9(0))) dt

1+ts1

® 9Gq(iMi &)

P Y [T (e, 0,(6) - (e, 0(0) ot

1+ts-1

1 & G i
: *—22 o [T (e, 6) - (e, 006)) o

G el
| [T (00160 - ol i)

- 1+t

tgl’”

Gyl
Gl f a8 (e, 0(6)) - (6 916)) o

tslm

* G i
22 /o %(m@’@n@—m(é,so(é)))dqs

o]

0 (m(é’@n(f)) - m(%-’@(é))) dqé:

mo o 6=l oo
N % fo (0(£, 9a(6)) — (&, 9(6))) dgt

c—v-1
. ZA?%E—Z“_V)/ (10 (&, 9u(6)) — 10 (&, 9(6))) dgf |

0

Hence,

Hn(t) — HP(t)

1+ts-1

1960 — Hgll = sup ‘ -0,

tey

as n — 00. So, §) is continuous.

STEP B: We show that §) is uniformly bounded. For this case, let Q be any bounded
subset of P,i.e., 3 > 0, ||p|| < u forany p € Q. Itis enough to prove that () is bounded
in IP. For p € Q, we obtain:

tey 1 + tg 1

s-1 " Gq(&,
+t_le/ 2 (S g) 1 (5))dq§

. Gylt,
II5350||=SHP</O ! q(t_g)m(t@(é))dqé

1t
-1 m © G ( ni’%_)
+T;2ai/o %m(w@))dqg>

JAEEOIER

1—‘q(g) 0

Page 12 of 27
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m . g—l 00
Bt [ () ds

Zleaiznf_v_l *
+m/(; o (t (&) dgé

_< 1 +Zleai1ﬂi§_l

- Fq(g) AFq(g)

. Z?ilzannf“> /w‘me,msxus“))
0

ATy(c —v) 1+&s-1

< 1 +22113im1§71

rq(g) AFq(g)
PP R ()
e ) i)

<PV fo W(E) dg& < oo

dgé

deé

Hence, $(Q) is uniformly bounded. Now, we show that H(Q) is equicontinuous on any

compact interval. First, for each givens > 0,11, 1, € [0,5], and g € P, and t; > t;, we deduce:

Hpt)  Het)

1+ 1+67"

<

w (€, 9(5)) deé

/Oo 1G4(t, §)
0

1+67

) /00 1G(t1,)
0

1+67
( tg_l tf_l )
-1 - c-1
1+¢4 1+4

m o0 G b
XZ1ai/0 Mm(é,p(é))dqf
i=1

w (&, p(€)) dgg

+

A

EE
1+ 1+67°

m

[o9) G i
XY oa /O Wm(s,p(s»dqs
i=1

/oo le(tZ!‘E)
o 1+t
_/oo le(tlrs)
o 1+t
/oo le(thg)
+ DR
o 1+t
_/oo le(tlré‘)
0

1+67

< tgil th >
-1 - c-1
1+4 1+4

+

IA

w (&, 9(&)) deé

w (€, &) deé

w(&, 9(€)) dgé

w (€, 9(&)) deé

+
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= ® 2Gq(1Mi €)
i s d
x ;jlafo Fi (o) s
! !
<1+t§‘1 - 1+t§‘1>

~ *LG i
Y [ (e, o) dog |
i=1

+

On the other hand, for all p € Q, t; — t,, we obtain

*1Gq(t, §) - G(’c,)
A qu%- 1 15‘(@(5))|dq§

1 2
</

(657 =) = (b — &)V = (t — &)™)
Ty()A+87

w(&, p(€)) dgé

to g—l_tg—l_(t _ %-)(g—l)
+/f : r1<g>(1+2t§j> (6 £E) det
1 q
00 tg—l g 1
—_— )
+/t2 roo s | EPE)

G-+ (e -g) N - (- q))
E/o : 1 +F (2§)((11$+t§1 — w (& p(§)) def
q 2

351 t2
S , d
o /t (& () dt

tgfl_tgfl 00
+—1 m(é,p(é)) deé

Ty()A+t57!

tl tg 1 tg 1) + ((tZ _ qé_-) s-1) (tl _ qé)(g_l))
d
M)/ q(§)(1+f2 W(s) qé

35! @

T+ Jy

+p(u) y(§)dgé

R
+P(M)W/2 y(§)deé — 0. (16)

Similar to (16), for all € Q, t; — t;, we obtain

© 1G4, ) _[T1Gq(t,8)
/ w(Ep@)dot - [ (e, pl6) dt

-1
1+tg 0 +4

G EIL+ ) -1+ ;
= ~/0 1+ t§—1)(1 + tg—l m(é’ 60(&-)) &

57—t 1|/ 1Gq(ty,8)
- (1+ 1+ 6 (g, p(8)) deg
|t -

(1+§l

|
/ q()()()q
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R B e
L Bl B de& > 0,
ey [ werdg -

and

;! g n,,
(1 iztg‘l - t; 1)(2131/ a (Eréo@)) deé
- % 1Gq(Min§)
+ D o /0 (6, 9(6)) dg)’

i=1

< 5~ -7 /OO<ZZ1 wams
Ta+ghHa+€N o AT4(s)
’ a; nlg v=1
+ %—2))@5,@(5)) dgt
|t§_1 —tf_1| M(Zzﬂil 1aimf_1
Ta+ghHa+gh A Tq(s)

m ) g—u—l 00
+ —Zirl:(zﬂ_n;) )/0 Y(§)des — 0.

Hence, H(Q) is equicontinuous on any compact intervals of j.
STEP C: Let us prove that §) is equiconvergent at co. For any p € Q, by (A5)

/Ooo (&, 9(6) dg fw deé < 00, 17)

we have

1 Gql(t,
m| [ b8 (e p(e) dy
0

t—>00 1+ts-1

gl “ G 124
- le / : q(ﬂ o (e,0(6) det

m
t—oo| 1 + 51

P Zzl/ LD e, (6)) dot

<< 1 +Zjﬁ11aimf’
“\T(s) AT(s)

Z;leaizﬂig_v_l oo‘ ( 50(‘5)(1+§§_1))
et ) | e
<< 1 +Z:Z11atmf_l
“\Tq(s) AT4(s)

S °°‘ ( KJ(S))
et ) [ (e

<p(WV fo W(E) d < oo

deé

dq4é
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Thus, we obtain

lim

t—+00

’ Hpt)

1+ts-1

Hence, $ : P — P is equiconvergent at infinity. Thus, the operator §) is completely contin-

uous. The proof is completed. d

In the next subsections, the boundary value problem’s (4) existence and uniqueness are
shown via the Banach fixed-point theorem, the Schauder fixed-point theorem, and the
Leray—Schauder nonlinear alternative theorem.

3.1 Existence via the Leray-Schauder nonlinear alternative theorem
Theorem 3.3 Suppose that i > 0, and functions p and ¥ satisfy:

> Vp() /0 e det, a8)

and conditions (A5) and (A6) hold. Then, the boundary value problem (4) has an un-
bounded solution o (t) such that

Proof Let

YT ={peP:lpl<u}

we have p # A9 for p € 3T and A € (0,1). If I p € 3T with p = AHg, then for A € (0,1),
we obtain

AHp(t) - to(t)

su
(65) 1+t§_1 - tE] 1+t§—1

© 1G4t 8)
< Sup(/o llfﬁm(&p(é))dqé

tey

lell =

m

Gyl
Tl [ D (e, o) ot

tg_l “ *,LG ( T]i»f)
+7223i/(; %m@,@@))dﬁ)

i=1

t§1

1 o0
< ) d
_Fq(g)fo (&, 9(€))| de

m . 'g—l 00
P [P0

P IHSLIL N
+m/o m(f;:&@(é))dq%‘

_< 1 +ZZ113;‘1W§_1

Fq(g) Arq(g)



Boutiara et al. Journal of Inequalities and Applications (2022) 2022:29 Page 17 of 27

Sy *© pE) 1+
B o AN G| B

( 1 +Z:leai1ni§_l

Tq(s) AT4(s)
> mons ™! *® (&)
’ ATq(s -v) >/0 ‘m*<é’1+§§‘l)

smmvﬁ (E) dy < oo

d4é

Hence, for p € 37, we find

usMMVA W(E) ik,

which contradicts (18). By the fixed-point theorem of Schauder, the problem (4) has an
unbounded solution g = p(t),

0<pt) <u(l+t'), Vte,.
The proof is completed. O

3.2 Existence via the Schauder FpThm
Theorem 3.4 From (A4), the boundary value problem (4) has at least 1 solution on t € j.

Proof Assume that an operator §) is defined in (14). By testing to see that all Schauder
fixed-point theorem’s axioms on C, are satisfied. tv and 1Gg, ;G4 are given continuous
functions indicating that the operator §J is continuous. The remainder of the Theorem 3.4
proof is divided as follows:

STEP A: Let

T={peCs:lpll <un}
closed ball. Then, we prove that : T — Y. We select
oo
w0 [ v de
0

For any g € C, we prove that T C Y. Hence, for t € ;, we obtain:

o0 G s
< SUp<f 1t E)m(é,@(:ﬁ))dqé
tey 0

1+ts1

Hp(t)

1+ts-1

1 & ©1Gq(1Mi
¢ 1&[ 1G9M8) e o)) dy

o
: 1+ts-!
i=1
I © ,Gq(oMir§)
2Q; s -1

+—
1+ts-1

N rwap@»dg)

i=1

1 [e°]
, d
o ), mEr©)las

=<
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m . g—l 00
P R [ ofe ple)

> 23:‘2“5_‘)_1
Arq(g - V)

_ ( 1 + i lailnig_l
l-‘q(g) AFq(g)

R Zfilzaﬂnf“) /w‘m(&@@)(us“))
0

ATy (g —v) 1+&s-1

/0 w(E, 9(6)) dgt

dgé

:< 1 +Z?lnaim54

1—‘q(S') Arq(g)
+ > ZaiznfUI) /Oo
Arq(g - V) 0

<p(V /0 W(E) dgf < oo

deé

p(&)
“’*(5’ Ls sg-1>

Asaresult, |9%|lc., < u,whichindicatesthat 9T C T, i.e., the operator fymaps Y into Y.

STEP B: From Lemma (3.2), we need to prove that ) is continuous and completely con-
tinuous on C. Thus, by the Schauder fixed-point theorem, the operator §) has a fixed
point g in C which is a solution of problem (4). d

3.3 Existence and uniqueness results via the Banach FpThm
Theorem 3.5 Let (A5) and a hypothesis hold (A6), 3 is a positive function o(t) with

0" = / (1+£5)0(8)d& < oo
0

and

Iw(tp) -t @) <o®lp -, V.te o9k

Then, the boundary value problem (4) has a unique solution: ©(t) in Coo. Moreover, A is a

monotone iterative sequence {, ()} such that ©,(t) > ) as n — oo, which is uniform

on any unbounded subdomain of t € g, where

on(t) = /O LGyl ) (&, gnr (6))de.

Furthermore, 3 is an error estimate for the following:

n

lon —olloo < 1_9||K«>1—5Oo||oo (n=1,2,...), (19)
and
m -1 m -v-1
9 = ( 1 + Din 1ai1ﬂ,~§ + D zaizﬂf )Q* <1 (20)
Fq(g) AFq(g) AFq(g_V)
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Proof By considering an operator $) defined by the equation (14). Assume that g, €
Cwo. For t € j, we have

(D10 - 53502(0)‘

1+’L§1

* 1Gq(t8)
5sup< fo T 0 916) (6 92(6)) | det

tey

s-1 ™ G "
+t—21, 2CalME) 1 6 0(0)) - 0 (6, 2(6) | de

14t
SN [ 2Gg(ens6)
+T;Za"/o %W(E’B@l@))—m(E,soz(E))ldqs)

1 o0
g /0 I10(&, 91(6)) - 10(&, 92(6)) | d&

m ) %‘—1 o0
2O [, (6) - o(e,0206) ot

AT4(s)

%fowlm(s,ma) (&, 02(6)) | det
<( LI Y aan; N YA 1)
~\Tq(s) AT4(s) ATq(¢ —v)

o (s 20
e 2O

m ¢-1 ¢c—v-1
- ( 1 . Yol 1A, o 22N )

Tec) " ATq(c) | Algc—v)

*© ©1(8) 2(8)
<, “’*(E’ 1+ss1> ‘“’*(S’ 1+s§1)
< ( 1 . S am . i 2aizﬂi§;l>

Fq(g) AFq(g) AFq(g -V

x (fooo[(l +£71)0(6)] ds) 91 — 92l

deé

Consequently,

[GINORCIIE]

<( 1 N Z?’lnaimf'l N domoanm; '
“\TIg(s) AT4(s) ATq(c —v)

)Q*HBO _BO/Hoo
=01 — 21l 00-

Thus, we collect that

1991 - H92000 < Oll1 — P2llo0s V81,892 € Coo. (21)
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As 6 < 1, then the Banach fixed-point theorem ensures that ) has a unique fixed point
g in C. Hence, the problem (4) has a unique solution g € Cy. Furthermore, for each
§0 € Coo, l1§9n — #lcc = 0 as n — 00, where p, = Hg,_1 (n=1,2...). From (21), we find

l9n = n-1lloo < 0" 1 — $0ll0os

and

l§2n — pj”oo < = Pn-1lloo + 1911 — Pu-2llco
+o 1951 = @lloo

_6"(1-0")

- , 22
g #1780l (22)

By supposing that # — oo on both sides of (22), we can estimate

n

ln = @ lloo < I1 = 0!l co-

1-6

Hence equation (19) holds, and this theorem’s proof is completed. d

4 Applications via numerical results
Example 4.1 By taking

76(34] 2 0
== y X, vV==2>0,
) 5

110
2°13
tional q-difference equations on an unbounded domain:

and g = {é, }, let us have the following boundary value problem for nonlinear frac-

z 3,
Dgp(t) = U5 + £ sin(BE + [p(B)),  tey,

£(0) = '(0) = "(0) = 0, (23)
Dg p(00) = X7 12 (M) + Y121 24 D20 (M),

where

CIn(1+t) e

wbo) =T er A e

sin(3¢* + (1)

)

and 14y, 2a;, 1M, 21; satisfy

5 1
2 2
0 <1a;M; +2a;2M;

1.2076,

1 2
=1x 2t 1x 3° 0.9166 < T'4(¢) = { 2.3814,
55035, q=12,

whenever, we take

1

2
mi =2 Mi =3 13; =23; = L.
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Table 1 Numerical results of A, 0* and 6 for q = %% in Example 4.1

n Ly(s) Cq(v) Lyc-v) A 6o o* (2]
=5
1 1.2102 1.2112 1.2705 04618 2.1656 0.2192 04747
2 1.2079 12124 12726 0.4621 21642 02192 04744
3 1.2077 1.2125 1.2729 04621 2.1641 0.2192 04744
4 1.2076 1.2125 1.2729 04621 2.1640 02192 04744
5 1.2076 1.2126 1.2729 04621 2.1640 0.2192 04744
q=5
1 2.8267 2.1519 2.2893 1.8658 0.5360 0.2192 0.1175
2 25877 2.1986 23674 1.7335 0.5769 02192 0.1265
3 24808 2.2206 24045 16728 0.5978 0.2192 0.1311
4 24301 22313 24226 1.6436 0.6084 02192 0.1334
5 24054 2.2366 24315 1.6294 0.6137 0.2192 0.1345
6 23933 22392 24359 16223 06164 02192 0.1351
7 2.3872 2.2405 24381 16188 06177 0.2192 0.1354
8 23842 22412 24392 16170 06184 02192 0.1356
9 2.3827 2.2415 24398 16162 0.6188 0.2192 0.1356
10 23819 22417 24401 16157 0.6189 02192 0.1357
11 23816 22417 24402 16155 0.6190 0.2192 0.1357
12 23814 22418 24403 16154 0.6190 02192 0.1357

We can see the results of A and 6 in Tables 1 and 2. These results are plotted in Fig. 1.
Then (A4) holds. Secondly, we obtain

L€ p -8l
(t, o) — (L, =

By taking o(t) = s(i;:ﬂ)’ we directly obtain:

. +00 3 _1
0 —/0 o&)(1+&° )d§—5<+oo.

We shall check that condition (20) is satisfied. By using the MATLAB program Additional
file 1, Algorithm 1) according to Eq. (14), we find

04744, q=
0 =6p0* >~ {0.1357, q=
0.0465, q =13,

<1,

where

m s-1 m c—v-1
1 . Dol 1, N D iy 220M;

O =
T Ty5) " AT(5) ATy(s —v)

Tables 1 and 2 show the results. Also, We can see a graphical representation of  in Fig. 1.

Thus, from Theorem 3.5, the boundary value problem (23) has a unique solution.

Example 4.2 By taking

176(34] 25 0
= — ) X, vV=—>0,
*"% 9
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Table 2 Numerical results of A, 0* and 6 for q = % in Example 4.1

n I'q(s) Cq(v) Cq(c-v) A 6o o* 6
q= 13
1 12.7438 42729 43560 10.5099 0.0951 02192 0.0209
2 100203 44743 46759 83756 0.1194 02192 00262
3 8.5259 46081 48917 7.1824 0.1392 02192 0.0305
4 76129 47014 5.0440 6.4453 0.1552 02192 0.0340
5 70164 47686 5.1543 59602 0.1678 02192 0.0368
6 6.6088 48178 52355 56272 0.1777 02192 00390
18 5.5407 49627 54771 47478 0.2106 0.2192 0.0462
19 5.5312 49641 5479 4.7399 0.2110 0.2192 0.0463
20 55239 49652 54813 47339 02112 0.2192 0.0463
21 55183 49660 54827 4.7293 0.2115 0.2192 0.0464
22 5.5140 4.9667 54838 4.7257 02116 02192 0.0464
23 5.5107 49672 5.4846 47229 0.2117 0.2192 0.0464
24 5.5081 49676 54852 4.7208 02118 02192 0.0464
25 5.5062 49678 5.4857 47192 0.2119 0.2192 0.0465
26 5.5047 49681 54861 4.7180 0.2120 0.2192 0.0465
27 5.5035 49682 5.4864 47170 0.2120 0.2192 0.0465
12 05
0.45
10
- 04 ==
ol =103 035 aet013] 1
0.3
< 6f = 025
0.2
Y 015 1
e R n e B
ol 0.1 1
“‘H—*—*—H—*—X—X—H—*—X—*—H—*—k

n, q

(a) A

Figure 1 Graphical representation of A and 6 forq =

0.05

1

O .
373N Example 4.1

and

(118
=729

|

let us have the following boundary value problem for nonlinear fractional q-difference

equations on an unbounded domain:

17

D¢ p(t) =

e2p(b)|
701+ V)’

tey,

£(0) = 9'(0) = "(0) = 0,
pY) 25
Dy p(00) = Y7 1ai(iMe) + iy 2aiDg (M),

where

m(t’ BO) =

e p(b)]
7(1

+ V)

(24)
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Table 3 Numerical results of A, V and u for q = 5 in Example 4.2
n Iq() Lq) Lglc-v) A \v > Vplu fo
q= % and calculated p = 0.1

1 1.2287 1.1454 -1.0393 2.7995 0.3572 0.1>0.0042
2 1.2253 1.1428 -1.0823 26808 0.3730 0.1>0.0043
3 1.2249 1.1424 -1.0885 2.6645 0.3753 0.1>0.0044
4 1.2248 1.1423 -1.0893 26622 0.3756 0.1>0.0044
5 1.2248 1.1423 -1.0895 26619 0.3757 0.1>0.0044

Table 4 Numerical results of A, V and u for q =

7 in Example 4.2

n Iy(s) Cq(w) Cq(c-v) A Y w> Vo) fo° W) dgé
q= % and calculated . = 0.1
1 26975 21251 -2.7521 3.8027 0.2630 0.1 >0.0047
2 24776 2.0057 -3.5667 29254 0.3418 0.1 >0.0061
3 23791 1.9515 -3.9922 25995 03847 0.1 > 0.0069
4 23324 1.9256 -4.2092 24564 04071 0.1 >0.0073
5 23096 1.9130 -43188 23891 04186 0.1>0.0075
6 2.2984 1.9067 -4.3739 2.3565 04244 0.1 >0.0076
7 2.2928 1.9036 -4.4015 2.3404 04273 0.1>0.0077
8 2.2900 1.9020 -4.4153 23324 04287 0.1 >0.0077
9 2.2886 1.9013 -4.4222 23284 04295 0.1 >0.0077
10 22879 1.9009 -4.4257 2.3264 04298 0.1 >0.0077
1 22876 1.9007 -4.4274 23254 04300 0.1 >0.0077
12 22874 1.9006 -4.4283 23249 04301 0.1 >0.0077
13 2.2873 1.9005 -4.4287 23247 04302 0.1 >0.0077
14 22873 1.9005 -4.4289 2.3246 04302 0.1 >0.0077

. (Lp) =t 1+t ")) =

Choose p(p) = [p(t)], w(t) = e 2*. For example, if we take

1a1 =1, 133 = 1.5,
_ 4 B 2
M1 = 5 M2 = 3’
we have

’m*(tr&)) — 10 % (t,@)‘ =

and

0< Zalégl+2b‘§§”1 -

-1.43%, q=1,
=1-0.0476, q=3,
-24611, q=13

e (L +t5- 1)50(t)|

7(1+ V)

2a1 =1, sap = 0.75,
1 7
2M1 = 3’ 2M2 = g’

-2t

) . e ,
ep - gl = lp-9l

q(g) <Ty(6)

\1

—|p@e.

Tables 3, 4 and 5 show the results. Also, We can see a graphical representation of

Vp(u) /0 W(E) ik,
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Table 5 Numerical results of A, V and i forq= % in Example 4.2

n Tq(s) Tq(v) Tq(s-v) A v w>Vp(u) 57 wE) deé
q= g and calculated ;0 = 0.1
1 559818 21,9886 -3.1623 95,6034 0.0105 0.1 >0.0000
2 412031 18.2245 ~54122 57.5855 00174 0.1 >0.0000
3 32.8940 159102 -7.6526 416420 0.0240 0.1 >0.0000
4 276527 143446 -9.8069 32,9949 0.0303 0.1 >0.0000
5 24,0881 132182 ~11.8371 27,6229 0.0362 0.1 >0.0000
6 215322 123725 ~13.7253 23.9933 0.0417 0.1 >0.0001
7 196267 11.7174 ~15.4655 213974 0.0467 0.1 >0.0001
8 181631 11.1978 ~17.0587 19.4632 00514 0.1>0.0001
79 11.0024 83731 -31.1770 10.6630 0.0938 0.1>0.0001
80 11.0023 83731 -31.1774 106629 0.0938 0.1 >0.0001
81 11.0022 83730 -31.1777 106627 0.0938 0.1>0.0001
82 11.0021 83730 -31.1780 106626 0.0938 0.1 >0.0001
83 11.0020 83729 -31.1783 10,6625 0.0938 0.1>0.0001
84 11.0019 83729 -31.1786 106624 0.0938 0.1 >0.0001
85 11.0019 83729 -31.1788 10,6624 0.0938 0.1>0.0001
86 11.0018 83729 -31.1790 106623 0.0938 0.1 >0.0001
87 11.0017 83728 -31.1792 106622 0.0938 0.1>0.0001
88 11.0017 83728 -31.1793 106622 0.0938 0.1 >0.0001
89 11.0016 83728 -31.1794 106621 0.0938 0.1>0.0001
90 11.0016 83728 -31.1796 106621 0.0938 0.1>0.0001

1

in Fig. 2 whenever q = {%, 2 %}. Also, 1G4 (t, 5) is a continuous function for (t,5) € [1,00) x

[1,00) and

[w.(t )| < w(Op(Ipl),

on j x R with p € C(7,R) nondecreasing and

oo
/ Y(§)dgé < +o0.
0
Furthermore,
~ 0.0044, q=1,
b [ W det = {00077, q=1,p <p-ol
° 0.0001, q-=2&.

Thus, from Theorem 3.3 we conclude that problem (24) has at least one positive solution
g, forte g,

o (t)
0< o < MU

T l+ts

5 Conclusion

A fractional boundary value problem system has been proposed and studied in terms of its
unbounded solutions’ existence for a class of nonlinear fractional q-difference equations
via the Riemann-Liouville fractional q-derivative on an infinite interval. The system’s so-
lution has been formulated using Green’s function. In addition, a compactness criterion
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3 - -
i q=1/7

2+ +q=1/2 m
q=8/9

1+ -

0 . L A - A L. e e e e e v e s m— —

0 2 4 6 8 10 12 14 16 18 20

n, q

Figure 2 Graphical representation of Vp(u) fooo () dgé inExample 4.2

has been obtained in special space. Fixed-point theorems have been utilized to obtain all
our results in this work. [llustrative examples have been provided at the end of our study.
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