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Abstract
In this article, we propose a faster iterative scheme, called the AH iterative scheme, for
approximating fixed points of contractive-like mappings and Reich–Suzuki-type
nonexpansive mappings. We show that the AH iterative scheme converges faster
than a number of existing iterative schemes for contractive-like mappings. The
w2-stability result of the new iterative scheme is established and a supportive
example is provided to illustrate the notion of w2-stability. Then, we prove weak and
several strong convergence results of our new iterative scheme for fixed points of
Reich–Suzuki-type nonexpansive mappings. Further, we carry out a numerical
experiment to illustrate the efficiency of our new iterative scheme. As an application,
we use our main result to prove the existence of a solution of a mixed-type nonlinear
integral equation. An illustrative example to validate the result in our application is
also given. Our results extend and generalize several related results in the existing
literature.
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1 Introduction
Throughout the paper, let N be the set of all natural numbers, R a set of all real numbers,
V a nonempty subset of a Banach space M. A mapping U : V → V is called a contraction
if there exists ζ ∈ [0, 1) such that ‖Up – Uq‖ ≤ ζ‖p – q‖, for all p, q ∈ V . If ζ = 1, then U is
called a nonexpansive mapping. A point p� ∈ V is said to be a fixed point of U if it satisfies
Up� = p�. We denote by �(U) the set of all fixed points of U.

The major ideas of fixed-point theory can be divided into two categories. One is to find
the necessary and sufficient conditions under which an operator admits fixed points. The
other is to determine such fixed points by using some schematic algorithms. Formally, the
first category is usually referred to as the existence part and the second one is known as
the computation or approximation part. Another important concept of fixed-point theory
that is less well known is the study of the behaviors of fixed points such as stability, data
dependency, etc.
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For some decades now, the fixed-point theory has been revealed as a very powerful and
useful tool in the study of nonlinear phenomenon. In particular, fixed-point techniques
have been applied in diverse areas of biology, chemistry, economics, engineering, game
theory, physics, etc., (see [4, 5, 13, 23–26, 30, 31] and the references therein).

In [6], Berinde provided the class of weak contractions that properly includes the class
of Zamfirescu operators [47]. This class of mappings is also known by many authors as
almost contraction mappings.

Definition 1.1 A mapping U : V → V is called a weak contraction if there exist ζ ∈ (0, 1)
and L ≥ 0 such that

‖Up – Uq‖ ≤ ζ‖p – q‖ + L‖p – Up‖, for all p, q ∈ V . (1.1)

In [17], Imoru and Olantiwo gave a definition of a class of mapping considered to be
a generalization of the classes of mappings studied by Berinde [6], Osilike and Udomene
[28] and some other existing classes of contraction mappings as follows.

Definition 1.2 ([17]) A mapping U : V → V is called contractive-like if there exists a
constant ζ ∈ [0, 1) and a strictly increasing continuous function ψ : [0,∞) → [0,∞) with
ψ(0) = 0 such that

‖Up – Uq‖ ≤ ζ‖p – q‖ + ψ
(‖p – Up‖), (1.2)

for all p, q ∈ V .

Remark 1.3 If ψ(p) = Lp, then (1.2) reduces to (1.1).

In recent years, many extensions and generalizations of nonexpansive mappings have
been studied by several authors due to their importance in terms of applications.

In 2008, Suzuki [35] introduced an interesting generalization of nonexpansive map-
pings and obtained some existence and convergence results. Such mappings are com-
monly known as mappings satisfying condition (C).

Definition 1.4 A mapping U : V → V is said to satisfy condition (C) if

1
2
‖p – Up‖ ≤ ‖p – q‖ implies ‖Up – Uq‖ ≤ ‖p – q‖, for all p, q ∈ V . (1.3)

In 2019, Pant and Pandey [29] considered the class of Reich–Suzuki-type nonexpansive
mappings as follows.

Definition 1.5 A mapping U : V → V is said to be Reich–Suzuki-type nonexpansive if
there exists a real number � ∈ [0, 1) such that for each p, q ∈ V ,

1
2
‖p – Up‖ ≤ ‖p – q‖ implies

‖Up – Uq‖ ≤ �‖p – Up‖ + �‖q – Uq‖ + (1 – 2� )‖p – q‖.
(1.4)
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Clearly, every mapping satisfying condition (C) is a Reich–Suzuki-type nonexpansive
mapping with � = 0. However, the converse is not true, as shown in [29].

On the other hand, many iterative schemes have been constructed to approximate the
fixed points of different classes of mappings. Some of these iterative schemes are: Mann
[21], Ishikawa [19], Noor [22], Agarwal et al. [2], Abbas and Nazir [1], CR [11], Normal-S
[32], Picard-S [13], Thakur et al. [37], and M [41] iterative schemes.

Very recently, Ahmad et al. [3] introduced a novel iterative scheme known as the JK
iterative scheme as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m1 ∈ V ,

ϑv = (1 – rv)mv + rvUmv,

ξv = Uϑv,

mv+1 = U((1 – kv)Uϑv + kvUξv),

v ∈ N, (1.5)

where {rv} and {kv} are sequences in (0, 1). The authors established some weak and strong
convergence results for mappings satisfying condition (C). They further showed numeri-
cally that the JK iterative scheme converges faster than the S [2] and Thakur [37] iterative
schemes.

To see recent results concerning iterative schemes and the existence theory of fixed
points one can refer to, for example, [10, 36, 43–46].

Motivated and inspired by the research in this direction, we propose a new four-
step iterative scheme called the AH iterative scheme, to approximate the fixed points of
contractive-like mappings and Reich–Suzuki-type nonexpansive mappings as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 ∈ V ,

zv = (1 – rv)pv + rvUpv,

wv = U(Uzv),

qv = U(Uwv),

pv+1 = (1 – kv)qv + kvUqv,

v ∈N, (1.6)

where {rv} and {kv} are sequences in (0, 1).
The purpose of this article is to prove that the AH iterative scheme (1.6) converges faster

than the JK iterative scheme (1.5) for contractive-like mappings. Numerically, we further
show that the AH iterative scheme (1.6) converges faster than a number of existing iterative
schemes. Also, we prove that our proposed iterative scheme defined by (1.6) is w2-stable
and the stability result is supported with an example. Again, we establish weak and strong
convergence results of the AH iterative scheme (1.6) for Reich–Suzuki-type nonexpansive
mappings. Further, we use a new example of Reich–Suzuki-type nonexpansive mappings
to show that the AH iterative scheme (1.6) outperforms some existing prominent iterative
schemes. Finally, we use our main results to establish the existence of the solution of a
nonlinear integral equation in Banach spaces.

2 Preliminaries
Let M∗ be the dual of a Banach space M and 〈·, ·〉 denotes the generalized duality pairing
between M and M∗. Then, the multivalued mapping J : M → 2M∗ is the normalized
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duality mapping defined for each p ∈M by

J(p) =
{

q ∈M∗ : 〈p, q〉 = ‖p‖2 = ‖q‖2}. (2.1)

Let D = {p ∈M : ‖p‖ = 1}. Then, a Banach space M is said to be smooth if the limit

lim
c→0

‖p + cq‖ – ‖p‖
c

(2.2)

exists for each p, q ∈ D. In this case, the norm of M is called Gâteaux differentiable. It
is well known that J is single valued if M is smooth [12]. Suppose for each p ∈ D, the
limit of (2.2) exists and is attained uniformly for q ∈ D, the norm of M is called Fréchet
differentiable in this case. It is also well known that

〈
q, J(p)

〉
+

1
2
‖p‖2 ≤ 1

2
‖p + q‖2 ≤ 〈

q, J(p)
〉
+

1
2
‖p‖2 + b(q)

for all p, q ∈M, where J is the Fréchet derivative of the functional 1
2‖ · ‖2 at p ∈M and b

is an increasing function defined on [0,∞) such that limv↓0
b(v)

v = 0.
A Banach space M is said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0

such that for p, q ∈M satisfying ‖p‖ ≤ 1, ‖q‖ ≤ 1 and ‖p – q‖ > ε, we have ‖ p+q
2 ‖ < 1 – δ.

A Banach space M is said to satisfy Opial’s condition if for any sequence {pv} in M that
converges weakly to p ∈M implies

lim sup
v→∞

‖pv – p‖ < lim sup
v→∞

‖pv – q‖, ∀q ∈M with q �= p.

Let V be a nonempty closed convex subset of a Banach space M, and {pv} is a bounded
sequence in M. For p ∈M, we put

r
(
p, {pv}

)
= lim sup

v→∞
‖pv – p‖.

The asymptotic radius of {pv} relative to V is defined by

r
(
V , {pv}

)
= inf

{
r
(
p, {pv}

)
: p ∈ V

}
.

The asymptotic center of {pv} relative to V is given as:

A
(
V , {pv}

)
=

{
p ∈ V : r

(
p, {pv}

)
= r

(
V , {pv}

)}
.

In a uniformly convex Banach space, it is well known that A(V , {pv}) consists of exactly
one point.

Let V be a nonempty closed convex subset of a Banach space M. A mapping U : V → V
is said to be demiclosed with respect to p ∈ M, if for each sequence {pv} that is weakly
convergent to p ∈ V and {Upv} converges strongly to q implies that Up = q.

Definition 2.1 ([7]) Let {δv} and {γv} be two sequences of real numbers that converge to
δ and γ , respectively, and assume that there exists

� = lim
v→∞

‖δv – δ‖
‖γv – γ ‖ .
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Then,
(�1) if � = 0, we say that {δv} converges to δ faster than {γv} does to γ .
(�2) If 0 < � < ∞, we say that {δv} and {γv} have the same rate of convergence.

Definition 2.2 ([7]) Let {ηv} and {φv} be two fixed-point iteration processes that converge
to the same point p�, the error estimates

∥∥ηv – p�
∥∥ ≤ δv, v ∈N,

∥∥φv – p�
∥∥ ≤ γv, v ∈N

are available, where {δv} and {γv} are two sequences of positive numbers converging to
zero. Then, we say that {ηv} converges faster to p� than {φv} does if {δv} converges faster
than {γv}.

Definition 2.3 A sequence {pv} in V is said to be an approximate fixed-point sequence
(a.f.p.s. for short) for a mapping U : V → V if

lim
v→∞‖Upv – pv‖ = 0. (2.3)

Definition 2.4 ([34]) A mapping U : V → V is said to be a satisfied condition (I) if a
nondecreasing function f : [0,∞) → [0,∞) exists with f (0) = 0 and for all s > 0, then f (s) >
0 such that ‖p – Up‖ ≥ f (d(p,�(U))) for all p ∈ V , where d(p,�(U)) = infp�∈�(U) ‖p – p�‖.

Lemma 2.5 ([42]) Let {θv} and {λv} be nonnegative real sequences satisfying the following
inequalities:

θv+1 ≤ (1 – σv)θv + λv,

where σv ∈ (0, 1) for all v ∈N,
∑∞

v=0 σv = ∞ and limv→∞ λv
σv

= 0, then limv→∞ θv = 0.

Lemma 2.6 ([33]) Suppose M is a uniformly convex Banach space and {ιv} is any sequence
satisfying 0 < p ≤ ιv ≤ q < 1 for all v ≥ 1. Suppose {pv} and {qv} are any sequences ofM such
that

lim sup
v→∞

‖pv‖ ≤ x,

lim sup
v→∞

‖qv‖ ≤ x and

lim sup
v→∞

∥
∥ιvpv + (1 – ιv)qv

∥
∥ = x

hold for some x ≥ 0. Then, limv→∞ ‖pv – qv‖ = 0.

Lemma 2.7 ([39]) Let U : V → V be a mapping. If U is a Reich–Suzuki-type nonexpansive
mapping with �(U) �= ∅, then the following hold:

(i) If U is a Reich–Suzuki-type nonexpansive mapping, then for every choice of p ∈ V
and p� ∈ �(U), it follows that ‖Up – Up�‖ ≤ ‖p – p�‖.

(ii) If U satisfies condition (C), then U is a Reich–Suzuki-type nonexpansive mapping.
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Lemma 2.8 ([40]) Let U : V → V be a mapping. If U is a Reich–Suzuki-type nonexpansive
mapping, then for all p, q ∈ V , the following inequality holds:

‖p – Uq‖ ≤
(

3 + �

1 – �

)
‖p – Up‖ + ‖p – q‖. (2.4)

We now offer a numerical example that satisfies the inequality of the above lemma but
does not satisfy the condition (C).

Example 2.9 Let (R,‖ · ‖) be a Banach space with the usual norm and V = [–1, 1]. Define
U : V → V by

Up =

⎧
⎪⎪⎨

⎪⎪⎩

–p
3 , if p ∈ [–1, 0),

–p, if p ∈ [0, 1]\{ 1
3 },

0, if p ∈ { 1
3 }.

(1) The mapping U does not satisfy the condition (C) and hence is not a nonexpansive
mapping. If we take p = 1

3 and q = 1, then

1
2
|p – Up| =

1
2

∣∣
∣∣
1
3

– U

(
1
3

)∣∣
∣∣ =

1
6

≤ 2
3

= |p – q|.

On the other hand,

|Up – Uq| = 1 >
2
3

= |p – q|.

(2) Now, we show that U satisfies condition (2.4). For this, the following conditions are
considered:

Case I: If p, q ∈ [–1, 0), we have

|p – Uq| ≤ |p – Up| + |Up – Uq|
= |p – Up| +

1
3
|p – q|.

Case II: If p, q ∈ [0, 1]\{ 1
3 }, then we obtain

|p – Uq| ≤ |p – Up| + |Up – Uq|
≤ |p – Up| + |p – q|.

Case III: If p ∈ [–1, 0) and q ∈ [0, 1]\{ 1
3 }, we obtain

|p – Uq| = |p + q| ≤ |p| + |q|
≤ 4

3
|p| + |p – q| (as p < 0 and q ≥ 0)

=
∣∣
∣∣p –

(
–

p
3

)∣∣
∣∣ + |p – q|

= |p – Uq| + |p – q|.
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Case IV: If p ∈ [–1, 0) and q = 1
3 , we have

|p – Uq| = |p| ≤ 4
3
|p| +

∣
∣∣
∣p –

1
3

∣
∣∣
∣

= |p – Up| + |p – q|.

Case V: If p ∈ [0, 1]\{ 1
3 } and q = 1

3 , we obtain

|p – Uq| = |p| ≤ 2|p| +
∣∣
∣∣p –

1
3

∣∣
∣∣

= |p – Uq| +
∣
∣∣∣p –

1
3

∣
∣∣∣.

Hence, U satisfies the condition (2.4) with 3+�
1–�

≥ 1.

3 Rate of convergence
In this section, we show both analytically and numerically that the AH iterative scheme
(1.6) converges faster than the JK iterative scheme (1.5) for contractive-like mappings.

Theorem 3.1 Let U be a mapping satisfying (1.2) defined on a nonempty closed convex
subset V of a Banach space M. Then, the sequence {pv} generated by the AH iterative
scheme (1.6) converges strongly to a unique fixed point of U.

Proof Using (1.2) and (1.6), we have

∥∥zv – p�
∥∥ =

∥∥(1 – rv)pv + rvUpv – Up�
∥∥

≤ (1 – rv)
∥∥pv – p�

∥∥ + rv
∥∥Upv – Up�

∥∥

≤ (1 – rv)
∥
∥pv – p�

∥
∥ + rv

[
ζ
∥
∥pv – p�

∥
∥ + L

∥
∥p� – Up�

∥
∥]

=
(
1 – rv(1 – ζ )

)∥∥pv – p�
∥∥. (3.1)

Using (1.6) and (3.1), we have

∥
∥wv – p�

∥
∥ =

∥
∥U(Uzv) – p�

∥
∥

≤ ζ
∥
∥Uzv – p�

∥
∥

≤ ζ 2∥∥zv – p�
∥∥

≤ ζ 2(1 – rv(1 – ζ )
)∥∥pv – p�

∥∥. (3.2)

Now, from (1.6) and (3.2), we obtain

∥∥qv – p�
∥∥ =

∥∥U(Uwv) – p�
∥∥

≤ ζ
∥∥Uwv – p�

∥∥

≤ ζ 2∥∥wv – p�
∥
∥

≤ ζ 4(1 – rv(1 – ζ )
)∥∥pv – p�

∥∥. (3.3)
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Finally, using (1.6) and (3.3), we obtain

∥∥pv+1 – p�
∥∥ =

∥∥(1 – kv)qv + kvUqv – Up�
∥∥

≤ (1 – kv)
∥
∥qv – p�

∥
∥ + kv

∥
∥Uqv – Up�

∥
∥

≤ (
1 – kv(1 – ζ )

)∥∥qv – p�
∥
∥

≤ ζ 4(1 – rv(1 – ζ )
)(

1 – kv(1 – ζ )
)∥∥pv – p�

∥∥. (3.4)

Since 0 < ζ < 1 and rv, kv ∈ (0, 1), it implies that (1 – rv(1 – ζ )) < 1 and (1 – kv(1 – ζ )) < 1. It
follows that (1 – kv(1 – ζ ))(1 – kv(1 – ζ )) < 1. �

Thus, from (3.4), we have

∥∥pv+1 – p�
∥∥ ≤ ζ 4∥∥pv – p�

∥∥. (3.5)

Inductively, we obtain:

∥
∥pv+1 – p�

∥
∥ ≤ ζ 4(v+1)∥∥p0 – p�

∥
∥. (3.6)

Since 0 < ζ < 1, pv → p� as v → ∞. This completes the proof.

Theorem 3.2 Let U be a mapping satisfying (1.2) defined on a nonempty closed convex
subset V of a Banach space M. If {pv} is a sequence generated by the AH iterative scheme
(1.6), then {pv} converges faster than {mv} generated by the JK iterative scheme (1.5).

Proof Recalling (3.6) in Theorem 3.1, we have

∥
∥pv+1 – p�

∥
∥ ≤ ζ 4(v+1)∥∥p0 – p�

∥
∥, v ∈N.

Also, from (1.5), we obtain

∥∥ϑv – p�
∥∥ =

∥∥(1 – rv)mv + rvUmv – Up�
∥∥

≤ (1 – rv)
∥
∥mv – p�

∥
∥ + rv

∥
∥Umv – Up�

∥
∥

=
(
1 – rv(1 – ζ )

)∥∥mv – p�
∥∥. (3.7)

Using (1.5) and (3.7), we have

∥∥ξv – p�
∥∥ =

∥∥Uϑv – p�
∥∥

≤ ζ
∥
∥ϑv – p�

∥
∥

≤ ζ
(
1 – rv(1 – ζ )

)∥∥mv – p�
∥∥. (3.8)

Again, from (1.5) and (3.8), we obtain

∥∥mv+1 – p�
∥∥ =

∥∥U
(
(1 – kv)Uϑv + kvUξv

)
– Up�

∥∥
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≤ ζ
(
(1 – kv)

∥∥Uϑv – Up�
∥∥ + kv

∥∥Uξv – Up�
∥∥)

≤ ζ 2((1 – kv)
∥∥ϑv – p�

∥∥ + kv
∥∥ξv – p�

∥∥)

≤ ζ 2((1 – kv)
(
1 – rv(1 – ζ )

)∥∥mv – p�
∥
∥

+ kvζ
(
1 – rv(1 – ζ )

)∥∥mv – p�
∥∥)

= ζ 2((1 – rv(1 – ζ )
)(

1 – kv(1 – ζ )
))∥∥mv – p�

∥
∥

≤ ζ 2∥∥mv – p�
∥∥. (3.9)

Inductively, we obtain:

∥
∥mv+1 – p�

∥
∥ ≤ ζ 2(v+1)∥∥m0 – p�

∥
∥. (3.10)

Let �v = ζ 4(v+1)‖p0 – p�‖ and βv = ζ 2(v+1)‖m0 – p�‖, then we have that

�v

βv
=

ζ 4(v+1)‖p0 – p�‖
ζ 2(v+1)‖m0 – p�‖ = ζ 2(v+1) ‖p0 – p�‖

‖m0 – p�‖ → 0 as v → ∞. (3.11)

Hence, the sequence {pv} converges faster to p� than {mv}. �

Now, we give a nontrivial example to compare the rate of convergence of the AH iterative
scheme (1.6) with some leading iterative schemes in the literature.

Example 3.3 Let M = R
3 and V = {p = (p1, p2, p3) : (p1, p2, p3) ∈ [0, 8] × [0, 8] × [0, 8]} be a

subset of M with norm ‖p‖ = ‖(p1, p2, p3)‖ = |p1| + |p2| + |p3|. Let U : V → V be defined
by

U(p1, p2, p3) =

⎧
⎨

⎩
( p1

4 , p2
4 , p3

4 ), if (p1, p2, p3) ∈ [0, 4) × [0, 4) × [0, 4),

( p1
8 , p2

8 , p3
8 ), if (p1, p2, p3) ∈ [4, 8] × [4, 8] × [4, 8].

Clearly, the only fixed point of U is (0, 0, 0). We will now show that U is a contractive-like
mapping. To see this, we define a function ψ : [0,∞) → [0,∞) by ψ(p) = p

6 . Clearly, ψ is a
strictly increasing continuous function with ψ(0) = 0. We show that

‖Up – Up‖ = ζ‖p – q‖ + ψ
(‖p – Up‖), (3.12)

for all p, q ∈ V and ζ ∈ (0, 1]. It will be useful to note the following. If p = (p1, p2, p3) ∈
[0, 4) × [0, 4) × [0, 4), then

‖p – Up‖ =
∥∥
∥∥(p1, p2, p3) –

(
p1

4
,

p2

4
,

p3

4

)∥∥
∥∥ =

∥∥
∥∥

(
3p1

4
,

3p2

4
,

3p3

4

)∥∥
∥∥

and

ψ
(‖p – Up‖) = ψ

(∥
∥∥
∥

(
3p1

4
,

3p2

4
,

3p3

4

)∥
∥∥
∥

)

=
∥∥
∥∥

(
p1

8
,

p2

8
,

p3

8

)∥∥
∥∥ =

∣∣
∣∣
p1

8

∣∣
∣∣ +

∣∣
∣∣
p2

8

∣∣
∣∣ +

∣∣
∣∣
p3

8

∣∣
∣∣. (3.13)
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Similarly, if p = (p1, p2, p3) ∈ [4, 8] × [4, 8] × [4, 8], we have

‖p – Up‖ =
∥
∥∥
∥(p1, p2, p3) –

(
p1

8
,

p2

8
,

p3

8

)∥
∥∥
∥ =

∥
∥∥
∥

(
7p1

8
,

7p2

8
,

7p3

8

)∥
∥∥
∥

and

ψ
(‖p – Up‖) = ψ

(∥
∥∥
∥

(
7p1

8
,

7p2

8
,

7p3

8

)∥
∥∥
∥

)

=
∥
∥∥
∥

(
7p1

48
,

7p2

48
,

7p3

48

)∥
∥∥
∥ =

∣
∣∣
∣
7p1

48

∣
∣∣
∣ +

∣
∣∣
∣
7p2

48

∣
∣∣
∣ +

∣
∣∣
∣
7p3

48

∣
∣∣
∣. (3.14)

Next, we consider the following cases:
Case 1: If p = (p1, p2, p3), q = (q1, q2, q3) ∈ [0, 4)× [0, 4)× [0, 4), then using (3.13), we have

‖Up – Uq‖ =
∥∥
∥∥

(
p1

4
,

p2

4
,

p3

4

)
–

(
q1

4
,

q2

4
,

q3

4

)∥∥
∥∥

=
∣
∣∣∣
p1

4
–

q1

4

∣
∣∣∣ +

∣
∣∣∣
p2

4
–

q2

4

∣
∣∣∣ +

∣
∣∣∣
p3

4
–

q3

4

∣
∣∣∣

=
1
4
|p1 – q1| +

1
4
|p2 – q2| +

1
4
|p3 – q3|

=
1
4
∥∥(p1, p2, p3) – (q1, q2, q3)

∥∥

≤ 1
4
‖p – q‖ +

∣∣∣
∣
p1

8

∣∣∣
∣ +

∣∣∣
∣
p2

8

∣∣∣
∣ +

∣∣∣
∣
p3

8

∣∣∣
∣

=
1
4
‖p – q‖ + ψ

(‖p – Up‖).

Case 2: If p = (p1, p2, p3), q = (q1, q2, q3) ∈ [4, 8]× [4, 8]× [4, 8], then using (3.14), we obtain

‖Up – Uq‖ =
∥
∥∥
∥

(
p1

8
,

p2

8
,

p3

8

)
–

(
q1

8
,

q2

8
,

q3

8

)∥
∥∥
∥

=
∣
∣∣
∣
p1

8
–

q1

8

∣
∣∣
∣ +

∣
∣∣
∣
p2

8
–

q2

8

∣
∣∣
∣ +

∣
∣∣
∣
p3

8
–

q3

8

∣
∣∣
∣

=
1
8
|p1 – q1| +

1
8
|p2 – q2| +

1
8
|p3 – q3|

=
1
8
∥∥(p1, p2, p3) – (q1, q2, q3)

∥∥

≤ 1
4
‖p – q‖ +

∣∣
∣∣
7p1

48

∣∣
∣∣ +

∣∣
∣∣
7p2

48

∣∣
∣∣ +

∣∣
∣∣
7p3

48

∣∣
∣∣

=
1
4
‖p – q‖ + ψ

(‖p – Up‖).

Case 3: If p = (p1, p2, p3) ∈ [0, 4) × [0, 4) × [0, 4) and q = (q1, q2, q3) ∈ [4, 8] × [4, 8] × [4, 8],
then using (3.13), we have

‖Up – Uq‖ =
∥∥
∥∥

(
p1

4
,

p2

4
,

p3

4

)
–

(
p1

8
,

p2

8
,

p3

8

)∥∥
∥∥
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=
∥∥
∥∥

(
p1

4
–

q1

8

)
,
(

p2

4
–

q2

8

)
,
(

p3

4
–

q3

8

)∥∥
∥∥

=
∥∥
∥∥

(
p1

8
+

p1

8
–

q1

8

)
,
(

p2

8
+

p2

8
–

q2

8

)
,
(

p3

8
+

p3

8
–

q3

8

)∥∥
∥∥

=
∣
∣∣
∣
p1

8
+

p1

8
–

q1

8

∣
∣∣
∣ +

∣
∣∣
∣
p2

8
+

p2

8
–

q2

8

∣
∣∣
∣ +

∣
∣∣
∣
p3

8
+

p3

8
–

q3

8

∣
∣∣
∣

≤
∣
∣∣
∣
p1

8

∣
∣∣
∣ +

∣
∣∣
∣
p2

8

∣
∣∣
∣ +

∣
∣∣
∣
p3

8

∣
∣∣
∣ +

∣
∣∣
∣
p1

8
–

q1

8

∣
∣∣
∣ +

∣
∣∣
∣
p2

8
–

q2

8

∣
∣∣
∣ +

∣
∣∣
∣
p3

8
–

q3

8

∣
∣∣
∣

=
1
8
(|p1 – q1| + |p2 – q2| + |p3 – q3|

)
+ ψ

(‖p – Up‖)

≤ 1
4
∥∥(p1, p2, p3) – (q1, q2, q3)

∥∥ + ψ
(‖p – Up‖)

=
1
4
‖p – q‖ + ψ

(‖p – Up‖).

Case 4: If p = (p1, p2, p3) ∈ [4, 8] × [4, 8] × [4, 8] and q = (q1, q2, q3) ∈ [0, 4) × [0, 4) × [0, 4),
then using (3.13), we obtain

‖Up – Uq‖ =
∥∥
∥∥

(
p1

8
,

p2

8
,

p3

8

)
–

(
p1

4
,

p2

4
,

p3

4

)∥∥
∥∥

=
∥∥
∥∥

(
p1

8
–

q1

4

)
,
(

p2

8
–

q2

4

)
,
(

p3

8
–

q3

4

)∥∥
∥∥

=
∥
∥∥∥

(
p1

4
–

p1

8
–

q1

4

)
,
(

p2

4
–

p2

8
–

q2

4

)
,
(

p3

4
–

p3

8
–

q3

4

)∥
∥∥∥

=
∣
∣∣
∣
p1

4
–

p1

8
–

q1

4

∣
∣∣
∣ +

∣
∣∣
∣
p2

4
–

p2

8
–

q2

4

∣
∣∣
∣ +

∣
∣∣
∣
p3

4
–

p3

8
–

q3

4

∣
∣∣
∣

≤
∣∣∣
∣
p1

8

∣∣∣
∣ +

∣∣∣
∣
p2

8

∣∣∣
∣ +

∣∣∣
∣
p3

8

∣∣∣
∣ +

∣∣∣
∣
p1

4
–

q1

4

∣∣∣
∣ +

∣∣∣
∣
p2

4
–

q2

4

∣∣∣
∣ +

∣∣∣
∣
p3

4
–

q3

4

∣∣∣
∣

=
1
4
(|p1 – q1| + |p2 – q2| + |p3 – q3|

)
+ ψ

(‖p – Up‖)

=
1
4
∥
∥(p1, p2, p3) – (q1, q2, q3)

∥
∥ + ψ

(‖p – Up‖)

=
1
4
‖p – q‖ + ψ

(‖p – Up‖).

Hence, (5.1) is fulfilled with ζ = 1
4 . Thus, U is a contractive-like mapping.

Using MATLAB R2015a, we obtain Tables 1–3 and Fig. 1. From Tables 1–3, we can
easily see that all the iterative schemes with control parameters rv = 0.8, kv = 0.6, lv = 0.5,
v ∈N and starting point (2, 2.5, 3) converge to p� = (0, 0, 0). Obviously, our iterative scheme
(1.6) requires the least number of iterations as compared to other iterative schemes. Also,
from the graphical point of view in Fig. 1, it is evident that the AH iterative scheme (1.6)
converges faster than other iterative schemes.

4 Stability results
The concept of stability of a fixed-point iteration process was rigorously studied by Harder
in her Ph.D thesis that was published in 1987.
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Table 1 Convergence behavior of various iterative schemes

Step Noor S

1 (2.000000, 2.500000, 3.000000) (2.000000, 2.500000, 3.000000)
2 (0.597500, 0.746875, 0.896250) (0.320000, 0.400000, 0.480000)
3 (0.178503, 0.223129, 0.267755) (0.051200, 0.064000, 0.076800)
4 (0.053328, 0.066660, 0.079992) (0.008192, 0.010240, 0.012288)
5 (0.015932, 0.019915, 0.023898) (0.001311, 0.001638, 0.001966)
6 (0.004760, 0.005949, 0.007139) (0.000210, 0.000262, 0.000315)
7 (0.001422, 0.001777, 0.002133) (0.000034, 0.000042, 0.000050)
8 (0.000425, 0.000531, 0.000637) (0.000005, 0.000007, 0.000008)
9 (0.000127, 0.000159, 0.000190) (0.000001, 0.000001, 0.000001)
10 (0.000038, 0.000047, 0.000057) (0.000000, 0.000000, 0.000000)
11 (0.000011, 0.000014, 0.000017) (0.000000, 0.000000, 0.000000)
12 (0.000003, 0.000004, 0.000005) (0.000000, 0.000000, 0.000000)
13 (0.000001, 0.000001, 0.000002) (0.000000, 0.000000, 0.000000)
14 (0.000000, 0.000000, 0.000000) (0.000000, 0.000000, 0.000000)

Table 2 Convergence behavior of various iterative schemes

Step Abbas Thakur

1 (2.000000, 2.500000, 3.000000) (2.000000, 2.500000, 3.000000)
2 (0.269375, 0.336719, 0.404062) (0.080000, 0.100000, 0.120000)
3 (0.036281, 0.045352, 0.054422) (0.003200, 0.004000, 0.004800)
4 (0.004887, 0.006108, 0.007330) (0.000128, 0.000160, 0.000192)
5 (0.000658, 0.000823, 0.000987) (0.000005, 0.000006, 0.000008)
6 (0.000089, 0.000111, 0.000133) (0.000000, 0.000000, 0.000000)
7 (0.000012, 0.000015, 0.000018) (0.000000, 0.000000, 0.000000)
8 (0.000002, 0.000002, 0.000002) (0.000000, 0.000000, 0.000000)
9 (0.000000, 0.000000, 0.000000) (0.000000, 0.000000, 0.000000)
10 (0.000000, 0.000000, 0.000000) (0.000000, 0.000000, 0.000000)
11 (0.000000, 0.000000, 0.000000) (0.000000, 0.000000, 0.000000)
12 (0.000000, 0.000000, 0.000000) (0.000000, 0.000000, 0.000000)
13 (0.000000, 0.000000, 0.000000) (0.000000, 0.000000, 0.000000)
14 (0.000000, 0.000000, 0.000000) (0.000000, 0.000000, 0.000000)

Table 3 Convergence behavior of various iterative schemes

Step JK AH

1 (2.000000, 2.500000, 3.000000) (2.000000 , 2.500000, 3.000000)
2 (0.027500, 0.034375, 0.041250) (0.001719 , 0.002148, 0.002578)
3 (0.000378, 0.000473, 0.000567) (0.000000 , 0.000000, 0.000000)
4 (0.000005, 0.000006, 0.000008) (0.000000 , 0.000000, 0.000000)
5 (0.000000, 0.000000, 0.000000) (0.000000 , 0.000000, 0.000000)
6 (0.000000, 0.000000, 0.000000) (0.000000 , 0.000000, 0.000000)
7 (0.000000, 0.000000, 0.000000) (0.000000 , 0.000000, 0.000000)
8 (0.000000, 0.000000, 0.000000) (0.000000 , 0.000000, 0.000000)
9 (0.000000, 0.000000, 0.000000) (0.000000 , 0.000000, 0.000000)
10 (0.000000, 0.000000, 0.000000) (0.000000 , 0.000000, 0.000000)
11 (0.000000, 0.000000, 0.000000) (0.000000 , 0.000000, 0.000000)
12 (0.000000, 0.000000, 0.000000) (0.000000 , 0.000000, 0.000000)
13 (0.000000, 0.000000, 0.000000) (0.000000 , 0.000000, 0.000000)
14 (0.000000, 0.000000, 0.000000) (0.000000 , 0.000000, 0.000000)

Definition 4.1 ([14, 15]) Let U : V → V be a mapping. Define a fixed-point iteration
method by pv+1 = f (U, pv) such that {pv} converges to a fixed point p� of U. Let {hv} be an
arbitrary sequence in M. Define

εv =
∥∥hv – f (U, hv)

∥∥, ∀v ∈N. (4.1)
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Figure 1 Graph corresponding to Tables 1–3

A fixed-point iterative method is said to be U-stable if the following condition is fulfilled:

lim
v→∞ εv = 0 if and only if lim

v→∞ hv = p�. (4.2)

The notion of stability in Definition 4.1 has recently been studied by several authors for
different classes of contraction mappings (see [16, 18, 27] and the references in them).

In [8], Berinde observed that the concept of stability in Definition 4.1 is not precise
because of the sequence {hv} that is arbitrarily taken. To overcome this limitation, Berinde
[8] observed that it would be more natural if {hv} were an approximate sequence of {pv}.
Therefore, any iteration process that is stable will also be weakly stable but the converse
is generally not true.

Definition 4.2 ([8]) Let {pv} ⊂ V be a given sequence. Then, a sequence {hv} ⊂ V is an
approximate sequence of {pv} if, for any c ∈N, there exists η = η(c) such that

‖pv – hv‖ ≤ η, ∀v ≥ c.

Definition 4.3 ([8]) Let U : V → V be a mapping and {pv} be an iterative procedure de-
fined for p1 ∈ V and

pv+1 = f (U, pv), v ≥ 0. (4.3)

Let {pv} converge to a fixed point p� of U. Suppose for any approximate sequence {hv} ⊂ V
of {pv}

lim
v→∞ εv = lim

v→∞
∥
∥hv+1 – f (U, hv)

∥
∥ = 0 ⇒ lim

v→∞ hv = p�,

then we shall say that (4.3) is weakly U-stable or weakly stable with respect to U.

In 2010, Timis [38] studied a new concept of weak stability that is obtained from Defini-
tion 4.3 by replacing the approximate sequence with the notion of the equivalent sequence
that is more general.
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Definition 4.4 ([9]) Let {pv} and {hv} be two sequences. We say that these sequences are
equivalent if

lim
v→∞‖pv – hv‖ = 0.

Definition 4.5 ([38]) Let U : V → V be a mapping. Let {pv} be an iterative procedure
defined for p1 ∈ V and

pv+1 = f (U, pv), v ≥ 0. (4.4)

Let {pv} converge to a fixed point p� of U. Suppose for any equivalent sequence {hv} ⊂ V
of {pv}

lim
v→∞ εv = lim

v→∞
∥
∥hv+1 – f (U, hv)

∥
∥ = 0 ⇒ lim

v→∞ hv = p�,

then we shall say that (4.4) is weakly w2-stable with respect to U.

It is shown in [38] with an example that any equivalent sequence is an approximative
sequence but the reverse is not true.

In this section, we prove that the AH iterative scheme (1.6) is w2-stable with respect to
U for contractive-like mappings.

Theorem 4.6 Suppose all the conditions in Theorem 3.1 hold. Then, the AH iterative
scheme (1.6) is w2-stable with respect to U.

Proof Let {hv} ⊂ V be an equivalent sequence of {pv}. Put εv = ‖hv+1 – (1 – kv)av – kvUav‖,
where av = U(Ubv), bv = U(Ucv), cv = (1 – rv)hv + rvUhv. Suppose that limv→∞ εv = 0.
Then, applying the triangular inequality, (1.2) and (1.6) give

∥
∥hv+1 – p�

∥
∥ ≤ ‖hv+1 – pv+1‖ +

∥
∥pv+1 – p�

∥
∥

≤ ∥
∥hv+1 – (1 – kv)av – kvUav

∥
∥

+
∥∥(1 – kv)av + kvUav – pv+1

∥∥ +
∥∥pv+1 – p�

∥∥

= εv +
∥∥(1 – kv)av – kvUav – (1 – kv)qv – kvUqv

∥∥

+
∥∥pv+1 – p�

∥∥

≤ εv + (1 – kv)‖qv – av‖ + kv‖Uqv – Uav‖ +
∥∥pv+1 – p�

∥∥

≤ εv + (1 – kv)‖qv – av‖ + kv
[
ζ‖qv – av‖ + ψ(‖qv – Uqv)

]

+
∥
∥pv+1 – p�

∥
∥

≤ εv +
(
1 – (1 – ζ )kv

)‖qv – av‖
+ kvψ

(∥∥qv – p�
∥
∥ +

∥
∥Up� – Uqv

∥
∥)

+
∥
∥pv+1 – p�

∥
∥

≤ εv +
(
1 – (1 – ζ )kv

)‖qv – av‖
+ kvψ

(
(1 + ζ )

∥∥qv – p�
∥∥)

+
∥∥pv+1 – p�

∥∥. (4.5)
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Since (1 – (1 – ζ )kv) < 1 for all v ∈N, then from (4.5), we obtain

∥
∥hv+1 – p�

∥
∥ ≤ εv + ‖qv – av‖ + kvψ

(
(1 + ζ )

∥
∥qv – p�

∥
∥)

+
∥
∥pv+1 – p�

∥
∥. (4.6)

Also,

‖qv – av‖ =
∥∥U(Uwv) – U(Ubv)

∥∥

≤ ζ‖Uwv – Ubv‖ + ψ
(∥∥Uwv – U(Uwv)

∥
∥)

≤ ζ
(
ζ‖wv – bv‖ + ψ

(‖wv – Uwv‖
))

+ ψ
(
ζ
∥∥wv – p�

∥∥ + ζ
∥∥Uwv – p�

∥∥)

≤ ζ 2‖wv – bv‖ + ζψ
(
(1 + ζ )

∥
∥wv – p�

∥
∥)

+ ψ
(
ζ
∥∥wv – p�

∥∥ + ζ 2∥∥wv – p�
∥∥)

= ζ 2‖wv – bv‖ + ζψ
(
(1 + ζ )

∥
∥wv – p�

∥
∥)

+ ψ
(
ζ (1 + ζ )

∥
∥wv – p�

∥
∥)

. (4.7)

Similarly,

‖wv – bv‖ ≤ ζ 2‖zv – cv‖ + ζψ
(
(1 + ζ )

∥
∥zv – p�

∥
∥)

+ ψ
(
ζ (1 + ζ )

∥
∥zv – p�

∥
∥)

. (4.8)

Finally, since (1 – (1 – ζ )rv) < 1 for all v ∈N, we have

‖zv – cv‖ ≤ (1 – rv)‖pv – hv‖ + rv‖Upv – Uhv‖
≤ (1 – rv)‖pv – hv‖ + rvζ‖pv – hv‖ + rvψ

(‖pv – Upv‖
)

≤ (
1 – (1 – ζ )rv

)‖pv – hv‖ + rv(1 + ζ )
∥
∥pv – p�

∥
∥

≤ ‖pv – hv‖ + rvψ
(
(1 + ζ )

∥∥pv – p�
∥∥)

. (4.9)

Using (4.6), (4.7), (4.8) and (4.9), we obtain

∥
∥hv+1 – p�

∥
∥ ≤ εv + ζ 4‖pv – hv‖ + ζ 4rvψ

(
(1 + ζ )

∥
∥pv – p�

∥
∥)

+ ζ 2ψ
(
(1 + ζ )

∥∥zv – p�
∥∥)

+ ζ 2ψ
(
ζ (1 + ζ )

∥∥wv – p�
∥∥)

+ ψ
(
(1 + ζ )‖wv – p�

)
) + ψ

(
ζ (1 + ζ )

∥
∥wv – p�

∥
∥)

+ kvψ
(
(1 + ζ )

∥∥qv – p�
∥∥)

+
∥∥pv+1 – p�

∥∥. (4.10)

We established in Theorem 3.1 that limv→∞ ‖pv – p�‖ = 0 and since ψ is a strictly increas-
ing continuous function with ψ(0) = 0, consequently limv→∞ ‖pv+1 – p�‖ = 0. Following
the equivalence of {pv} and {hv}, we have that limv→∞ ‖pv – hv‖ = 0. Since limv→∞ εv = 0,
then taking the limits of both sides of (4.10) yields limv→∞ ‖hv – p�‖ = 0. Hence, the AH
iterative scheme (1.6) is w2-stable with respect to U. �

In order to support the analytical proof of Theorem 4.6, we provide the following illus-
trative example.
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Example 4.7 Let (R,‖ · ‖) be a Banach space with the usual norm and V = [0, 1]. Let U :
V → V be a mapping defined by Up = p

6 . Then clearly, zero is the only fixed point of U

and U satisfies (1.1) with ζ = 1
6 .

Next, we show that the sequence {pv} generated by the iterative scheme (1.6) converges
to p� = 0 ∈ �(U). For this, let rv = kv = 1

v+3 and p1 ∈ [0, 1], then from (1.6), we obtain

zv =
(

1 –
1

v + 3
+

1
6(v + 3)

)
pv =

(
1 –

5
6(v + 3)

)
pv,

wv =
1

36

(
1 –

5
6(v + 3)

)
pv,

qv =
1

1296

(
1 –

5
6(v + 3)

)
pv,

pv+1 =
1

1296

(
1 –

10
6(v + 3)

+
25

36(v + 3)2

)
pv

=
[

1 –
(

1295
1296

+
10

65(v + 3)
+

25
67(v + 3)2

)]
pv.

Set yv = 1295
1296 + 10

65(v+3) + 25
67(v+3)2 . Note that yv ∈ (0, 1) for all v ∈N and

∑∞
v=0 yv = ∞. Thus, by

Lemma 2.5, we obtain limv→∞ pv = 0.
It is not difficult to see that limv→∞ ‖pv‖ = ‖ limv→∞ pv‖ = 0. Then, if we take hv = 1

v+4 for
all v ∈N, we obtain

0 ≤ lim
v→∞‖pv – hv‖ ≤ lim

v→∞‖pv‖ + lim
v→∞‖hv‖ = 0,

which shows that limv→∞ ‖pv – hv‖ = 0. If follows that {pv} and {hv} are equivalent se-
quences.

Suppose that εv is the sequence associated with the iterative sequence {pv}, then we
obtain

εv =
∣∣
∣∣hv+1 –

(
1

1296
–

10
65(v + 3)

+
25

67(v + 3)2

)
hv

∣∣
∣∣

=
∣
∣∣∣

1
v + 5

–
1

1296(v + 4)
+

10
65(v + 3)(v + 4)

–
25

67(v + 3)2(v + 4)

∣
∣∣∣.

Clearly, limv→∞ εv = 0. Therefore, the sequence {pv} generated by the AH iterative scheme
(1.6) is w2-stable with respect U.

5 Convergence results
In this section, we prove weak and strong convergence theorems of the AH iterative
scheme (1.6) for Reich–Suzuki-type nonexpansive mappings.

Lemma 5.1 Let U be a self Reich–Suzuki-type nonexpansive mapping defined on a
nonempty closed convex subset V of a Banach space M with �(U) �= ∅. Let {pv} be the
sequence generated by the AH iterative scheme (1.6), then limv→∞ ‖pv – p�‖ exists for each
p� ∈ �(U).
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Proof Let p� ∈ �(U). By Lemma 2.7, we obtain

∥
∥zv – p�

∥
∥ =

∥
∥(1 – rv)pv + rvUpv – Up�

∥
∥

≤ (1 – rv)
∥∥pv – p�

∥∥ + rv
∥∥Upv – Up�

∥∥

≤ (1 – rv)
∥∥pv – p�

∥∥ + rv
∥∥pv – p�

∥∥

=
∥
∥pv – p�

∥
∥, (5.1)

∥∥wv – p�
∥∥ =

∥∥U(Uzv) – p�
∥∥

≤ ∥
∥Uzv – p�

∥
∥

≤ ∥
∥zv – p�

∥
∥

≤ ∥∥pv – p�
∥∥, (5.2)

∥
∥qv – p�

∥
∥ =

∥
∥U(Uwv) – p�

∥
∥

≤ ∥∥Uwv – p�
∥∥

≤ ∥∥wv – p�
∥∥

≤ ∥
∥pv – p�

∥
∥, (5.3)

∥∥pv+1 – p�
∥∥ =

∥∥(1 – kv)qv + kvUqv – Up�
∥∥

≤ (1 – kv)
∥∥qv – p�

∥∥ + kv
∥∥Uqv – Up�

∥∥

≤ ∥
∥qv – p�

∥
∥

≤ ∥∥pv – p�
∥∥. (5.4)

Thus, {‖pv – p�‖} is a bounded and decreasing sequence of reals and hence limv→∞ ‖pv –
p�‖ exists. �

Lemma 5.2 Let U be a self Reich–Suzuki-type nonexpansive mapping defined on a
nonempty closed convex subset V of a uniformly convex Banach space M. Let {pv} be the
iterative sequence defined by the AH iterative scheme (1.6). Then, �(U) �= ∅ if and only if
{pv} is bounded and limv→∞ ‖Upv – pv‖ = 0.

Proof Suppose that �(U) �= ∅ and p� ∈ �(U). Then, by Lemma 5.1, limv→∞ ‖pv – p�‖ exists
and {pv} is bounded. Now, we set

lim
v→∞

∥
∥pv – p�

∥
∥ = d. (5.5)

From (5.1), (5.2) and (5.5), we have

lim sup
v→∞

∥∥zv – p�
∥∥ ≤ d, (5.6)

lim sup
v→∞

∥∥wv – p�
∥∥ ≤ d. (5.7)

Recalling Lemma 2.7, we have

lim sup
v→∞

∥
∥Upv – p�

∥
∥ ≤ lim sup

v→∞

∥
∥pv – p�

∥
∥ = d. (5.8)



Ofem et al. Journal of Inequalities and Applications         (2022) 2022:28 Page 18 of 26

Also, from (1.6) and Lemma 5.1, we obtain

∥∥pv+1 – p�
∥∥ =

∥∥(1 – kv)qv + kvUqv – Up�
∥∥

≤ (1 – kv)
∥∥qv – p�

∥∥ + kv
∥∥Uqv – Up�

∥∥

≤ (1 – kv)
∥∥pv – p�

∥∥ + kv
∥∥qv – p�

∥∥

≤ (1 – kv)
∥
∥pv – p�

∥
∥ + kv

∥
∥U(Uwv) – p�

∥
∥

≤ (1 – kv)
∥
∥pv – p�

∥
∥ + kv

∥
∥Uwv – p�

∥
∥

= (1 – kv)
∥
∥pv – p�

∥
∥ + kv

∥
∥wv – p�

∥
∥

≤ (1 – kv)
∥∥pv – p�

∥∥ + kv
∥∥U(Uzv) – p�

∥∥

≤ (1 – kv)
∥∥pv – p�

∥∥ + kv
∥∥Uzv – p�

∥∥

≤ (1 – kv)
∥∥pv – p�

∥∥ + kv
∥∥zv – p�

∥∥

=
∥∥pv – p�

∥∥ – kv
∥∥pv – p�

∥∥ + kv
∥∥zv – p�

∥∥.

This implies that

∥∥pv+1 – p�
∥∥ –

∥∥pv – p�
∥∥ ≤ ‖pv+1 – p�‖ – ‖pv – p�‖

kv
≤ ∥∥zv – p�

∥∥ –
∥∥pv – p�

∥∥.

Therefore,

d ≤ lim inf
v→∞

∥∥zv – p�
∥∥. (5.9)

From (5.6) and (5.9), we obtain

d = lim
v→∞

∥
∥zv – p�

∥
∥. (5.10)

Using (1.6), we have

d = lim
v→∞

∥∥zv – p�
∥∥ = lim

v→∞
∥∥(1 – rv)

(
pv – p�

)
+ rv

(
Upv – p�

)∥∥.

Since 0 < rv < 1 for all v ∈N, then from Lemma 2.6, we have

lim
v→∞‖Upv – pv‖ = 0.

Conversely, suppose that {pv} is bounded and limv→∞ ‖Upv – pv‖ = 0. Let p� ∈ A(V , {pv}).
By Lemma 2.8, we have

r
(
Up�, {pv}

)
= lim sup

v→∞

∥
∥pv – Up�

∥
∥

≤
(

3 + �

1 – �

)
lim sup

v→∞

∥
∥Upv – pv

∥
∥ + lim sup

v→∞

∥
∥pv – p�

∥
∥

= lim sup
v→∞

∥
∥pv – p�

∥
∥

= r
(
p�, {pv}

)
.
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This implies that Up� ∈ A(V , {pv}). Since M is uniformly convex, then A(V , {pv}) has only
one element, therefore we obtain Up� = p�. �

Now, we establish the weak convergence result. For this, the following Lemma will be
useful:

Lemma 5.3 If all the assumptions in Theorem 5.4 are fulfilled, then limv→∞〈pv, J(p�
1 – p�

2)〉
exists for any p�

1, p�
2 ∈ �(U); in particular limv→∞〈p – q, J(p�

1 – p�
2)〉 = 0 for all p, q ∈ ωw(pv),

where ωw(pv) denotes the set of all weak limit points of {pv}.

Proof The conclusion follows from Lemma 2.3 in [20]. �

Theorem 5.4 Let U, V and pv be as in Lemma 5.2. Let M be a uniformly convex Banach
space. Suppose that either of the following assumptions holds:

(a) M satisfies Opial’s condition and I – U is demiclosed with respect to zero;
(b) M has a Fréchet differential norm.

If �(U) �= ∅, then the sequence {pv} converges weakly to a point of U.

Proof By Lemma 5.1, we have that limv→∞ ‖pv – p�‖ exists. Now, it is sufficient to prove
that {pv} have a unique weak subsequential limit in �(U). Suppose that {pvi} and {pvk } are
two subsequences of {pv}, which converge weakly to g and y, respectively. Now, suppose
that (a) is true. Then, from Lemma 5.2, limv→∞ ‖Upv – pv‖ = 0 and by the demiclosedness
of I – U with respect to zero, we have that (1 – U)g = 0. That is, g = Ug ; similarly y = Uy.

Next, we prove uniqueness. Since g, y ∈ �(U), then limv→∞ ‖pv – g‖ and limv→∞ ‖pv – y‖
exists. If g �= y, then from Opial’s condition, we have

lim
v→∞‖pv – g‖ = lim

vi→∞‖pvi – g‖ < lim
vi→∞‖pvi – y‖ = lim

v→∞‖pv – y‖
= lim

vk→∞‖pvk – y‖ < lim
vk→∞‖pvk – g‖ = lim

v→∞‖pv – g‖,

which is a contradiction, so g = y. Again, assume that (b) holds. Recalling Lemma 5.3,
we have 〈pv, J(p�

1 – p�
2)〉 = 0 for all p, q ∈ ωw(pv). Thus, ‖g – y‖2 = 〈g – y, J(g – y)〉 implies

g = y. �

We now establish the following strong convergence results:

Theorem 5.5 Let U, V and M be as in Lemma 5.2. The sequence {pv} generated by the AH
iterative scheme (1.6) converges to an element of �(U) if and only if lim infv→∞ d(pv,�(U)) =
0, where d(pv,�(U)) = inf{‖pv – p�‖ : p� ∈ �(U)}.

Proof The necessity is obvious.
Conversely, suppose lim infv→∞ d(pv,�(U)) = 0 and p� ∈ �(U). By Lemma 5.1,

limv→∞ ‖pv – p�‖ exists, for any p� ∈ �(U). It is sufficient to prove that the sequence {pv}
is Cauchy in V . Since limv→∞ d(pv,�(U)) = 0, then given ε > 0, there exists ρ0 ∈ N such
that for all v ≥ ρ0

d
(
pv,�(U)

)
<

ε

2
,

inf
{∥∥pv – p�

∥∥ : p� ∈ �(U)
}

<
ε

2
.
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In particular, inf{‖pρ0 – p�‖ : p� ∈ �(U)} < ε
2 . Therefore, there exists p� ∈ �(U) such that

∥
∥pρ0 – p�

∥
∥ <

ε

2
.

Now for ρ, v ≥ ρ0, we have

‖pv+ρ – pv‖ ≤ ∥∥pv+ρ – p�
∥∥ +

∥∥pv – p�
∥∥

≤ ∥
∥pρ0 – p�

∥
∥ +

∥
∥pρ0 – p�

∥
∥

= 2
∥∥pρ0 – p�

∥∥ < ε.

This implies that the sequence {pv} is Cauchy in V . Since V is closed, there must be an
element q ∈ V such that limv→∞ pv = q. Now, limv→∞ d(pv,�(U)) = 0 gives that d(q,�(U) =
0, that is q ∈ �(U). �

A strong convergence on a compact domain is established in the following way:

Theorem 5.6 Let U andM be as in Lemma 5.2 andV be a nonempty compact convex sub-
set of M. Then, the sequence {pv} generated by the iterative scheme (1.6) converges strongly
to a fixed point of U.

Proof According to Lemma 5.2, limv→∞ ‖Upv – pv‖ = 0. Since V is convex and compact,
the iterative sequence {pv} contained in the set V has a convergent subsequence, namely,
{pvi} endowed with a strong limit, namely, q ∈ V . Putting p = pvi and q = q, we apply
Lemma 2.8, to obtain

‖pvi – Uq‖ ≤
(

3 + �

1 – �

)
‖pvi – Upvi‖ + ‖pvi – q‖.

As i → ∞, one can see that pvi → Uq. It follows that Uq = q, i.e., q ∈ �(U). According to
Lemma 5.1, limv→∞ ‖pv – q‖ exists, that is, q forms a strong limit for {pv}. �

A strong convergence theorem using a condition (I) of the operators is the following:

Theorem 5.7 Let U, V and M be as in Lemma 5.2. If U satisfies condition (I), then the
sequence {pv} generated by the AH iterative scheme (1.6) converges strongly to a fixed point
of U.

Proof In Lemma 5.2, we have shown that

lim
v→∞‖Upv – pv‖ = 0. (5.11)

By Definition 2.4 and (5.11), we have

0 ≤ lim
v→∞ f

(
d
(
pv,�(U)

)) ≤ lim
v→∞‖pv – Upv‖ = 0 ⇒ f

(
d
(
pv,�(U)

))
= 0.

Since f : [0,∞) → [0,∞) is a nondecreasing function that satisfies the condition f (0) = 0
and f (s) > 0, for all s > 0, we obtain

lim
v→∞ d

(
pv,�(U)

)
= 0.
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Since all the requirements of Theorem 5.5 are shown, one concludes that the sequence
{pv} is strongly convergent in the fixed-point set of U. �

6 Numerical result
In this section, we give an example of a Reich–Suzuki-type nonexpansive mapping that
does not satisfy the condition (C). Further, we compare the convergence of the AH iterative
scheme with some leading iterative schemes in the literature.

Example 6.1 Let (R,‖ · ‖) be a Banach space with the usual norm and V = [5, 7]. Let U :
V → V be a mapping defined by

Up =

⎧
⎨

⎩

p+20
5 , if p < 7,

4, if p = 7.
(6.1)

(i) The mapping U does not satisfy the condition (C). For this, let p = 6 and q = 7, we
have

1
2
|p – Up| =

1
2
∣∣6 – U(6)

∣∣ =
2
5

< 1 = |p – q|.

On the other hand,

|Up – Uq| =
∣
∣U(6) – U(7)

∣
∣ =

6
5

> 1 = |p – q|.

(ii) Now, to demonstrate that U is a Reich–Suzuki-type nonexpasive mapping, the
following cases are considered.

Case 1: If p, q < 7, then

� |p – Up| + � |q – Uq| + (1 – 2� )|p – q|

=
1
2

∣∣
∣∣p –

(
p + 20

5

)∣∣
∣∣ +

1
2

∣∣
∣∣q –

(
p + 20

5

)∣∣
∣∣

=
1
2

∣
∣∣∣
4p – 20

6

∣
∣∣∣ +

1
2

∣
∣∣∣
4q – 20

5

∣
∣∣∣

≥ 1
2

∣
∣∣
∣

(
4p – 20

5

)
–

(
4q – 20

5

)∣
∣∣
∣

=
1
2

∣∣∣
∣
4p
5

–
4p
5

∣∣∣
∣ =

2
5
|p – q|

≥ 1
5
|p – q| = |Up – Uq|.

Case 2: If p < 7 and q = 7, then we have

� |p – Up| + � |q – Uq| + (1 – 2� )|p – q| =
1
2

∣
∣∣
∣
4p – 20

5

∣
∣∣
∣ +

1
2
|7 – 4|

=
1
2

∣
∣∣
∣
4p – 20

5

∣
∣∣
∣ +

3
2

≥
∣∣
∣∣
p
5

∣∣
∣∣ = |Up – Uq|.
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Case 3: If q < 7 and p = 7, then we obtain

� |p – Up| + � |q – Uq| + (1 – 2� )|p – q| =
1
2
|7 – 4| +

1
2

∣∣
∣∣
4q – 20

5

∣∣
∣∣

=
3
2

+
1
2

∣
∣∣∣
4q – 20

5

∣
∣∣∣

≥
∣
∣∣
∣
q
5

∣
∣∣
∣ = |Up – Uq|.

Case 4: If p = q = 7, then we obtain

� |p – Up| + � |q – Uq| + (1 – 2� )|p – q| ≥ 0 = |4 – 4| = |Up – Uq|.

Hence, U is a Reich–Suzuki-type nonexpansive mapping and has fixed point 5.

From Table 4 and Fig. 2, it can be clearly seen that the AH iterative converges faster to
the fixed point of U than other iterative schemes.

Table 4 Comparison of convergence behavior of AH (1.6) with S, Abbas, Thakur and JK iterative
schemes

Step S Abbas Thakur JK AH

1 5.5000000 5.5000000 5.5000000 5.5000000 5.5000000
2 5.0993388 5.0602104 5.0198678 5.0171967 5.0006879
3 5.0197364 5.0072506 5.0007895 5.0005915 5.0000009
4 5.0039212 5.0008731 5.0000314 5.0000203 5.0000000
5 5.0007791 5.0001051 5.0000012 5.0000007 5.0000000
6 5.0001548 5.0000127 5.0000000 5.0000000 5.0000000
7 5.0000308 5.0000015 5.0000000 5.0000000 5.0000000
8 5.0000061 5.0000002 5.0000000 5.0000000 5.0000000
9 5.0000012 5.0000000 5.0000000 5.0000000 5.0000000
10 5.0000002 5.0000000 5.0000000 5.0000000 5.0000000
11 5.0000000 5.0000000 5.0000000 5.0000000 5.0000000

Figure 2 Graph corresponding to Table 4
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7 Application
In this section, we consider the application of our main results to the following nonlinear
mixed Volterra–Fredholm-type integral equation:

p(t) = ϑ(t) + λ

∫ t

a

∫ b

a
ϕ(r, s)Υ

(
s, p(s)

)
ds dr, t ∈ [a, b]. (7.1)

Let C([a, b]) denote the space of all real-valued continuous functions on I = [a, b]. It is well
known that C([a, b]) is a Banach space with the maximum norm,

‖p – q‖∞ = max
t∈[a,b]

∣∣p(t) – q(t)
∣∣, ∀p, q ∈ C

(
[a, b]

)
.

Theorem 7.1 Let H be a nonempty closed convex subset of G = C([a, b]) and U : H → H
be defined by

Up(t) = ϑ(t) + λ

∫ t

a

∫ b

a
ϕ(r, s)Υ

(
s, p(s)

)
ds dr, t ∈ [a, b],λ ≥ 0.

Assume that the following conditions hold:
(Z1) ϑ : I →R is continuous;
(Z2) ϕ : I × I →R is continuous for all (r, s) ∈ I × I such that |ϕ(s, r)| ≤ M;
(Z3) Υ : I ×H →H is continuous and there exists a constant LΥ > 0 such that

∣∣Υ (s, p1) – Υ (s, p2)
∣∣ ≤ LΥ |p1 – q2|,

for all s ∈ I and p1, q2 ∈R;
(Z4) λLΥ M(b – a)2 < 1.
Then, the mixed Volterra–Fredholm integral equation (7.1) has a unique solution in

C([a, b]) if and only if U admits an a.f.p.s.

Proof Let p, q ∈ C([a, b]), then

‖p – Uq‖∞ = max
t∈[a,b]

∣
∣p(t) – Uq(t)

∣
∣

= max
t∈[a,b]

∣∣
∣∣p(t) – ϑ(t) – λ

∫ t

a

∫ b

a
ϕ(r, s)Υ

(
s, p(s)

)
ds dr + ϑ(t)

+ λ

∫ t

a

∫ b

a
ϕ(r, s)Υ

(
s, p(s)

)
ds dr – ϑ(t)λ

∫ t

a

∫ b

a
ϕ(r, s)Υ

(
s, q(s)

)
ds dr

∣∣
∣∣

≤ max
t∈[a,b]

∣∣p(t) – Up(t)
∣∣

+ λ max
t∈[a,b]

∣∣∣
∣

∫ t

a

∫ b

a
ϕ(r, s)Υ

(
s, p(s)

)
ds dr –

∫ t

a

∫ b

a
ϕ(r, s)Υ

(
s, q(s)

)
ds dr

∣∣∣
∣

≤ max
t∈[a,b]

∣∣p(t) – Up(t)
∣∣ + λLΥ max

t∈[a,b]

∫ t

a

∫ b

a

∣∣ϕ(r, s)
∣∣∣∣p(s) – q(s)

∣∣ds dr

≤ ‖p – Up‖∞ + λLΥ ‖p – q‖∞ max
t∈[a,b]

∫ t

a

∫ b

a

∣∣ϕ(r, s)
∣∣ds dr

≤ ‖p – Up‖∞ + λLΥ M(b – a)2‖p – q‖∞. (7.2)
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By assumption (Z3), we have λLΥ M(b – a)2 < 1, then (7.2) yields

‖p – Uq‖∞ ≤ ‖p – Up‖∞ + ‖p – q‖∞.

Therefore, by Lemma 2.8, U is a Reich–Suzuki-type nonexpansive mapping since it satis-
fies the condition (2.4) on H with 3+�

1–�
= 1.

Take H = V and G = M. Then, all the conditions of Lemma 5.2 are fulfilled, thus, (7.1)
has a solution in H ⊆ C([a, b]). �

Example 7.2 Consider the following mixed-type nonlinear integral equation:

p(t) =
π

2
t –

t2

7π
+

2
7

∫ t

0

∫ 1

0
r

sin(p(s))
2

dt dr, t ∈ [0, 1]. (7.3)

Clearly, the above integral equation is a special case of (7.1) with

ϑ(t) =
π

2
t –

t2

7π
, ϕ(r, s) = r and Υ

(
t, p(s)

)
=

sin(p(s))
2

.

Then, for any t ∈ [0, 1] and p1, q1 ∈R, we obtain

∣∣Υ (t, p1) – Υ (t, q1)
∣∣ =

1
2
| sin p1 – sin q1|. (7.4)

Next, for any p, q ∈R with p < q, then by the mean-value theorem, there exists f , p < f < q
such that cos p–cos q

p–q = – sin f ⇒ | cos p – cos q| ≤ |p – q|. Therefore, (7.4) yields

∣
∣Υ (t, p1) – Υ (t, q1)

∣
∣ ≤ 1

2
|p1 – q1|.

It is not difficult to see that ϑ(t) is continuous on [0, 1]. Also, Υ (t, p(s)) is continuous and
(r, s) ∈ [0, 1] × [0, 1], thus

M = max
(r,s)∈[0,1]×[0,1]

|r| = 1.

Consequently, all the assumptions in Theorem 7.1 are performed with λLΥ M(b – a)2 =
2
7 · 1

2 · 1 · (1 – 0)2 = 2
14 < 1.

Hence, there exists a solution of the mixed-type nonlinear integral equation (7.3). Fur-
ther, one can easily verify that the function p(t) = π

2 t is the exact solution of (7.3).

8 Conclusion
In this work, we have introduced a four-step iterative scheme, called the AH iterative
scheme (1.6) for approximating the fixed points of contractive-like mappings and Reich–
Suzuki-type nonexpansive mappings. The new iterative scheme has been shown to con-
verge faster than the JK iterative scheme (1.5) analytically for contractive-like mappings.
Furthermore, we have illustrated numerically that our new iterative scheme converges
faster than many prominent iterative schemes in the literature for contractive-like map-
pings. The w2-stability result of the AH iterative scheme has also been established for
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contractive-like mappings. We have provided an example to illustrate the notion of w2-
stability of the AH iterative scheme with respect to U. Also, we have proved weak and sev-
eral strong convergence theorems for Reich–Suzuki-type nonexpansive mappings in uni-
formly convex Banach spaces. A new example of Reich–Suzuki-type nonexpansive map-
pings has been provided to compare the convergence behavior of the AH iterative method
(1.6) with some well-known iterative schemes. As an application, we used our main results
to establish the existence of solution of a mixed-type nonlinear integral equation. Finally,
we illustrated the result in our application with an interesting example.
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