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Abstract
In the current paper, a generalized Montgomery identity is obtained with the help of
Taylor’s formula on time scales. The obtained identity is used to establish Ostrowski
inequality, mid-point inequality, and trapezoid inequality. Moreover, the weighted
versions of generalized Montgomery identity and respective Ostrowski inequality are
also discussed. Special cases are obtained for different time scales to obtain new and
existing results.
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1 Introduction
An identity due to Montgomery is used to acquire various novel inequalities, for example,
Ostrowski type inequality, trapezoid inequality, Mohajani inequality, Čebysěv and Grüss
inequalities.

The Montgomery identity given by Pečaríc in [18] is expressed as follows:
Let g : [c1, d1] →R and g ′ : [c1, d1] →R be integrable, then

g(x) =
1

d1 – c1

∫ d1

c1

g(p) dp +
∫ d1

c1

R(x, p)g ′(p) dp, (1)

where

R(x, p) =

{
p–c1

d1–c1
, c1 ≤ p ≤ x,

p–d1
d1–c1

, x < p ≤ d1

}
.

Pečarić [20] obtained the weighted form of Montgomery identity which states that, for
any x ∈ [c1, d1],

g(x) =
∫ d1

c1

z(p)g(p) dp +
∫ d1

c1

Rz(x, p)g ′(p) dp, (2)
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where g : [c1, d1] → R is differentiable on [c1, d1], g ′ : [c1, d1] → R is integrable on [c1, d1],
and z : [c1, d1] → [0,∞〉 is some normalized weight function, which satisfy

∫ d1
c1

z(p) dp =
1, and Z(p) =

∫ p
c1

z(x) dx for p ∈ [c1, d1], Z(p) = 0 for p < c1, and Z(p) = 1 for p > d1. The
weighted Peano kernel is

Rz(x, p) =

{
Z(p), c1 ≤ p ≤ x,
Z(p) – 1, x < p ≤ d1.

}
.

The theory of time scales was firstly presented by S. Hilger in 1988. With the help of time
scale theory, difference and differential equations are solved by a unified approach. The
solutions are obtained for a real-valued functions on a closed subset T of R by extending
the standard methods of calculus. Based on time scales theory [7, 9, 10], further studies
on integral inequalities on time scales are noted in literature. Bohner and Matthews [8]
used time scale theory as a reference to obtain the time-scaled Montgomery identity and
particular Ostrowski inequality.

Theorem 1 ([8, Lemma 3.1]) Let c1, d1, s, p ∈ T, c1 < d1, and g : [c1, d1]T = [c1, d1]
⋂

T →R

be differentiable, then

g(p) =
1

d1 – c1

∫ d1

c1

gσ (s)�s +
1

d1 – c1

∫ d1

c1

R(p, s)g�(s)�s, (3)

where

R(p, s) =

{
s – c1, c1 ≤ s ≤ p,
s – d1, p < s ≤ d1

}
.

The weighted Montgomery identity given in [21] on time scales is stated as follows.

Theorem 2 Let c1, d1, s, p ∈ T, c1 < d1, and g : [c1, d1]T = [c1, d1]
⋂

T →R be differentiable,
then

g(p) =
∫ d1

c1

z(s)gσ (s)�s +
∫ d1

c1

Rz(p, s)g�(s)�s, (4)

where

Rz(p, s) =

{
Z(s), c1 ≤ s ≤ p,
Z(s) – 1, p < s ≤ d1

}
, (5)

and z : [c1, d1]T → [0,∞),
∫ d1

c1
z(p)�p = 1,

Z(p) =

⎧⎪⎨
⎪⎩

∫ p
c1

z(x)�x, p ∈ [c1, d1],
0, p < c1,
1, p > d1

(6)

In this paper, an extension of Montgomery identity (3) is obtained by using the time scale
versions of Taylor series which can be found in [1, 2, 11]. The obtained Montgomery iden-
tity [3, 14–17] is further used for time-scaled trapezoid and Ostrowski type inequalities
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[5, 6, 12, 19, 22]. Additionally, uncommon instances of Ostrowski inequality include a gen-
eralized mid-point inequality. Finally, the extension of (4) and the respective Ostrowski
inequality is discussed.

2 Preliminary results
Some basic essentials regarding theory of time scales can be found in [7, 9, 10]. Few of
which are given here: Generalized polynomials on time scales are the functions ul, vl :
T

2 →R, l ∈N0 defined recursively as follows: u0(p, s) = v0(p, s) = 1, ∀p, s ∈ T and for given
ul, vl with l ∈N0,

vl+1(p, s) =
∫ p

s
vl(τ , s)�τ , ul+1(p, s) =

∫ p

s
ul

(
σ (τ ), s

)
�τ .

If v�
l (p, s) presents each fixed s ∈ T, the derivative for vl+1(p, s) with respect to p is

v�
l+1(p, s) = vl(p, s), u�

l+1(p, s) = ul
(
σ (p), s

)
for l ∈N0, p ∈ T

k ,

where

T
k =

{
T – (ρ(supT), supT] if supT < ∞,
T if supT = ∞.

}
.

Also

vl(p, s) = (–1)lul(s, p).

Taylor formula for random time scale T is stated below.

Theorem 3 ([9, Theorem 1.113]) Let m ∈ N, g be m times differentiable on T
km . Let α ∈

T
km–1 , p ∈ T, then we have

g(p) =
m–1∑
l=0

vl(p,α)g�l
(α) +

∫ ρm–1(p)

α

vm–1
(
p,σ (τ )

)
g�m

(τ )�τ , (7)

where vl : T2 → R, l ∈N0 represents the generalized polynomial defined above.

In order to deal with double integrals on time sales, Basşak Karpuz [13, Lemma 1] proved
the following result for exchange of integrals.

Lemma 1 Assume s, p ∈ T and G ∈ Crd(T×T,R). Then

∫ p

s

∫ p

η

G(η, ξ )�ξ�η =
∫ p

s

∫ σ (ξ )

s
G(η, ξ )�η�ξ .

In a similar fashion, results obtained are shown below.

Lemma 2 Assume s, p ∈ T and G ∈ Crd(T×T,R). Then

∫ p

s

∫ η

s
G(η, ξ )�ξ�η =

∫ p

s

∫ p

σ (ξ )
G(η, ξ )�η�ξ .
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Proof Let

g(p) :=
∫ p

s

∫ η

s
G(η, ξ )�ξ�η –

∫ p

s

∫ p

σ (ξ )
G(η, ξ )�η�ξ

for p ∈ T. Then, by taking derivative and applying [9, Theorem 1.117], we have

g�(p) :=
(∫ p

s

∫ η

s
G(η, ξ )�ξ�η

)�

–
(∫ p

s

∫ p

σ (ξ )
G(η, ξ )�η�ξ

)�

=
∫ p

s
f (p, ξ )�ξ –

∫ p

s

∂

∂p

(∫ p

σ (ξ )
f (η, ξ )�η

)
�ξ –

∫ σ (p)

σ (p)
f (η, ξ )�η

g�(p) :=
∫ p

s
f (p, ξ )�ξ –

∫ p

s
f (p, ξ )�ξ = 0,

which proved the required result. �

Remark 1 From [9, Theorem 1.109], it is straightforward that

um
(
ρ l(p), p

)
= 0 ∀m ∈N, 0 ≤ l ≤ m – 1.

Lemma 3 The functions um, m ∈N defined above satisfy, for all p ∈ T,

um
(
p,ρ l(p)

)
= 0 ∀m ∈N, 0 ≤ l ≤ m – 1. (8)

Proof Here, the induction method is used to prove the result. For l = 0,

um
(
p,ρ0(p)

)
= um(p, p) = 0.

To conclude the induction, it will be sufficient that

um–1
(
p,ρ l(p)

)
= um

(
p,ρ l(p)

)
= 0, 0 ≤ l < m,

implies that

um
(
p,ρ l+1(p)

)
= 0.

If ρ l(p) is left-dense, then ρ l+1(p) = ρ l(p) so that

um
(
p,ρ l+1(p)

)
= um

(
p,ρ l(p)

)
= 0.

If ρ l(p) is not left-dense, then it is left-scattered and σ (ρ l+1(p)) = ρ l(p), therefore by [9,
Theorem 1.16(iv)] we have

um
(
p,ρ l+1(p)

)
= um

(
p,σ

(
ρ l+1(p)

))
– μ

(
ρ l+1(p)

)
u�

m
(
p,ρ l+1(p)

)

= um
(
p,ρ l(p)

)
– μ

(
ρ l+1(p)

)
um–1

(
p,σ

(
ρ l+1(p)

))

= um
(
p,ρ l(p)

)
– μ

(
ρ l+1(p)

)
um–1

(
p,ρ l+1(p)

)
= 0.

It proves our claim. �
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The lemma shown below is helpful in proving the main result.

Lemma 4 The function vl for p ∈ T satisfies

vm
(
ρ l(p),σ (p)

)
= 0, ∀m ∈N, 0 ≤ l ≤ m – 2. (9)

Proof By using Lemma 3, we can write um(p,ρ l(p)) = 0 ∀m ∈ N, 0 ≤ l ≤ m – 1. It is known
that vm(p, s) = (–1)mum(s, p), ∀m ∈N. Thus we have

vm
(
ρ l(p), p

)
= 0, ∀m ∈N, 0 ≤ l ≤ m – 1.

By using [9, Theorem 1.16 (iv)],

vm
(
ρ l(p),σ (p)

)
= vm

(
ρ l(p), p

)
+ μ(p)vm–1

(
ρ l(p), p

)

⇒ vm
(
ρ l(p),σ (p)

)
= 0, ∀m ∈N, 0 ≤ l ≤ m – 2. �

3 Generalization of Montgomery identity on time scales
Theorem 4 Let m ∈N, g be m times differentiable on T

km . Let p ∈ T, then we have

g(p) =
1

d1 – c1

∫ d1

c1

gσ (s)�s

+
1

d1 – c1

m–2∑
l=0

g�l+1 (c1)
{

vl+1(p, c1)(p – c1) –
∫ p

c1

vl+1
(
σ (s), c1

)
�s

}

+
1

d1 – c1

m–2∑
l=0

g�l+1
(d1)

{∫ p

d1

vl+1
(
σ (s), d1

)
�s – vl+1(p, d1)(p – d1)

}

+
1

d1 – c1

∫ d1

c1

Qm(p, τ )g�m (τ )�τ , (10)

where

Qm(p, τ ) =

[
vm–1(p,σ (τ ))(p – c1) –

∫ p
ρm–3(τ ) vm–1(σ (s),σ (τ ))�s, τ ∈ [c1, p),

vm–1(p,σ (τ ))(p – d1) –
∫ p
ρm–3(τ ) vm–1(σ (s),σ (τ ))�s, τ ∈ [p, d1].

]

Proof Suppose that g� is m – 1 times differentiable, then by replacing m with m – 1, g with
g�, and α = c1 in (7), we have

g�(p) =
m–2∑
l=0

vl(p, c1)g�l+1
(c1) +

∫ ρm–2(p)

c1

vm–2
(
p,σ (τ )

)
g�m

(τ )�τ . (11)

Replace c1 with d1 in (11) to get

g�(p) =
m–2∑
l=0

vl(p, d1)g�l+1
(d1) +

∫ ρm–2(p)

d1

vm–2
(
p,σ (τ )

)
g�m

(τ )�τ . (12)
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We can rewrite (3) as

g(p) =
1

d1 – c1

∫ d1

c1

gσ (s)�s +
1

d1 – c1

∫ p

c1

(s – c1)g�(s)�s

+
1

d1 – c1

∫ d1

p
(s – d1)g�(s)�s. (13)

By using (11) and (12) in (13),

g(p) =
1

d1 – c1

∫ d1

c1

gσ (s)�s

+
1

d1 – c1

∫ p

c1

(s – c1)
m–2∑
l=0

vl(s, c1)g�l+1
(c1)�s (14)

+
1

d1 – c1

∫ d1

p
(s – d1)

m–2∑
l=0

vl(s, d1)g�l+1
(d1)�s (15)

+
1

d1 – c1

∫ p

c1

(s – c1)
∫ ρm–2(s)

c1

vm–2
(
s,σ (τ )

)
g�m

(τ )�τ�s (16)

–
1

d1 – c1

∫ d1

p
(s – d1)

∫ d1

ρm–2(s)
vm–2

(
s,σ (τ )

)
g�m

(τ )�τ�s. (17)

By making calculations for integral in (14),

∫ p

c1

(s – c1)
m–2∑
l=0

vl(s, c1)g�l+1
(c1)�s

=
m–2∑
l=0

g�l+1
(c1)

∫ p

c1

(s – c1)vl(s, c1)�s

=
m–2∑
l=0

g�l+1 (c1)
∫ p

c1

v�
l+1(s, c1)v1(s, c1)�s

=
m–2∑
l=0

g�l+1
(c1)

{
vl+1(p, c1)v1(p, c1) –

∫ p

c1

vl+1
(
σ (s), c1

)
�s

}

=
m–2∑
l=0

g�l+1
(c1)

{
vl+1(p, c1)(p – c1) –

∫ p

c1

vl+1
(
σ (s), c1

)
�s

}
. (18)

Similarly (15) gives

∫ d1

p
(s – d1)

m–2∑
l=0

vl(s, d1)g�l+1
(d1)�s

=
m–2∑
l=0

g�l+1
(d1)

{∫ p

d1

vl+1
(
σ (s), d1

)
�s – vl+1(p, d1)(p – d1)

}
. (19)
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By using Lemma 2, integral in (16) takes the following form:

∫ p

c1

(s – c1)
∫ ρm–2(s)

c1

vm–2
(
s,σ (τ )

)
g�m

(τ )�τ�s

=
∫ p

c1

g�m
(τ )

∫ p

ρm–3(τ )
(s – c1)vm–2

(
s,σ (τ )

)
�s�τ

=
∫ p

c1

g�m (τ )
∫ p

ρm–3(τ )
v�

m–1
(
s,σ (τ )

)
v1(s, c1)�s�τ

=
∫ p

c1

g�m
(τ )

{
vm–1

(
p,σ (τ )

)
v1(p, c1) – vm–1

(
ρm–3(τ ),σ (τ )

)
v1

(
ρm–3(τ ), c1

)}
�τ

–
∫ p

c1

g�m (τ )
∫ p

ρm–3(τ )
vm–1

(
σ (s),σ (τ )

)
�s�τ .

Lemma 4 implies vm–1(ρm–3(τ ),σ (τ )) = 0.

⇒
∫ p

c1

(s – c1)
∫ ρm–2(s)

c1

vm–2
(
s,σ (τ )

)
g�m

(τ )�τ�s

=
∫ p

c1

g�m
(τ )

{
vm–1

(
p,σ (τ )

)
(p – c1) –

∫ p

ρm–3(τ )
vm–1

(
σ (s),σ (τ )

)
�s

}
�τ . (20)

Similarly, we have

∫ d1

p
(s – d1)

∫ d1

ρm–2(s)
vm–2

(
s,σ (τ )

)
g�m

(τ )�τ�s

=
∫ p

d1

(s – d1)
∫ ρm–2(s)

d1

vm–2
(
s,σ (τ )

)
g�m

(τ )�τ�s

=
∫ p

d1

g�m (τ )
{

vm–1
(
p,σ (τ )

)
(p – d1) –

∫ p

ρm–3(τ )
vm–1

(
σ (s),σ (τ )

)
�s

}
�τ

= –
∫ d1

p
g�m

(τ )
{

vm–1
(
p,σ (τ )

)
(p – d1) –

∫ p

ρm–3(τ )
vm–1

(
σ (s),σ (τ )

)
�s

}
�τ . (21)

Use (18)–(21) in (14)–(17) respectively to get the ideal outcome. �

Example 1
• By using T = R in (10), we get [4, Remark 1].
• For T = Z, (10) transforms as

g(p) =
1

d1 – c1

d1∑
s=c1+1

g(s)

+
1

d1 – c1

m–1∑
l=1

�lg(c1)
{

(p – c1)(p – c1)(l)

(l)!
–

(p + 1 – c1)(l+1)

(l + 1)!

}
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+
1

d1 – c1

m–1∑
l=1

�lg(d1)
{

(p + 1 – d1)(l+1)

(l + 1)!
–

(p – d1)(p – d1)(l)

(l)!

}

+
1

d1 – c1

d1–1∑
τ=c1

�mg(τ )Qm(p, τ ),

where

Qm(p, τ ) =

[
(p–c1)(p–τ–1)(m–1)

(m–1)! –
∑p–1

s=τ–m+3
(s–τ )(m–1)

(m–1)! , τ ∈ [c1, p),
(p–d1)(p–τ–1)(m–1)

(m–1)! –
∑p–1

s=τ–m+3
(s–τ )(m–1)

(m–1)! , τ ∈ [p, d1].

]

• For T = qZ, q > 1, (10) takes the form

g(p) =
q – 1

d1 – c1

q–1d1∑
s=c1

sf (qs)

+
1

d1 – c1

m–1∑
l=1

�lg(c1)

{ l–1∏
ν=0

(p – qνc1)(p – c1)∑ν
μ=0 qμ

– q(q – 1)
q–1p∑
s=c1

s
l–1∏
ν=0

(s – qν–1c1)∑ν
μ=0 qμ

}

+
1

d1 – c1

×
m–1∑
l=1

�lg(d1)

{
q(q – 1)

q–1p∑
s=d1

s
l–1∏
ν=0

(s – qν–1d1)∑ν
μ=0 qμ

–
l–1∏
ν=0

(p – qνd1)(p – d1)∑ν
μ=0 qμ

}

+
1

d1 – c1

q–1d1∑
τ=c1

�mg(τ )Qm(p, τ ),

where

Qm(p, τ ) =

⎡
⎣

∏m–2
ν=0

(p–qν+1τ )(p–c1)∑ν
μ=0 qμ – q(q – 1)

∑q–1p
s=q3–mτ

s
∏m–2

ν=0
(s–qντ )∑ν

μ=0 qμ , τ ∈ [c1, p),
∏m–2

ν=0
(p–qν+1τ )(p–d1)∑ν

μ=0 qμ – q(q – 1)
∑q–1p

s=q3–mτ
s
∏m–2

ν=0
(s–qντ )∑ν

μ=0 qμ , τ ∈ [p, d1].

⎤
⎦

Corollary 1 Using Theorem 4 and the corresponding conditions, we get the following gen-
eralized trapezoid inequality:

∣∣∣∣∣
g(c1) + g(d1)

2
–

1
d1 – c1

∫ d1

c1

gσ (s)�s

–
1

2(d1 – c1)

m–2∑
l=0

g�l+1
(c1)

{
vl+1(d1, c1)(d1 – c1) –

∫ d1

c1

vl+1
(
σ (s), c1

)
�s

}

–
1

2(d1 – c1)

m–2∑
l=0

g�l+1
(d1)

{
–
∫ d1

c1

vl+1
(
σ (s), d1

)
�s – vl+1(c1, d1)(c1 – d1)

}∣∣∣∣∣

≤ 1
2(d1 – c1)

∥∥g�m∥∥
r

(∫ d1

c1

∣∣Qm(c1, τ ) + Qm(d1, τ )
∣∣q

�τ

) 1
q

. (22)
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Proof For the generalized trapezoid inequality, replace p = c1 and p = d1 in (10) to get the
accompanying structures

g(c1) =
1

d1 – c1

∫ d1

c1

gσ (s)�s

+
1

d1 – c1

m–2∑
l=0

g�l+1
(d1)

{
–
∫ d1

c1

vl+1
(
σ (s), d1

)
�s – vl+1(c1, d1)(c1 – d1)

}

+
1

d1 – c1

∫ d1

c1

Qm(c1, τ )g�m (τ )�τ (23)

and

g(d1) =
1

d1 – c1

∫ d1

c1

gσ (s)�s (24)

+
1

d1 – c1

m–2∑
l=0

g�l+1
(c1)

{
vl+1(d1, c1)(d1 – c1) –

∫ d1

c1

vl+1
(
σ (s), c1

)
�s

}
(25)

+
1

d1 – c1

∫ d1

c1

Qm(d1, τ )g�m
(τ )�τ . (26)

Add (23) and (24) and divide the resultant by 2 to get

g(c1) + g(d1)
2

–
1

d1 – c1

∫ d1

c1

gσ (s)�s

–
1

2(d1 – c1)

m–2∑
l=0

g�l+1
(c1)

{
vl+1(d1, c1)(d1 – c1) –

∫ d1

c1

vl+1
(
σ (s), c1

)
�s

}

–
1

2(d1 – c1)

m–2∑
l=0

g�l+1
(d1)

{
–
∫ d1

c1

vl+1
(
σ (s), d1

)
�s – vl+1(c1, d1)(c1 – d1)

}

=
1

2(d1 – c1)

∫ d1

c1

[
Qm(c1, τ ) + Qm(d1, τ )

]
g�m

(τ )�τ . (27)

By using Hölder’s inequality on (27), we get

∣∣∣∣∣
g(c1) + g(d1)

2
–

1
d1 – c1

∫ d1

c1

gσ (s)�s

–
1

2(d1 – c1)

m–2∑
l=0

g�l+1
(c1)

{
vl+1(d1, c1)(d1 – c1) –

∫ d1

c1

vl+1
(
σ (s), c1

)
�s

}

–
1

2(d1 – c1)

m–2∑
l=0

g�l+1
(d1)

{
–
∫ d1

c1

vl+1
(
σ (s), d1

)
�s – vl+1(c1, d1)(c1 – d1)

}∣∣∣∣∣

≤ 1
2(d1 – c1)

∥∥g�m∥∥
r

(∫ d1

c1

∣∣Qm(c1, τ ) + Qm(d1, τ )
∣∣q

�τ

) 1
q

,
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which is the required trapezoid inequality, where

Qm(c1, τ ) + Qm(d1, τ )

= –2
[

–
∫ ρm–3(τ )

c1

vm–1
(
σ (s),σ (τ )

)
�s +

∫ d1

ρm–3(τ )
vm–1

(
σ (s),σ (τ )

)
�s

]

+ vm–1
(
c1,σ (τ )

)
(c1 – d1) + vm–1

(
d1,σ (τ )

)
(d1 – c1). �

Remark 2 If m = 2 and q = 1 in Corollary 1, (22) takes the form

∣∣∣∣g(c1) + g(d1)
2

–
1

d1 – c1

∫ d1

c1

gσ (s)�s

–
1

2(d1 – c1)
g�(c1)

{
(d1 – c1)2 –

∫ d1

c1

(
σ (s) – c1

)
�s

}

–
1

2(d1 – c1)
g�(d1)

{
–
∫ d1

c1

(
σ (s) – d1

)
�s – (c1 – d1)2

}∣∣∣∣

≤ 1
2(d1 – c1)

∥∥g�2∥∥∞

∫ d1

c1

∣∣Q2(c1, τ ) + Q2(d1, τ )
∣∣�τ ,

where

Q2(c1, τ ) + Q2(d1, τ )

= –2
[

–
∫ ρ–1(τ )

c1

v1
(
σ (s),σ (τ )

)
�s +

∫ d1

ρ–1(τ )
v1

(
σ (s),σ (τ )

)
�s

]

+ v1
(
c1,σ (τ )

)
(c1 – d1) + v1

(
d1,σ (τ )

)
(d1 – c1).

Remark 3 By using T = R in (22), we get [4, Remark 3].

3.1 Ostrowski type inequality
Theorem 5 Considering all taken assumptions of Theorem 4 hold, suppose that (r,q) is a
pair of conjugate exponents, that is, 1 ≤ r, q < ∞, 1

r + 1
q = 1. Then we have

∣∣∣∣∣g(p) –
1

d1 – c1

∫ d1

c1

gσ (s)�s (28)

–
1

d1 – c1

m–2∑
l=0

g�l+1
(c1)

{
vl+1(p, c1)(p – c1) –

∫ p

c1

vl+1
(
σ (s), c1

)
�s

}

–
1

d1 – c1

m–2∑
l=0

g�l+1
(d1)

{∫ p

d1

vl+1
(
σ (s), d1

)
�s – vl+1(p, d1)(p – d1)

}∣∣∣∣∣

≤ 1
d1 – c1

∥∥g�m∥∥
r

(∫ d1

c1

∣∣Qm(p, τ )
∣∣q

�τ

) 1
q

. (29)

The constant (
∫ d1

c1
|Qm(p, τ )|q�τ )

1
q is sharp for 1 < r ≤ ∞ and the best possible for r = 1.
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Proof Employing identity (10) and Hölder’s inequality, the following is obtained:

∣∣∣∣∣g(p) –
1

d1 – c1

∫ d1

c1

gσ (s)�s

–
1

d1 – c1

m–2∑
l=0

g�l+1
(c1)

{
vl+1(p, c1)(p – c1) –

∫ p

c1

vl+1
(
σ (s), c1

)
�s

}

–
1

d1 – c1

m–2∑
l=0

g�l+1 (d1)
{∫ p

d1

vl+1
(
σ (s), d1

)
�s – vl+1(p, d1)(p – d1)

}∣∣∣∣∣

≤ 1
d1 – c1

∥∥g�m∥∥
r

(∫ d1

c1

∣∣Qm(p, τ )
∣∣q

�τ

) 1
q

.

Denote D1(τ ) = Qm(p, τ ). To verify the sharpness of the constant (
∫ d1

c1
|D1(τ )|q�τ )

1
q , a

function g is constructed for which the correspondence in (28) is obtained.
For 1 < r < ∞, take g with the end goal which states that

g�m
(τ ) = sgn D1(τ ).

∣∣D1(τ )
∣∣ 1

r–1 .

For r = ∞, take

g�m
(τ ) = sgn D1(τ ).

For r = 1, it will be proved that

∣∣∣∣
∫ d1

c1

D1(τ )g�m
(τ )�τ

∣∣∣∣ ≤ max
τ∈[c1,d1]T

∣∣D1(τ )
∣∣
(∫ d1

c1

∣∣g�m
(τ )

∣∣�τ

)
(30)

is the optimal inequality. Suppose that |D1(τ )| is maximum for τ0 ∈ [c1, d1]T. First assume
that D1(τ0) > 0 and for ε such that 0 < ε < d1 – τ0; define gε(·) by

gε(τ ) =

⎧⎪⎨
⎪⎩

0, c1 ≤ τ < τ0,
1
ε

vm(τ , τ0), τ0 ≤ τ < τ0 + ε,
1
m vm–1(τ , τ0), τ0 + ε ≤ τ ≤ d1.

⎫⎪⎬
⎪⎭

For τ0 ≤ τ ≤ τ0 + ε, the expression for derivatives is

g ′
ε(τ ) =

1
ε

v�
m(τ , τ0) =

1
ε

vm–1(τ , τ0),

g ′′
ε (τ ) =

1
ε

v�
m–1(τ , τ0) =

1
ε

vm–2(τ , τ0).

Similarly, for m – th derivative,

g�m
ε (τ ) =

1
ε

vm–m(τ , τ0) =
1
ε

v0(τ , τ0)

=
1
ε

∵ v0 = 1.
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For τ0 + ε ≤ τ ≤ d1,

g ′
ε(τ ) =

1
m

v�
m–1(τ , τ0) =

1
m

vm–2(τ , τ0),

g ′′
ε (τ ) =

1
m

v�
m–2(τ , τ0) =

1
m

vm–3(τ , τ0)

and

g�m
ε (τ ) =

1
m

v�
m–m(τ , τ0) =

1
m

v�
0 = 0.

For ε small enough,

∣∣∣∣
∫ d1

c1

D1(τ )g�m (τ )�τ

∣∣∣∣ =
∣∣∣∣
∫ τ0+ε

τ0

D1(τ )
1
ε
�τ

∣∣∣∣ =
1
ε

∫ τ0+ε

τ0

D1(τ )�τ .

(30) gives

1
ε

∫ τ0+ε

τ0

D1(τ )�τ ≤ D1(τ0)
∫ τ0+ε

τ0

1
ε
�τ = D1(τ0).

Since

lim
ε→0

1
ε

∫ τ0+ε

τ0

D1(τ )�τ = D1(τ0).

Hence we have proved that equation (30) is an optimal inequality. For D1(τ0) < 0, we take

gε(τ ) =

⎧⎪⎨
⎪⎩

1
m vm–1(τ , τ0 + ε), c1 ≤ τ ≤ τ0,
–1
ε

vm(τ , τ0 + ε), τ0 ≤ τ ≤ τ0 + ε,
0, τ0 + ε ≤ τ ≤ d1.

⎫⎪⎬
⎪⎭

To obtain a solution of the above function when D1(τ0) < 0, a similar method can be used
as for D1(τ0) > 0. �

Corollary 2 Considering taken conditions for Theorem 5 hold, for r = 1, we have

∣∣∣∣∣g(p) –
1

d1 – c1

∫ d1

c1

gσ (s)�s

–
1

d1 – c1

m–2∑
l=0

g�l+1
(c1)

{
vl+1(p, c1)(p – c1) –

∫ p

c1

vl+1
(
σ (s), c1

)
�s

}

–
1

d1 – c1

m–2∑
l=0

g�l+1 (d1)
{∫ p

d1

vl+1
(
σ (s), d1

)
�s – vl+1(p, d1)(p – d1)

}∣∣∣∣∣

≤ 1
d1 – c1

∥∥g�m∥∥max

{∣∣∣∣vm–1
(
p,σ (c1)

)
(p – c1) –

∫ p

ρm–3(c1)
vm–1

(
σ (s),σ (c1)

)
�s

∣∣∣∣,
∣∣∣∣vm–1

(
p,σ (d1)

)
(p – d1) –

∫ p

ρm–3(d1)
vm–1

(
σ (s),σ (d1)

)
�s

∣∣∣∣
}

. (31)
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Proof By using (10),

∫ d1

c1

∣∣Qm(p, τ )
∣∣q

�τ

=
∫ p

c1

∣∣Qm(p, τ )
∣∣q

�τ +
∫ d1

p

∣∣Qm(p, τ )
∣∣q

�τ

=
∫ p

c1

∣∣∣∣vm–1
(
p,σ (τ )

)
(p – c1) –

∫ p

ρm–3(τ )
vm–1

(
σ (s),σ (τ )

)
�s

∣∣∣∣
q

�τ

+
∫ d1

p

∣∣∣∣vm–1
(
p,σ (τ )

)
(p – d1) –

∫ p

ρm–3(τ )
vm–1

(
σ (s),σ (τ )

)
�s

∣∣∣∣
q

�τ ,

r = 1 ⇒ q = ∞, and we have

sup
τ∈[c1,d1]

∣∣Qm(p, τ )
∣∣

= max

{
sup

τ∈[c1,p]

∣∣∣∣vm–1
(
p,σ (τ )

)
(p – c1) –

∫ p

ρm–3(τ )
vm–1

(
σ (s),σ (τ )

)
�s

∣∣∣∣,

sup
τ∈[p,d1]

∣∣∣∣vm–1
(
p,σ (τ )

)
(p – d1) –

∫ p

ρm–3(τ )
vm–1

(
σ (s),σ (τ )

)
�s

∣∣∣∣
}

= max

{∣∣∣∣vm–1
(
p,σ (c1)

)
(p – c1) –

∫ p

ρm–3(c1)
vm–1

(
σ (s),σ (c1)

)
�s

∣∣∣∣,
∣∣∣∣vm–1

(
p,σ (d1)

)
(p – d1) –

∫ p

ρm–3(d1)
vm–1

(
σ (s),σ (d1)

)
�s

∣∣∣∣
}

.

By using the above expression in (28), we get (31). �

Remark 4 Choose m = 2 in Corollary 2. In this case (31) takes the form

∣∣∣∣g(p) –
1

d1 – c1

∫ d1

c1

gσ (s)�s –
1

d1 – c1
g�(c1)

{
(p – c1)2 –

∫ p

c1

(
σ (s) – c1

)
�s

}

–
1

d1 – c1
g�(d1)

{∫ p

d1

(
σ (s) – d1

)
�s – (p – d1)2

}∣∣∣∣

≤ 1
d1 – c1

∥∥g�2∥∥max

{∣∣∣∣
(
p – σ (c1)

)
(p – c1) –

∫ p

ρ–1(c1)

(
σ (s) – σ (c1)

)
�s

∣∣∣∣,
∣∣∣∣
(
p – σ (d1)

)
(p – d1) –

∫ p

ρ–1(d1)

(
σ (s) – σ (d1)

)
�s

∣∣∣∣
}

.

Remark 5 Use p =
c1 + d1

2
in Theorem 5. In this case (28) becomes the following general-

ized midpoint inequality:

∣∣∣∣∣g
(

c1 + d1

2

)
–

1
d1 – c1

∫ d1

c1

gσ (s)�s

–
1

d1 – c1

m–2∑
l=0

g�l+1
(c1)

{
vl+1

(
c1 + d1

2
, c1

)(
d1 – c1

2

)
–

∫ c1+d1
2

c1

vl+1
(
σ (s), c1

)
�s

}
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–
1

d1 – c1

m–2∑
k=0

g�l+1
(d1)

{∫ c1+d1
2

d1

vl+1
(
σ (s), d1

)
�s – vl+1

(
c1 + d1

2
, d1

)(
c1 – d1

2

)}∣∣∣∣∣

≤ 1
d1 – c1

∥∥g�m∥∥
r

(∫ d1

c1

∣∣∣∣Qm

(
c1 + d1

2
, τ

)∣∣∣∣
q

�τ

) 1
q

.

Remark 6 By using T = R in Sect. 3.1, we get [4, Corollary 1, Remark 2, Remark 3].

4 Weighted Montgomery identity
Theorem 6 Let m ∈N and g be m times differentiable on T

km . Let p ∈ T and z : [c1, d1]T →
[0,∞) be some probability density function, then we have

g(p) =
∫ d1

c1

z(s)gσ (s)�s

+
m–2∑
l=0

g�l+1 (c1)
∫ p

c1

z(s)
{

vl+1(p, c1) – vl+1
(
σ (s), c1

)}
�s

+
m–2∑
l=0

g�l+1
(d1)

[∫ p

d1

z(s)
{

vl+1
(
σ (s), d1

)
– vl+1(p, d1)

}
�s

]

+
∫ d1

c1

Qz,m(p, τ )g�m (τ )�τ , (32)

where

Qz,m(p, τ )

=

[
vm–1(p,σ (τ ))Z(p) –

∫ p
ρm–3(τ ) vm–1(σ (s),σ (τ ))Z�(s)�s, τ ∈ [c1, p),

vm–1(p,σ (τ ))(1 – Z(p)) +
∫ p
ρm–3(τ ) vm–1(σ (s),σ (τ ))Z�(s)�s, τ ∈ [p, d1],

]

and the term Z(p) involved in kernel is defined in (6).

Proof Since g� is m – 1 times differentiable, therefore by replacing m with m – 1, g with
g�, and α = c1 in (7), we have

g�(p) =
m–2∑
l=0

vl(p, c1)g�l+1 (c1) +
∫ ρm–2(p)

c1

vm–2
(
p,σ (τ )

)
g�m (τ )�τ . (33)

Replace c1 with d1 in (33) to get

g�(p) =
m–2∑
l=0

vl(p, d1)g�l+1
(d1) +

∫ ρm–2(p)

d1

vm–2
(
p,σ (τ )

)
g�m

(τ )�τ . (34)

(4) can be written as

g(p) =
∫ d1

c1

z(s)gσ (s)�s +
∫ p

c1

Rz(p, s)g�(s)�s +
∫ d1

p
Rz(p, s)g�(s)�s.
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Now, by using (5), (33), (34), we have

g(p) =
∫ d1

c1

z(s)gσ (s)�s +
∫ p

c1

Z(s)
m–2∑
l=0

vl(s, c1)g�l+1 (c1)�s

+
∫ p

c1

Z(s)
∫ ρm–2(s)

c1

vm–2
(
s,σ (τ )

)
g�m

(τ )�τ�s

+
∫ d1

p

(
Z(s) – 1

) m–2∑
l=0

vl(s, d1)g�l+1
(d1)�s

+
∫ d1

t

(
Z(s) – 1

)∫ ρm–2(s)

d1

vm–2
(
s,σ (τ )

)
g�m

(τ )�τ�s. (35)

By using Lemma 2, we have

∫ p

c1

Z(s)
m–2∑
l=0

vl(s, c1)g�l+1
(c1)�s

=
m–2∑
l=0

g�l+1
(c1)

∫ p

c1

z(s)
{

vl+1(p, c1) – vl+1
(
σ (s), c1

)}
�s. (36)

Similarly

∫ d1

p

(
Z(s) – 1

) m–2∑
l=0

vl(s, d1)g�l+1
(d1)�s

=
m–2∑
l=0

g�l+1
(d1)

∫ p

d1

z(s)
{

vl+1
(
σ (s), d1

)
– vl+1(p, d1)

}
�s. (37)

By using Lemma 2 and (9), integral in the 3rd term of (35) becomes

∫ p

c1

Z(s)
∫ ρm–2(s)

c1

vm–2
(
s,σ (τ )

)
g�m

(τ )�τ�s

=
∫ p

c1

g�m
(τ )

[
vm–1

(
p,σ (τ )

)
Z(t) –

∫ p

ρm–3(τ )
Z�(s)vm–1

(
σ (s),σ (τ )

)
�s

]
�τ . (38)

Similarly,

∫ d1

p

(
Z(s) – 1

)∫ ρm–2(s)

d1

vm–2
(
s,σ (τ )

)
g�m

(τ )�τ�s

=
∫ p

d1

g�m
(τ )

[
vm–1

(
p,σ (τ )

)(
1 – Z(p)

)

+
∫ p

ρm–3(τ )
Z�(s)vm–1

(
σ (s),σ (τ )

)
�s

]
�τ . (39)

By using (36)–(39) in (35), we have the required result. �
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Remark 7 Consider all the assumptions of Theorem 6 hold. Also, assume that (r, q) is a
pair of conjugate exponents, that is, 1 ≤ r, q ≤ ∞, 1

r + 1
q = 1. Then we have

∣∣∣∣∣g(p) –
∫ d1

c1

z(s)gσ (s)�s –
m–2∑
l=0

g�l+1
(c1)

∫ p

c1

z(s)
{

vl+1(p, c1) – vl+1
(
σ (s), c1

)}
�s

–
m–2∑
l=0

g�l+1
(d1)

[∫ p

d1

z(s)
{

vl+1
(
σ (s), d1

)
– vl+1(p, d1)

}
�s

]∣∣∣∣∣

≤ ∥∥g�m∥∥
r

(∫ d1

c1

∣∣Qz,m(p, τ )
∣∣q

�τ

) 1
q

. (40)

The constant (
∫ d1

c1
|Qz,m(p, τ )|q�τ )

1
q is sharp for 1 < r ≤ ∞ and optimal for r = 1.

Proof This result can be proved by a similar solution used for Theorem 5. �

Remark 8 By using T = R in (40), we have [4, (3.1)].

5 Conclusion
In this paper, the extension of Montgomery identity has been obtained with the help of
time-scaled Taylor’s formula and discussed for calculus (discrete and quantum) as well by
choosing special time scales. Further, it is used to find the extension of Ostrowski inequal-
ity, mid-point inequality, and trapezoid inequality. The weighted version of Montgomery
identity and respective Ostrowski inequality are also established here. Remaining results
that appeared in Corollary 1 and in Sect. 3.1 can be proved for weighted Montgomery
identity (32) and respective Ostrowski type inequality (40). Moreover, as special cases,
our inequalities contain the results proved in [4] when T = R.
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18. Mitrinovic, D.S., Pečaríc, J.E., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives, vol. 53.

Springer, Berlin (1991)
19. Neang, P., Nonlaopon, K., Tariboon, J., Ntouyas, S.K., Agarwal, P.: Some trapezoid and midpoint type inequalities via

fractional (p,q)-calculus. Adv. Differ. Equ. 2021(1), 333 (2021)
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