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Abstract

In this article, we consider a bivariate Chlodowsky type Szasz—Durrmeyer operators
on weighted spaces. We obtain the rate of approximation in connection with the
partial and complete modulus of continuity and also for the elements of the Lipschitz
type class. Moreover, we examine the degree of convergence with regard to the
weighted modulus of continuity and Peetre’s K-functional. Further, we construct the
associated GBS type of these operators and estimate the degree of approximation
using the mixed modulus of continuity and a class of the Lipschitz of Bogel type
continuous functions. Finally, with the help of Maple software, we present the
comparisons of the convergence of the bivariate Chlodowsky type Szasz-Durrmeyer
operators and associated GBS type operators to certain functions with some graphs
and error estimation tables.
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1 Introduction

The approximation of the continuous functions via the sequences of linear positive opera-
tors, which have many applications in disciplines such as engineering and physics, besides
mathematics, has been an important research topic since the last century. In [1], Bernstein
proposed one of the elegant proof of the Weierstrass approximation theorem. A gener-
alization of Bernstein operators on an unbounded set was introduced by Chlodowsky
[2]. In 1930, an integral modification of the classical Bernstein operators was presented
by Kantorovich [3]. In [4, 5], Szdsz—Mirakjan considered the linear positive operators
on [0, 00), which are related to the Poisson distribution. In 1957, Baskakov [6] studied
a sequence of positive linear operators for the convenient functions defined on the inter-
val [0, 00). To approximate the Lebesgue integrable functions, Durrmeyer [7] introduced
and studied the integral modification of the Bernstein operators. In recent years, a lot
of generalizations and modifications of above-mentioned operators over finite or infinite
intervals have been studied by several authors. One of the prominent components of ap-
proximation theory, the Korovkin type theorems, on weighted spaces was introduced by

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


https://doi.org/10.1186/s13660-022-02763-7
https://crossmark.crossref.org/dialog/?doi=10.1186/s13660-022-02763-7&domain=pdf
https://orcid.org/0000-0003-4128-0427
mailto:mursaleenm@gmail.com

Aslan and Mursaleen Journal of Inequalities and Applications (2022) 2022:26 Page 2 of 19

Gadzhiev [8, 9]. Ispir [10] presented a modification of the Baskakov operators for the inter-
val [0, b,,] and derived some approximation results in terms of the Korovkin theorems. In
[11], Ditzian studied a necessary and adequate condition on the degree of convergence of
Szdsz—Mirakjan and Baskakov operators on weighted spaces. In 2005, Ibikli and Karsli [12]
proposed the Bernstein—Chlodowsky operators in terms of Durrmeyer type operators and
reached some approximation results of these operators. Mazhar and Totik [13] considered
a modification of the integral type of the Szasz—Mirakjan operators and proved direct es-
timates and saturation results of these operators. In [14], Mursaleen and Ansari defined
the Chlodowsky version of the Szdsz operators by the Brenke type polynomials and estab-
lished degree of convergence with a classical method, Peetre’s K-functional and second-
order modulus of continuity. Dogru [15] investigated some properties of the continuous
functions on [0, co) by the modified positive linear operators. In 2013, Izgi [16] introduced
and studied the following composition of the Chlodowsky and Szazs—Durrmeyer opera-
tors on weighted spaces

ZM/LMF%ZWK(%)/O Sm,k(i)ﬂ(t)dtv 0 =x=<bn), (1.1)
k=0

where Pm,k(Q) = (r]}:)qk(l - q)m—k’ (0 =< k = I’I’l), qe [Ox 1]1 Sm,k(w) = eiy’qW(mT];V)jx we [07 00)1
and (b,,) is a positive and increasing sequence with the following assumption:

2
m

lim b,, = oo, lim 2 =0.
m—o0 m—00

He investigated the uniform convergence, rate of approximation on weighted spaces,
and proved a Voronovskaya type asymptotic formula for the operators (1.1). Recently, the
univariate or bivariate cases of several well-known linear positive operators have been
studied in many papers [17-24].

The structure of this research is organized as follows: In Sect. 2, we propose the bivariate
extension of operators (1.1). We introduce the uniform convergence of these operators and
estimate the order of approximation in terms of the partial and complete modulus of con-
tinuity for the elements of the Lipschitz type class, weighted modulus of continuity, and
Peetre’s K-functional, respectively. In Sect. 3, we discuss the associated GBS type of these
operators and investigate the order of convergence by the mixed modulus of smoothness
and the Lipschitz class of the Bogel continuous functions. In the final section, we present
some graphs and error estimation tables to compare the convergence of bivariate and as-
sociated GBS type operators to certain functions.

2 Construction of the operators
Let I, := [0,a,] x [0, B,4] and the space C(ly,s,,) be the set of all real-valued functions
of bivariate continuous on I, g, . The weighted function is given by

P(Zry)=1+22+y21 (Z’y)elanﬁm'

w(z,y)
nbm P(zY) "
the real-valued continuous functions on I,,,, and verify |u(z,y)| < C,p(z,); here C,, is

It is endowed with the norm |||, = sup, )/, Moreover, by B, (Iy,s,,), we denote

fixed and depends just on u. We also denote by C, (,,,4,,) the subspace of every continuous
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function depending on B, (y,s,,), and by C7 the subspace of every functions p € C,(1y,,,,),

. . . (z, )
satisfying lim,) o0 5255 =

= a, where a is a constant depending on . In what follows, let

eu(2,y) = 2"y, (2,9) € Iy, p,,» (4, V) € Ng x Ny with 0 < ,v < 4 be the bivariate test func-

tions.

Now, based on the method of parametric extensions (see: [25, 26]), we define two-

dimensional Chlodowsky—Szdsz—Durrmeyer operators as follows:

nm(/’er,y) __ZZ nmk/(z¢13l)

kO/O

sl

(D) (7)uvh @ = )1 = vy,

) (t,s)dtds,

where P, 1 j(u1,v1) =

(2.1)

T,(0<k<n0<j<m), (u,v) €

[0,1] x [0, 1], and 8,142, v2) = &2 225 012 (4 1) € [0, 00) x [0,00); (2,9) €

I4,8,, and the sequences (@), (B,») are increasing of positive numbers, satisfying:

2

L«
lim 2 =0,
n—oo n

lim o, = o0, and

n—00

lim B, = 0o
m—> 00

lim —Z =0.
m—>00 Ml

2
(2.2)

Lemma 2.1 ([16]) For the test functions e,(t) = t*, p = 0,1,2, 3,4, the following identities

hold:

by,
Zm(eo;y) =1, Zm(el;y) =)+ _’

(4b,, —y)y 202
Zn(exy) =y + L PN
m m
(185}, + 9(m — Dby — (3m —2)")y b,

m? m3

Zu(es;y) =y +

Zmlesy) =yt + {96191 +72(m — l)bfﬂy +16(m — 1)(m - 2)b,,y*

y  24b%
—(6m2—11m+6)ys}$ el

Lemma 2.2 Let the operators R, ,,(14; z,y) be given by (2.1). Then the following identities

hold true:

(1) Rn,m (eO,O;Z’ y) = 17

.. o
(i) Rumleroszy)=z+ 7"

(iii) Rym(eo1;2y) =y + ﬁ_m,
m

da, - 2

(V) Rum(er0iz,y) =2"+ Bou -z, az ,
n

4B, — 282

() Rumleonng) =9 + Dm0 2m
m m

(vi)  Rym(esoizy) =2"+ >
n

s {1822 +9(n—-ayz—(3n-2)z*}z
+

3
6a;,
)
3
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3, (1885, +90m -1,y - Bm -2}y 68,

(vii) Ry mleoszy) =y 2 3’
P m

(vii))  Rym(es02,9) = 2* + {960 + 72(n — Doz + 16(n — 1)(n — 2)at,2”

240y

’
n*

z
- (6n2 - 11n+6)z3}; +

(ix) Rumleoszy) =y* + {968y, + 72(m — 1) By + 16(m — 1)(m - 2) B,y

2 51 Y 248,
- (6m® —11m +6)y }$+ e
Proof The desired result can be obtained easily from Lemma 2.1 and (2.1). O

Lemma 2.3 Let the operators R,,,(i4; z,y) be given by (2.1). Then in view of Lemma 2.2, we
have
. o
®)  Runlero=z2y) =,

. Bm
(11) Rn,m(eo,l =¥ Zry) =
m

20, — 202
(i) Rom((erg—2izry) = 22127, 20

b
n n?

2B —y)y 2B
(V) Rum((eon—2)%2y) = G = " %’

V) Rum((ero —2)%2,y) = % (720} — 12(6n — Doz — 4(n — 8)at,2°

4ot
+3(n—2)23) + 4”,
n

Vi) Rum((eo1 9% 29) = % (7283 — 12(6m — 1)By — 4(m — 8)B,"

248%
mt

+3(m —2)y°) +

Proof Since the proofs of (ii), (iv), and (vi) can be obtained with similar calculations, we
will only prove (i), (iii), and (v).

Using the properties of linearity of operators (2.1) and Lemma 2.1, one has

(i) Rn,m(el,o -z Z:y) = Rn,m(€1,0;z,y) - ZRn,m(eO,O;Z»)’)
oy

- ’

n

(iii)  Rum((er0 —2)%2,9) = Rum(€20:29) — 22Rm(€1,0:2,) + 2°Ryym(€0,032, )

2

By {4y, — 2}z 20a;; oy 9

=2+ ————+— —2z|z+ — | +z
n n n

) (2o, — 2)z N 202

n n’
(V) Rn,m((el,O - 2)4;2,3/)
= Rn,m(ell,o;zyy) - 4'ZRn,m(eS,O;Z:y) + 622Rn,m(62,0;z;y)

— 42 Ry m(e1,0:2,y) + 2* Ry (€003 2,9)
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=zt {96013 +72(n - ez +16(n — 1)(n — 2)at,2° — (6n* - 11n + 6)23} %

n
N 24(3:3 e <z3 N {1802 + 9(n - 1)a2nz - (3n-2)2%)z N 6%3 )
n n n
4o, —z)z 20
+6z2<z2 + M + %) —423(z+ %> +z
n n n
240t
= % {720 - 12(61 - 1))z — 4(n — 8)at,2” + 3(n - 2)2°} + %. O
n n

Lemma 2.4 As a consequence of Lemma 2.3, we have

. 302

(i) Sup Rym ((el,O - 2)2;Z;y) = ’
0<z<ay n

.. 382

() sup Rum((eor—n)%29) < om,
0=y=<Bm m

(iii)  sup Rym ((61,0 -2)% Z’J’) = (12

0<z<ay

(vi)  sup Ryum((eo1 —»)%2y) < <12
0=<y=<Bm

Proof In view of Lemma 2.3, one can obtain

2(n+1)a? 3o’

) sup Ryn((erg—2)%z) < =" <

0<z<way

and

3(n+47)at 2 2

(i) sup Ry((ero—hzy) < 2% (12“—”) .
0<z<ay n n

Analogously, the proof of the inequalities (ii) and (iv) can be obtained by the same meth-

ods; thus we get the desired result. d

In the next theorem, with the help of theorems related to the weighted approximation
of functions of several variables proved by Gadzhiev et al. [27], we show the uniform con-

vergence of the operators given by (2.1) on I,

Theorem 2.5 Let the linear positive operators R, : C,(Iy,p,,) = Byu,p,,) verify the fol-

lowing conditions:

lim [ Rym(eo0) — 1] =0,

n,m— 00

n,rl;jI—I}oo “Rn,m(el,O) - Z”p = O;

lim |[Rym(e01) -y, =0,

n,m— 00

lim HR,,,W, (eio + eg,l) - (22 +y2) ”p =0.

n,m—> 00
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Hence,
n,rlrjgloo | Rusme(12) = pc||p =0

Jorall p € C)(ly,p,,)-

Proof Taking into account the following relations from Lemma 2.2:
. s o
® Rumleonizy) =1 () Rumlersizy) =2+,

(iii) Rym(eo1;2y) =y + %, (iv) Ruym(eroizy) =2°

bn-2ly 28,
m

v) Rn,m(eO,Z;Z’y) :yz + m?

Thus, it clear that ||R,,,(eo0) — 1], = 0 as n,m — oo on I,

[Rumlero) 2], = sup [Rum(ero) 2| _ an 1

2 2 2 2°
@)l 1+z°+y N (2y)elupy 1+z°+y

Hence, we get

lim HR,,,,,,(eLO) - z||p =0.

n,m— 00

Similarly, one can obtain

lim HRn,m(eO,l) _pr =0.

n,m— 00

Also,

”Rn,m (eio + 3(2),1) - (22 +y2) ||p

|Rym(€2,02Y) + Rym(eo2:2,y) — (2% + ¥%)]
1+2%2+y2

= sup
(2,Y)€loy By

{4at,, — 2}z
+—t

2
2a;,

’
1’12

2 2
o 1 (03 zZ+
<2 2 4+22 sup —— +4 —”+ﬁ—m sup 7)}.
2 2 2 4 a2 2 4 a2
n M=/ (zy)ely L+z2+y n M J (@y)ely L+z°+y

nBm nBm

Thus, we have

lim HR,,,,,, (eiO + 33,1) - (22 +y2) ||p =0.

n,m— 00

Since all conditions of the bivariate Korovkin type theorem are satisfied, we arrive

Jim [ Rym() = ], =0,

for all u € C7(y,p,,)- Consequently, the proof is complete.

Page 6 of 19
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Let Iz := [0,c] x [0,d] C Iy,,,- For u(z,y) € C(I.z), we give the complete modulus of
continuity as follows:

@ (1 Vi, Yim) = sup{|1u(u,v) = 1(z,9)| : (,v), (2,9) € La,

= 2| < Vs [V = Y| < Vi)
where @ (W, v, ym) verify the subsequent properties:

1) @ Vu¥m) =0, ¥u—=> 0,y —0

2) |;,L(M,V) _M(z’y)i <w(u, )/n,ym)<1 + |”y_z|)<1 + |VV—J’|>

For the integers z and y, the partial modulus of continuity is given by

o1(,y) = sup{|(u1,9) - w(uz,p)| 1y € [0, ], |y —us| <,y >0},

wZ(/'L,y) = Sup{|lu“(z’ Vl) - /'L(Z, V2)| S [O,C], |V1 - V2| < Y,V > 0}

Let the space C?(I.4) denote the functions of 11 such that ‘27’:, ?7’; (f=1,2) belongs to C(1.4).

For 1 € C(I.4), the norm on C2(I ;) and Peetre’s K -functional are defined as follows:

C(ch)>

2

||I’L||C2(ch) = "M”C(ch) + Z(

j=1

8,-,u

9y

aj[l/

BZ}'

C(ch)
and
Ko(u,¢) = inf{ |l = hllcuy + ¢ Il 2y b € C2Uea) ),

respectively, where ¢ > 0. Also, the following inequality:

Ko(1, ) < Dy (11, 1/T) (2.3)

holds, where Jz(u, /) denotes the second order of the modulus of continuity, and D > 0
is an absolute constant independent of u, ¢ and .

Theorem 2.6 For any (z,y) € I.g and all u € C(I.4), we arrive

’Rn,m(ﬂ;z’y) - M(Z»J’)’ <2w (/’L’ Vn,m(z'y))!

where y, = Vu(2) = /Rum((€10 —2)%2,9), Ym = Ym®¥) = /Rum((€01 = 9)%2,y) and Yum =

Yum(2,9) = V22 + V().

Proof Taking into account the properties of @ (i1, ) and utilizing the linearity of the
operators (2.1) yield

|Run(14:2,9) = 1@ 9)| = |Rugm (1(2,5):2,9) = Ry (12, %) 2, ) |
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= Rn,m(|l‘¢(tis) - M(Z,}’) ;Z»y)

< Ry (@ (v/(e10 —2)* + (€01 = )% 2Y)

<o, Vn,m)[l v LR, (V(er0 —2)* + (eoa —y)z;zfy)]'

n,m

Next, using the Cauchy-Schwarz inequality and Lemma 2.2, one can obtain

|Rn,m(ﬂ§z’y) - /vL(Z’y)|

<o (u )/n,m)|:1 + —— (Rum((e10— 2 + (€01 - )% 2, y))é]

Ynm

— yn,m)[l NI T ni(y))%]

=2 (1 Yum(29)),
which gives the proof. d

Theorem 2.7 Suppose that the operators R, ,,(11;z,y) are given by (2.1), and n € C(1y).
Then the following relation verifies

’Rn,m(ﬂ;zxy) - M(Zry)| < 2(0)1(/*"’ Vn) + wZ(Mr Vm))r
where v, = vu(2) and v, = viu(y) are given as in Theorem 2.6.

Proof Using the linearity of operators (2.1) and Lemma 2.2, we arrive

|Rum(152,9) = 1(z,9)|

= ‘Rn,m (M(t: S); Z,y) - Rn,m (M(Z’y); Z,y) ’

< Rum(|nt,9) - 1(2,9)|;2,9)

E Rn,m(‘/”'(t’s) - /-'L(le) ;Z,J’) + Rn,m(’/’L(Z’S) - IJ«(Z,)’) ;Z!y)

1
< wl(“«» yn)|:1 + _Rn,m(|t - Z|;Z,}/)]

n

1
+wa(k, J/m)[l + y_Rn,m(|s —yl;z,y)].

m

Utilizing the Cauchy—Schwarz inequality,

|Rum(132,9) — 112, 9)| < w1, Vn)[l + yl{Rn,m((el,O - Z)Z;z,y)}%}

+ wa(us ym)[l + %{Rn,m((eo,l —yﬂm)}ﬂ-

m

Hence, for all (z,y) € 1.4, taking v, = y,4(2) and y,, = yiu(y) as in Theorem 2.6, we have the
proof of this theorem. d
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With the help of the Lipschitz class, we will also estimate the order of approximation of
operators (2.1). Let u € C(I.z), (z,),(%,5) € I.; and ¢1, ¢, € (0, 1] the class of Lipschitz for
the bivariate case is given by

Lip; (s 91, 92) = {1 € CLea) : |11(8,5) — 2, 9)| < LIt -2 |s - y12}. (2.4)
Theorem 2.8 Suppose that ju € Lip; (1; 91, 2). Then for all (z,y) € 1.4, we obtain

o1 ()

Rum(1432,y) — (2 9)| < L(84(2)) 2 (8 () 7,

where §,(z) and §,,(y) are given as in Theorem 2.6.

Proof Using the linearity and monotonicity properties of operators (2.1), in view of
Lemma 2.2, it becomes

i2,9)
= LRn,m(|t - erl |S —J’|¢2;Z:J’)

’Rn,m(ﬂ;z:y) - IJ«(Z,}’)| S Rn,m(|/'L(t¢ S) - /’L(Z’y)

= LRn,m(|t - z|“’1;z,y)R,,,m(|s —y|“2;z,y).

Utilizing the Holder’s inequality for (p1,41) = ((p%, ﬁ), (P2, q2) = (%, ﬁ), one has

%% _
|Rum(152,9) = (2, 9)| < L(Rum((e1,0 — 2)*2,7) ! Rumleopizy) 7

2 2-99
X Rym((eo1 =9)%29) 2 Rum(€00;2,%) 2 )
1 )
<L(3.(2) * (3 () .
Hence, the proof is completed. O

Next, we will examine the degree of approximation of functions 1 € Cj on I,,4,,. Anal-
ogously as in [18], for each u € C7, we consider the weighted modulus of continuity as
below:

lu(z+r,y+s)— uzy)l
An,m(ﬂ; Y1 VZ) = sup Y Y
Irl<ylsl<y2 p(r,s)p(z,y)

(zy)€lyy, By

Additionally, A,, ,,,(i; ¥1,v2) = 0 for 3 — 0, y, — 0. Also, for ;1 >0, uy > 0, the following
relation satisfies

A (s (1 y15 a2 v2) < A1+ ) (1 + (o) A (105 v15 12).

Theorem 2.9 Let R,,,(u;2,y) operators be given by (2.1). For all n € C5 and n, m the
following inequality

R :2,9) — u(z, 2 2
sup Ry (14 Z) l;( ) SKAn,m(u; [ /ﬂ_m>
(@) Elwnpm 1+z%+y n m

holds and is sufficiently large, where K > 0 is a constant.
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Proof For all (2,9) € I,p,,, (£,5) € [0,00) X [0,00), using the definition of operators (2.1),
we get

Ry ((t,)s2,9) = 11(2, )|

12,9)
2 2 . .
= 8(1 tz7ty )An,m(ﬂ» Yor Yim)Rum (Bl (2)B2(»); Z»y); (2.5)

E Rn,m(‘ﬂ(t’s) - /-'L(Z’y)

where

Bi(z) = (1 + |t;z| ) (1+(t-27),

and

By(y) = (1 + |s—y|)(1 + (s—y)z).

m

It is clear that since

20+y2), |t-z| <y
Bi(2) < A+y;), lt—zl <yu

20+y2), lt—zl=yu

then for each z, t € [0, 00), we derive

_ 4
Bi(2) < {1+(el";/—42)}. (2.6)
Analogously, we get
_ )
B,() < {1+(e°’1y—4y)}. (27)

Using (2.6) and (2.7) in (2.5) yields

R (108, 8);2,9) = 1(2,9)]
= 4(1 +2° +J’2) An,m(ﬂ; Yur Yim)

% _1 + Rn,m((el,o - 2)4;2,}/)} |:1 + Rn,m((eo,l ;y)‘*;zy)]
Vm

L Vi

< 4(1 + 22 +y2)An,m(H; Yn» ym)
[ 144 [ o2\ ? 144 [ B2\?
e G )
L v \n Vo \ 1

Choosing y, =4/ %, Vi =1/ % and taking the assumptions for the sequences («,,), (B,) in
(2.2), we get the proof of this theorem. O
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Theorem 2.10 Suppose that |1 € C(I.z). Then the following inequality satisfies

|Run(152,9) = 11(2,)|

< N{@s (15 v/ Aum(z,9)) + min{1, A,z )kl 2} + @ (15 8nm(z.9))

where a constant N > 0 independent of p and A, ,(2,9). &nm =/ (32)? + (%’”)2, Anm(z,y) =
Vi(2) + 2 (y) + &2, and v, (2), ym(y) are given by Theorem 2.6.

Proof Firstly, we consider the following auxiliary operators:

Run(14:2,9) = Ruym(1432,9) = 1 (z + %,y + %) + u(z,9). (2.8)
It follows by Lemma 2.2 that

Rom(t-225) =0 and R,,.(s—yz7y) =0.
For pu € C*(I.y), (s,t) € I.4, using the Taylor expansion formula, we get

wis, ) — pu(z,y) = pls,y) — uiz,y) + pls, t) — uls,y)

= Inlz,y) (s—2z)+ /S(s— M)L,u(u,y) du

0z 0%u
ou(z, ¢ 32 ,
s “(”)(t_y)+f (t—v) ulz V) v (2.9)
dy 92
Operating R, ,, on (2.9), it becomes
Rum(1ts2,y) — i(z,y)
s 82 ,
=an</ (s—u) (uy)d u; z, )+an(/ M(z V)dv,z,y)
02u y
7” n 32 ’
—RnW,(/ (s— )d u;z, ) / <z+a —u>Mdu
. n 02u
C ) P B\ ulay)
+Rn,m(/y (t—v)Tdv;z,y) —/y <y+ ;—V) 2y dav.
Hence,
|Rum(1432,) — 1(z:9)|
s 92 , z+%8 ; 92 ,
§Rn,m</ |s—u|Mdu;z,y>+ f z+a—— 'Mdu‘
. 02u . 02u
B
32 : fa 32 ,
+an</|t— TRAEEAY) M(ZV) dv;z,y)Jr/ ﬂ_M_V‘%dv‘
y v

2
< {Rn,m((s—z)z;z,y) + (z + % —z)
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Bu  \°
+ Rn,m((t—y)z;z,y) + <J/ + ; _J’> ”,U«”C2(ch)'

Choosing &, = \/(%2)? + (%’”)2, Aum(z,y) = v2(2) + ¥, (y) + £2,,, we obtain
’Rn,m(ﬂ;zry) - M(Zry)| = An,m(z’y) ”/’L“Cz(lcd)‘ (210)
Additionally, using Lemma 2.2 and (2.1), (2.10), we derive
(an ﬁm)
M\ —>—
n om

Run(:2,9)| < |Rym(ps2,9)| + + |z )| <3llnlcuy- (2.11)

Next, (2.1) and (2.11) yield

[Rm(152,9) — (2, y)|
< R = B32,9)| + [Rum(52,9) = h(z, )|

M(ﬁ,ﬁ—m) —M(z,y)‘

n m

M(%» ﬂ—’") - M(Z;)/)‘
n m

= (4'”“ - h”C(IEd) +An,m(zyy)”h”C2(ch)) + w(ﬂ;‘%‘n,m(zyy))' (212)

+ |h(z,y) - n(z9)| +

<4llu - hllcgy + |Ra(s2,y) = 1(z,9)| +

Consequently, in (2.12), utilizing the infimum on the right-hand side over all 4 € C*(I.;)
and taking (2.3), we attain

|Rn,m(ﬂ;z’y) - M(Z»J’)|

< N{@2 (15 v/ Aum(z9)) + min{1, Az M) tll 2 | + @ (15 Enm(z:9)).
Hence, the required result is obtained. O

3 The GBS type of R, (it; 2, y)
The notion of the B-continuous and B-differentiable functions were firstly used by Bogel
[28, 29]. Dobrescu and Matei [30] proposed the Generalized Boolean Sum (GBS) type of
Bernstein operators. Next, Badea [31, 32] presented the B-continuous functions with the
GBS type operators. We refer readers to interesting research in this direction [33-38].
Let us now give some definitions that we will use in this section.
A function p : U x V — R, where U, V are compact intervals of R. For any (z, ), (¢o,50) €
U x V, the mixed difference of p is given as

Dito.50) (2 Y) = 1(z,y) — u(z, s0) — (o, y) + (to, So). (3.1)

If a real-valued function p satisfies the following relation, it is called a Bogel-continuous
(B-continuous) at (ty,s9) € U x V.

lim ¢(t0,s0):u‘(z) )’) =0.

(t0,50)—>(2,)

Page 12 of 19
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If the following limit denoted by Dppu(z, y) exists and is finite, then a function u is called
a Bogel-differentiable (B-differentiable) at (£y,s0) € U x V.

¢(to,SO)M(Z; y)

e lo- oo 3.2
(to.s0)—(z9) (to — 2)(so — ¥) 31L(2,7) (32)

Note that by C,(U x V) and Dy(U x V), we denote the sets of each B-continuous
and B-differentiable functions on U x V, respectively. Considering the definition of B-
continuous, one gets C(U x V) C Cp(U x V), see [39] for details.

A function pu: U x V — R is called a Bogel-bounded (B-bounded) on U x V if there
exists W > 0 such that |@,,s) (2, ¥)| < W for all (£o,50), (z,y) e U x V.

Also, if U x V is a compact subset of R2, hence all Bogel-continuous functions are Bogel-
boundedon U x V — R.

Further, by B,(U x V), we denote the space of all B-bounded functions on U x V, and
it is endowed with the norm ||t llg = SUp(, ) o so)etrx v [Pitos0) 1 (2 D)

For € By(I4,,,), the mixed modulus of smoothness is defined as:

wmixed(//«;aly 52) = SUP{ |¢(t0,so)ﬂ(zry)i : |t0 - Zl < 81: |SO _y| < 82}:

where (z, %), (£0,50) € U x V and 81,8, € R*. Also, for all A1, A, > 0, the following inequality
holds

wmixed(lu*;)\lsh)\ZSZ) = (1 + )"1)(1 + )\Z)wmixed(u«;al,(SZ)’ (33)

for more details, see [31, 32].
Let Cy(I.4) denote the set of all Bégel-continuous functions on I.4. For u € Cy(1.4), the
Lipschitz class Lip; (¢1,¢2) by L > 0, (z,%), (f0,50) € I.a and ¢1, 92 € (0,1] is given by

Lip (91, ¢2) = {1t € Collea) : |bito s001t(29)| < Lito — 21" [so — 512}

Now, we construct the associated GBS type of operators (2.1). For n,m € N, for each
(z,y) € U x V and any u € Cy(I.4), we derive

Gun(14:2,9) = Ry (11(2, 50) + 1(to, y) — 1(to, 50); 2, Y).

Exactly, for any (z,y) € I; and u € Cp(I.q), the GBS type operators related to the R,
operators are defined as:

Gn,m(ﬂ;zyy)

EEEn(id)

% B k=0 j=0

[ S (s Yerso) )t s o s (34
o Jo o Brm
It is clear that the operators given by (3.4) are positive and linear.
Now, with the help of the mixed modulus of continuity, we will estimate the degree of
approximation of operators (3.4).

Page 13 0of 19
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Theorem 3.1 Let i € Cy(I.y). Then for each (z,y) € 1.4 and n,m € N, we arrive

|G (1432,9) = 1(2,Y)| < 8wmixed (M; \/o% VJ ﬂfn/m).

Proof In view of (3.3), we get

’d’(to,so):u'(z’y)’ = wmixed(,u; 2o — 2|, Is0 —)’|)

tn — —
< <1+ | = Z'>(1+ 'S°8 4 ')wmixed(u;al,az), (3.5)

1 2

where (z,9), (to, So) € .4, and 81,8, € R*.
From (3.1), it is clear that

Gn,m(ﬂ?%}’) - M(Zry) =—Rym (¢(£g,sg)ﬂ(z¢y)iz,y)' (3.6)
Utilizing the Cauchy—Schwarz inequality to (3.6) and using (3.5) and Lemma 2.2 yield

|Gn,m(ﬂ;z’y) - ,U«(Z’y)|

=< Rn,m (|¢(t0,so)“(zry) i; Z,y)

< (Rn,m (eO,O;Z:y) + (SII\/Rn,m ((tO - Z)Z;Z;y) + 851\/Rn,m ((SO —)’)Z;Z,y)

1
+ m Rn,m ((tO - Z)Z;Z,y)Rn,m ((So _-y)z;z’y))wmixed(,u; 81, 52)

Using Lemma 2.4 and choosing §; = \/a2/n and &, = /B2%,/m, we obtain the proof. O

The next result gives the order of convergence of operators (3.4) in connection with the
Lipschitz type class.

Theorem 3.2 Let (v € Lip; (¢1, ¢2). For any (z,y) € Ig, L > 0 and ¢1, 92 € (0,1], we derive

%

|Gon(1432,9) = 1(x,9)| < L(8u(2)) ? (m®) %,

NlN

where 8,(z) and §,,(y) are given as in Theorem 2.6.

Proof From (3.6), we get

32,9)
=< LRn,m(|t0 - Z|(/71 |50 —ylmiz,y)

|G (52, 9) = 1(2,9)| < Ry (| bit0,50) 1 (2:9)

= LRn,m(|tO - Z|w1;zyy)Rn,m(|SO _y|(p2;Z;y)'

2 2 ) and Lem-

Utilizing the Holder’s inequality with (p1,41) = ((ﬂ%, ﬁ), (p2,q2) = (%, o

ma 2.2, we derive

1 2-¢1

|Grn(52,9) = 12 9)| < L(Run (b = 2%2,9) ? Rum(e00iz:9) 2
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2 2
X Ry ((s0=9)%29) ? Rym(€00;2,%) 2 )

(50) %

#1
2

= L((Sn (Z))
Hence, the proof is complete. d

Theorem 3.3 Let u € Dy(I.z) with Dgi € B(1y) (the set of every bounded function on 1 4).
There exists a constant C > 0 such that for all (z,y) € 1,4, one has

o B Jan B
’Gn,m(M;Z»J/) - M(Z,)/)’ <Cy—— (HDBMHOO + Wmixed (DBH«; - .
n m n m

Proof For u € Dy(I4), we get

Peos0)1(2:9) = (2= o)y — s0)Dpp(u,v),  (fo<u<zandso<v<y),
see details in [39]. Therefore,

D, v) = @(ty,50)Ps1(1,v) + Dpji(us, y) + Dpp(z, v) — Dpju(z, y). (3.7)
Since Dg € B(I.4), then using (3.7), we may write

’R":m (¢(¢0,50)M(z,y);z,y) |
= [Rum((z = 20)(y — 50)Dpe(us, v); 2, ) |

< Rum(12 = tolly — sol |[Dp(w, )]s 2,y)

+ Rum(|2 = tolly = 50l (| Dpia(a, y)| + [Dpin(z,v)| + |Dpie(z,9)];2,y)
= Rn,m(lz - t()“y - SO|wmixed(DB//L; |M - Zl! |V —)’|);Z:J’)
+ 311Dt llocRum (|2 = tol [y = sol; 2,). (3.8)
From (3.3), we get
wmixed(DB,u/3 |u - Z|: |V —)’|)
= Omixed (D514; [0 — 2, |50 — y1)
1 1
<[1+ y—|t0 —z| 1+ }/_|SO -y Omixed(DBI; Vir Vin)- (3.9)

Taking into account (3.8) and (3.9) and utilizing the Cauchy—Schwarz inequality, we get

G5 2,9) — 1(z,9)|

= |Rn,m (¢(to,so)ﬂ(z: y); z, _y) |

< 31Dl R (& - 1020~ 505 2,3)

1
+ [Rn,m(lz_ tolly - sol;z,y) + y_Rn,m((Z_ t0)*y - sol; 2,y)

n

Page 15 0f 19



Aslan and Mursaleen Journal of Inequalities and Applications (2022) 2022:26 Page 16 of 19

1
+ _Rn,m(|z —tol(y - SO)Z;Z,}’)

m

+ Rn,m((z - tO)z(y - 50)2;Ziy)]wmixed(DBM; Yn» ym)

YnVm

< 31Dty R (2 - 1020~ 50)%52,3)

+ [\/ Run((z = 10)*(y — 50)%2,y) + %\/ Ryn((z = t0)*(y — 50)% 2,9)

+ VL\/Rn,m ((Z —10)*(y = s0)%; Z'y)

m

+ Rn,m((z - 50)2()’ - 50)2;Ziy)]wmixed(DBM; Yn» ym)

VYn¥Ym

Moreover, for (£, o), (z,¥) € I.; and «, B € {1,2}, we have
Rn,m((z - to)za()’ - SO)Zﬂ;z’y) = Rn,m((z - tO)Za;Z;y) X Rn,m (()/ - So)zﬂ;z,y)-

From Lemma 2.4, choosing y,, = 1/ "‘7’%, Vi =/ % and taking the assumptions for the se-
quences (&), (B,,) in (2.2), we have the desired result. O

4 Graphics and error estimation tables
In this section, with the help of Maple software, we compare the convergence of operators
(2.1) and (3.4) to the certain functions pu(z,y).

Example 4.1 Let u(z,y) = y2e™5 (yellow). In Fig. 1, we illustrate the convergence of op-
erators (2.1) to u(z,y) = y26‘§ for n,m =5 (red), n,m = 10 (blue), n,m = 30 (green),
a, =In(n + 1) and B,, = In(m + 1). In Table 1, we also estimate the error estimation of
operators (2.1) to (z,y) for n,m = 20,50, 150, respectively.

function e Rs o mm—— Ry, 0

Figure 1 The convergence of operators Ry m, to (2, y) :yze’% (vellow) forn=m=5 (red), n=m =10 (blue),
n=m =30 (green)
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Table 1 Error of approximation of the operators R, m to ((z,y) :yze’é forn=m=20,50,150

@y) [R20,20(4; 2, y) = (2, ) [Rso50(tt; 2, y) — w(z,y)| [R150,150(1t; 2, y) — (z,)|
03,1.5) 0.6435472188 03410782433 0.1480568422
(1.9,1.9 04745681594 0.2558711297 0.1123356802
038,1.1) 04485584185 02328299145 0.0996229187
(1.0,1.0 0.3930734882 0.2028217122 0.0864267340
(17,12) 03646211418 0.1901662382 0.0816144751
(0.5,0.5) 0.2658423955 0.1317683536 0.0546119918
0.7,0.2) 0.1252365581 0.0571437271 0.0222797449
0.1,0.1) 0.0979546553 0.0409096770 0.0147769533
function —_— Rlﬂ. 10 — (;10. 0

0 051 15 5

y
Figure 2 The convergence of operators R, (green) and G, m (purple) to u(z,y) = % —zye 2

n=m=10

(vellow) for

Table 2 Error of approximation of the operators Ry m and Gy m to ((z,y) = % —zye’% forn=m=35

@y) |R35,35(1;2,y) = (2, Y) |G35,35(; 2, y) — m(z,)|
0.1,1.9) 0.06428470976 0.002120692726
(18,07) 0.06139758399 0.000754980516
(04,1.8) 0.05735796320 0.002090527419
(09,0.9) 005065017152 0000280609201
(0.2,0.6) 0.04596062125 0.001407297777
(12,1.2) 0.04357712171 0.001298623143
(0.3,03) 0.04113235500 0.004038057284
(15,1.5) 0.03465505561 0.001851367364

Figure 1 clearly shows that since the values of 1, m increase, the order of convergence
of operators (2.1) to u(z, y) becomes better. Further, from Table 1, it is obvious that as the
values of n, m are increasing, the absolute difference between operators (2.1) and u(z,y) =

_Z ., .
y%e73 is decreasing.

J

2 (yellow). In Fig. 2, we compare the convergence of
2 with 7, m = 10

and o, = ¥/n, B, = &/m. Also, in Table 2, we compute the error estimation of operators

Example 4.2 Let j1(z,y) = 3 — zye”
operators (2.1) (green) and (3.4) (purple) to the function u(z,y) = % —zye~

(2.1) and (3.4) to pu(z,y) for n = m = 35 and certain values of 0 < z,y < 2.
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If Fig. 2 and Table 2 are analyzed in detail, it becomes obvious that the GBS type opera-

tors (3.4) are approximated much better than operators (2.1).
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