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Abstract
This paper is concerned with the stabilization of stochastic regime-switching Poisson
jump equations (also known as stochastic differential equations with Markovian
switching and Poisson jumps, abbreviated as SDEwMJs). The aim of this paper is to
design a feedback controller with delay δ (δ > 0) to make an unstable SDEwMJ
become stable. It is proved that the delay δ is bounded by a constant δ̄. Moreover, an
implicit lower bound for δ̄, which can be computed numerically, is provided. As a
product, the almost sure exponential stability of the controlled SDEwMJ is obtained.
Besides, an example is given to demonstrate the theoretical results.
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1 Introduction
Stochastic hybrid systems have been widely used to model such systems where they may
experience abrupt changes in their structure and parameters (see [1]). One of the impor-
tant types of stochastic hybrid systems is the SDEs with Markovian switching (SDEwMSs).
In the study of the SDEwMSs, stability analysis has received a great deal of attention (see
[2–7] and the references therein).

As we know, a Brownian motion is a continuous stochastic process. However, in real
life, some systems may suffer from jump-type stochastic abrupt perturbations, such as
financial crisis, earthquakes, and hurricanes. In these cases, employing the Brown motions
to depict these systems cannot meet the needs of reality. At the same time, it is found that
Poisson jumps can describe these jump-type phenomena. It is, therefore, reasonable to
use Poisson jump processes to cope with such jump-type discontinuous systems (see, e.g.,
[8–13]). Results on the stability of stochastic systems with the Markovian switching and
Poisson jumps have been obtained, see, e.g., [14, 15].

Given an unstable SDEwMJ
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(
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)
dt + g

(
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)
dω(t) + h

(
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)
dN(t), (1)
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where x(t) ∈ Rn is the state. The details of (1) can be found in (4) below. As we know, it
is classical to design a feedback control u(x(t), t, r(t)) (based on the current state x(t)) to
make the controlled system

dx(t) =
[
f
(
x(t), t, r(t)

)
+ u

(
x(t), t, r(t)

)]
dt + g

(
x(t), t, r(t)

)
dω(t)

+ h
(
x(t), t, r(t)

)
dN(t) (2)

stable. When h ≡ 0, (2) becomes an SDEwMS. Many results on the stabilization problem of
SDEwMSs by state feedback controls without delay have been well studied (see [1, 16, 17]
and the references therein). However, due to the fact that there exists a time lag δ between
the time when the observation of the state is made and the time when the feedback control
reaches the system; therefore, the feedback control should be designed depending on a
past state x(t – δ) (see, e.g., [18–20]). Then the controlled system can be described by

dx(t) =
[
f
(
x(t), t, r(t)

)
+ u

(
x(t – δ), t, r(t)

)]
dt + g

(
x(t), t, r(t)

)
dω(t)

+ h
(
x(t), t, r(t)

)
dN(t). (3)

Paper by Mao et al. [18] was the first one to design a delay feedback control in the drift
part for an SDEwMS to make the unstable system become stable by using the linear ma-
trix inequalities and Lyapunov functionals. Based on such a feedback control, this paper
is concerned with the exponential mean-square stabilization of SDEwMSs. Fei et al. [21]
focused on the stabilization problem for a class Markovian jump linear systems with time
delay by the linear matrix inequalities. Along this line, Chen et al. [19, 20, 22] investigated
the neutral stochastic delay differential equations with Markovian switching by the Lya-
punov functions technique and the linear matrix inequalities. Hu et al. [23] investigated
the stabilization of SDEwMSs by a new theorem. Authors in [24–26] successfully used
the method of the Lyapunov functionals to study the stabilization by delay feedback con-
trols of highly nonlinear neutral stochastic delay differential equations with the Markovian
switching. Subsequently, Mei et al. [27] studied the exponential stabilization by delay feed-
back controls for highly nonlinear hybrid stochastic functional differential equations with
infinite delay, which generalizes the results of [24–26].

It is a pity that the above-mentioned work did not discuss the stabilization by delay
feedback controls for SDEwMJs. In reality, because of the movement of a Markov chain, a
stochastic system including several regimes may switch from one to the others. Moreover,
the increment of a Brownian motion is a zero mean, but for a Poisson jump, its increment
is a nonzero mean. Therefore, due to the difficulty stemming from the presence of the
Markovian switching and Poisson jump, more techniques are needed to study the stabil-
ity of SDEwMJs. The aim of this paper is to investigate the exponential stabilization of
SDEwMJs by designing a feedback control in the drift term with the delay δ. Moreover,
it is not only illustrated that the δ is bounded by δ̄ but also presented an implicit lower
bound for δ̄.

The remainder of this paper is arranged as follows: Sect. 2 introduces some preliminar-
ies. Section 3 is devoted to presenting the main results. In Sect. 4, an illustrative example
is provided to show the effectiveness of the obtained theory.
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2 Preliminaries
Throughout this paper, unless otherwise specified, the following notations are used. Let
R = (–∞, +∞), R+ = [0, +∞). Rn represents the n-dimensional Euclidean space, and |x|
denotes its norm of a vector x ∈ Rn. (�,F , P) indicating a complete probability space with
a filtration {Ft}t≥0 satisfying the usual conditions. For δ > 0, C([–δ, 0]; Rn) represents the
family of all continuous Rn-valued functions ϕ defined on [–δ, 0]. Denote by Cb

F0
(�; Rn)

the family of all F0-measurable bounded C([–δ, 0]; Rn)-valued random variables equipped
with the norm ‖ϕ‖ = sup–δ≤θ≤0 |ϕ(θ )|. For ∀x, y ∈ Rn, 〈x, y〉 or xT y represents the inner
product. Let {r(t)}t≥0 be a right-continuous Markov chain on the complete probability
space taking values in a finite state space S = {1, 2, . . . , N} with the generator � = (γij)N×N

given by

P
{

r(t + 	) = j|r(t) = i
}

=

⎧
⎨

⎩
γij	 + o(	), if i �= j,

1 + γii	 + o(	), if i = j,

where 	 > 0, lim	→0 o(	)/	 = 0, γij ≥ 0 is the transition rate from i to j for i �= j, and
γii = –

∑
j �=i γij (see [1]).

Consider the following n-dimensional unstable stochastic regime-switching jump equa-
tion, that is, the n-dimensional SDEwMJ

dx(t) =f
(
x(t), t, r(t)

)
dt + g

(
x(t), t, r(t)

)
dω(t) + h

(
x(t), t, r(t)

)
dN(t) (4)

on t ≥ t0 ≥ 0, with the initial data

x(t0) = x0 ∈ Cb
F0

(
�; Rn) and r(t0) = i0 ∈ S, (5)

where f , g, h : Rn × R+ × S → Rn, ω(t) is a scalar Brownian motion, and N(t) is a scalar
Poisson process with intensity λ > 0. Ñ(t) = N(t) – λt is a compensated Poisson process.
Moreover, B(t), N(t), and r(t) are assumed to be mutually independent of each other. To
achieve the goal of the stability, it is assumed that f (0, t, i) = g(0, t, i) = h(0, t, i) = 0 for all
t ≥ 0 and i ∈ S.

The aim of this paper is to design a control function u : Rn × R+ × S → Rn making the
unstable SDEwMJ (4) become stable. The form of the corresponding controlled SDEwMJ
is described by

dx(t) =
[
f
(
x(t), t, r(t)

)
+ u

(
x(t – δ), t, r(t)

)]
dt + g

(
x(t), t, r(t)

)
dω(t)

+ h
(
x(t), t, r(t)

)
dN(t) (6)

on t ≥ t0, with the initial value

xt0 = ϕ =
{

x(t0 + θ ) : –δ ≤ θ ≤ 0
} ∈ Cb

F0

(
�; Rn) and r(t0) = i0 ∈ S. (7)

The coefficients of SDEwMJ (4) are assumed to satisfy the following global Lipschitz
condition.
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(A1) There are four positive constants Li (i = 1, 2, 3) and K such that

∣∣f (x1, t, i) – f (x2, t, i)
∣∣ ≤ L1|x1 – x2|,

∣∣g(x1, t, i) – g(x2, t, i)
∣∣ ≤ L2|x1 – x2|,

∣
∣h(x1, t, i) – h(x2, t, i)

∣
∣ ≤ L3|x1 – x2|,

∣
∣u(x1, t, i) – u(x2, t, i)

∣
∣ ≤ K |x1 – x2|, (8)

for all x1, x2 ∈ Rn, t ∈ R+ and i ∈ S. Moreover, for all (t, i) ∈ R+ × S,
f (0, t, i) = g(0, t, i) = h(0, t, i) = 0, one can thus obtain the following linear growth
condition

∣∣f (x, t, i)
∣∣ ≤ L1|x|, ∣∣g(x, t, i)

∣∣ ≤ L2|x|, ∣∣h(x, t, i)
∣∣ ≤ L3|x|,

∣∣u(x, t, i)
∣∣ ≤ K |x|. (9)

Remark 1 Under Assumption (A1), the controlled SDEwMJ (6) admits a unique solution
x(t) satisfying E|x(t)|2 < ∞ for all t ≥ 0 corresponding to the initial value (7). The proof is
standard, and one thus omits it.

The auxiliary controlled SDEwMJ is presented as follows:

dy(t) =
[
f
(
y(t), t, r(t)

)
+ u

(
y(t), t, r(t)

)]
dt + g

(
y(t), t, r(t)

)
dω(t)

+ h
(
y(t), t, r(t)

)
dN(t). (10)

Similar to the proof of Theorem 3.8 in [1], one can obtain that under (A1), the auxiliary
controlled SDEwMJ (10) with the initial data y(t0) ∈ Cb

Ft0
(Rn) and r(t0) ∈ S has a unique

solution y(t) (t ≥ t0 ≥ 0), which satisfies E|y(t)|2 < ∞ for all t ≥ t0 ≥ 0.
Let C2,1(Rn × R+ × S; R+) be the family of non-negative functions V (x, t, i) defined on

(x, t, i) ∈ Rn × R+ × S, which are continuously twice differentiable in x and once in t. For
V ∈ C2,1(Rn × R+ × S; R+), define LV : Rn × R+ × S → R by

LV (x, t, i) = Vt(x, t, i) + Vx(x, t, i)
[
f (x, t, i) + u(x, t, i)

]

+
1
2

trace
[
gT (x, t, i)Vxx(x, t, i)g(x, t, i)

]

+ λ
[
V

(
x + h(x, t, i), t, i

)
– V (x, t, i)

]

+
N∑

j=1

γijV (x, t, j), (11)

where

Vt(x, t, i) =
∂V (x, t, i)

∂t
, Vx(x, t, i) =

(
∂V (x, t, i)

∂x1
,
∂V (x, t, i)

∂x2
, . . . ,

∂V (x, t, i)
∂xn

)

and

Vxx(x, t, i) =
(

∂2V (x, t, i)
∂xi∂xj

)

n×n
.
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Next, according to the Theorem 5.8 in Mao and Yuan [1], one can acquire the following
lemma in parallel, which will be used in the sequel.

Lemma 2.1 Let (A1) hold. Let p, c1, c2, and λ1 be positive constants. For all (y, t, i) ∈ Rn ×
R+ × S, assume that there is a function V ∈ C2,1(Rn × R+ × S; R+) satisfying

c1|y|p ≤ V (y, t, i) ≤ c2|y|p (12)

and

LV (y, t, i) ≤ –λ1|y|p. (13)

Then

E
∣
∣y(t)

∣
∣p ≤ c2

c1
e– λ1

c2
(t–t0)E

∣
∣y(t0)

∣
∣p, (14)

for all y(t0) ∈ Cb
Ft0

(Rn), (t0, r(t0)) ∈ R+ × S. In other words, the trivial solution of the auxil-
iary controlled SDEwMJ (10) is the pth moment exponentially stable.

From Lemma 2.1, one can obtain the auxiliary controlled SDEwMJ (10) is the pth mo-
ment exponentially stable. While the pth moment exponential stability of SDEwMJ (10)
was well studied (see, e.g., [1, 17]). Therefore, one can assume that (10) is the pth moment
exponentially stable in this paper, which is given as follows.

(A2) Let p > 0. Assume that there is a pair of positive constants M and γ such that the
solution of the auxiliary controlled SDEwMJ (10) satisfies

E
∣
∣y

(
t; t0, r(t0)

)∣∣p ≤ Me–γ (t–t0)E
∣
∣y(t0)

∣
∣p,∀t ≥ t0 ≥ 0 (15)

for all y(t0) ∈ Cb
Ft0

(Rn), (t0, r(t0)) ∈ R+ × S.

3 Main results
The aim of this paper is to show the controlled SDEwMJ (6) is almost surely exponentially
stable. Before proving this result, a number of lemmas should be proved.

Lemma 3.1 Let (A1) hold, and p ∈ (0, 1). Then, for any t0 ≥ 0 and T ≥ 0,

sup
t0≤t≤t0+T+δ

E
∣
∣x(t)

∣
∣p ≤ M

p
2
1 E‖ϕ‖p, (16)

sup
t0≤t≤t0+T

E
(

sup
0≤ν≤δ

∣∣x(t + ν) – x(t)
∣∣p

)
≤ M

p
2
2 E‖ϕ‖p, (17)

and

E
(

sup
t0≤t≤t0+T+δ

∣∣x(t)
∣∣p

)
≤ M

p
2
3 E‖ϕ‖p, (18)

where

M1 �: M1(p, δ, T) = (1 + kδ)e[2(L1+λL3)+L2
2+λL2

3+2K ](T+δ), (19)
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M2 �: M2(p, δ, T) = 4
(
L2

1δ + 4L2
2 + 2λ2L2

3δ + 8λL2
3 + K2δ

)
M1δ, (20)

M3 �: M3(p, δ, T) = 5
[
1 + L2

1(T + δ) + K2(T + δ) + 4L2
2 + 2λ2L2

3(T + δ)

+ 8λL2
3
]
)M1(T + δ). (21)

Proof (1) Applying the Itô’s formula to |x(t)|2 and taking the expectation, one obtains

E
∣∣x(t)

∣∣2 = E
∣∣x(t0)

∣∣2 + 2E
∫ t

t0

xT (s)f
(
x(s), s, r(s)

)
ds

+ 2E
∫ t

t0

xT (s)u
(
x(s – δ), s, r(s)

)
ds

+ E
∫ t

t0

∣∣g
(
x(s), s, r(s)

)∣∣2 ds

+ λE
∫ t

t0

[
h2(x(s), s, r(s)

)
+ 2xT (s)h

(
x(s), s, r(s)

)]
ds. (22)

According to (9), one gains

E
∣
∣x(t)

∣
∣2 ≤ E

∣
∣x(t0)

∣
∣2 + 2L1E

∫ t

t0

∣
∣x(s)

∣
∣2 ds + 2KE

∫ t

t0

∣
∣x(s)

∣
∣
∣
∣x(s – δ)

∣
∣ds

+ L2
2E

∫ t

t0

∣∣x(s)
∣∣2 ds + λL2

3E
∫ t

t0

∣∣x(s)
∣∣2 ds

+ 2λL3E
∫ t

t0

∣
∣x(s)

∣
∣2 ds. (23)

By basic inequality, one can get

2KE
∫ t

t0

∣∣x(s)
∣∣∣∣x(s – δ)

∣∣ds

≤ KE
∫ t

t0

∣
∣x(s)

∣
∣2 ds + KE

∫ t

t0

∣
∣x(s – δ)

∣
∣2 ds

= KE
∫ t

t0

∣∣x(s)
∣∣2 ds + KE

∫ t–δ

t0–δ

∣∣x(ν)
∣∣2 dν

= KE
∫ t

t0

∣∣x(s)
∣∣2 ds + KE

∫ t0

t0–δ

∣∣x(ν)
∣∣2 dν + KE

∫ t–δ

t0

∣∣x(ν)
∣∣2 dν

≤ 2KE
∫ t

t0

∣
∣x(s)

∣
∣2 ds + KδE‖ϕ‖2. (24)

According to (6) and substituting (24) into (23), one can gain

E
∣
∣x(t)

∣
∣2

≤ E
∣
∣x(t0)

∣
∣2 +

[
2(L1 + λL3) + L2

2 + λL2
3 + 2K

] ∫ t

t0

E
∣
∣x(s)

∣
∣2 ds + KδE‖ϕ‖2

≤ (1 + Kδ)E‖ϕ‖2 +
[
2(L1 + λL3) + L2

2 + λL2
3 + 2K

] ∫ t

t0

(
sup

t0≤ν≤s
E
∣∣x(ν)

∣∣2
)

ds. (25)
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Therefore,

sup
t0≤ν≤t

E
∣∣x(ν)

∣∣2

≤ (1 + Kδ)E‖ϕ‖2 +
[
2(L1 + λL3) + L2

2 + λL2
3 + 2K

]

×
∫ t

t0

(
sup

t0≤ν≤s
E
∣
∣x(ν)

∣
∣2

)
ds. (26)

By the Gronwall inequality, one obtains

sup
t0≤ν≤t0+T+δ

E
∣∣x(ν)

∣∣2 ≤ (1 + Kδ)e[2(L1+λL3)+L2
2+λL2

3+2K ](T+δ)E‖ϕ‖2

�: M1E‖ϕ‖2. (27)

Applying the Hölder inequality, one has

sup
t0≤t≤t0+T+δ

E
∣
∣x(t)

∣
∣p ≤ M

p
2
1 E‖ϕ‖p. (28)

(2) For 0 ≤ ν ≤ δ, it follows from (6) that one can get

x(t + ν) – x(t) =
∫ t+ν

t

[
f
(
x(s), s, r(s)

)
+ u

(
x(s – δ), s, r(s)

)]
ds

+
∫ t+ν

t
g
(
x(s), s, r(s)

)
dω(s)

+
∫ t+ν

t
h
(
x(s), s, r(s)

)
dN(s). (29)

Then

∣∣x(t + ν) – x(t)
∣∣2 ≤ 4

∣
∣∣
∣

∫ t+ν

t
f
(
x(s), s, r(s)

)
ds

∣
∣∣
∣

2

+ 4
∣
∣∣∣

∫ t+ν

t
u
(
x(s – δ), s, r(s)

)
ds

∣
∣∣∣

2

+ 4
∣∣
∣∣

∫ t+ν

t
g
(
x(s), s, r(s)

)
dω(s)

∣∣
∣∣

2

+ 4
∣∣
∣∣

∫ t+ν

t
h
(
x(s), s, r(s)

)
dN(s)

∣∣
∣∣

2

≤ 4ν

∫ t+ν

t
f 2(x(s), s, r(s)

)
ds

+ 4ν

∫ t+ν

t
u2(x(s – δ), s, r(s)

)
ds

+ 4
∣∣
∣∣

∫ t+ν

t
g
(
x(s), s, r(s)

)
dω(s)

∣∣
∣∣

2

+ 8λ2ν

∫ t+ν

t
h2(x(s), s, r(s)

)
ds
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+ 8
∣
∣∣
∣

∫ t+ν

t
h
(
x(s), s, r(s)

)
dÑ(s)

∣
∣∣
∣

2

. (30)

For
∫ t+ν

t g(x(s), s, r(s)) dω(s) and
∫ t+ν

t h(x(s), s, r(s)) dÑ(s) are martingales, thus by the Doob
martingale inequality, one gains

E
(

sup
0≤ν≤δ

∣
∣x(t + ν) – x(t)

∣
∣2

)
≤ 4δE

∫ t+δ

t
f 2(x(s), s, r(s)

)
ds

+ 4δE
∫ t+δ

t
u2(x(s – δ), s, r(s)

)
ds

+ 16E
∫ t+δ

t
g2(x(s), s, r(s)

)
ds

+ 8λ2δE
∫ t+δ

t
h2(x(s), s, r(s)

)
ds

+ 32λE
∫ t+δ

t
h2(x(s), s, r(s)

)
ds. (31)

Applying (A1), one can further get

E
(

sup
0≤ν≤δ

∣
∣x(t + ν) – x(t)

∣
∣2

)

≤ 4δL2
1E

∫ t+δ

t

∣
∣x(s)

∣
∣2 ds + 4δK2E

∫ t+δ

t

∣
∣x(s – δ)

∣
∣2 ds

+ 16L2
2E

∫ t+δ

t

∣∣x(s)
∣∣2 ds + 8λ2L2

3δE
∫ t+δ

t

∣∣x(s)
∣∣2 ds

+ 32λL2
3E

∫ t+δ

t

∣
∣x(s)

∣
∣2 ds

�:
(
4L2

1δ + 16L2
2 + 8λ2L2

3δ + 32λL2
3
)
E

∫ t+δ

t

∣
∣x(s)

∣
∣2 ds

+ 4K2δE
∫ t+δ

t

∣∣x(s – δ)
∣∣2 ds. (32)

In fact, for t ∈ [t0 – δ, t0], E|x(t)|2 ≤ E‖ϕ‖2 ≤ M1E‖ϕ‖2. Together with (27), one can get
E|x(t)|2 ≤ M1E‖ϕ‖2 for t ∈ [t0 – δ, t0 + T + δ]. Then

sup
t0≤t≤t0+T

(
E
(

sup
0≤ν≤δ

∣∣x(t + ν) – x(t)
∣∣2

))

≤ (
4L2

1δ + 16L2
2 + 8λ2L2

3δ + 32λL2
3
)
M1δE‖ϕ‖2 + 4δK2M1δE‖ϕ‖2

= 4
(
L2

1δ + 4L2
2 + 2λ2L2

3δ + 8λL2
3 + K2δ

)
M1δE‖ϕ‖2 �: M2E‖ϕ‖2. (33)

By the Hölder inequality, one has

sup
t0≤t≤t0+T

(
E
(

sup
0≤ν≤δ

∣
∣x(t + ν) – x(t)

∣
∣p

))
≤ M

p
2
2 E‖ϕ‖p. (34)
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(3) It follows from (6) that

x(t) = x(t0) +
∫ t

t0

[
f
(
x(s), s, r(s)

)
+ u

(
x(s – δ), s, r(s)

)]
ds

+
∫ t

t0

g
(
x(s), s, r(s)

)
dω(s) +

∫ t

t0

h
(
x(s), s, r(s)

)
dN(s). (35)

Using the Hölder inequality and (A1), one gains

∣∣x(t)
∣∣2 ≤ 5

∣∣x(t0)
∣∣2 + 5

∣
∣∣
∣

∫ t

t0

f
(
x(s), s, r(s)

)
ds

∣
∣∣
∣

2

+ 5
∣∣
∣∣

∫ t

t0

u
(
x(s – δ), s, r(s)

)
ds

∣∣
∣∣

2

+ 5
∣∣∣
∣

∫ t

t0

g
(
x(s), s, r(s)

)
dω(s)

∣∣∣
∣

2

+ 5
∣
∣∣
∣

∫ t

t0

h
(
x(s), s, r(s)

)
dN(s)

∣
∣∣
∣

2

≤ 5
∣
∣x(t0)

∣
∣2 + 5(t – t0)

∫ t

t0

f 2(x(s), s, r(s)
)

ds

+ 5(t – t0)
∫ t

t0

u2(x(s – δ), s, r(s)
)

ds

+ 5
∣∣
∣∣

∫ t

t0

g
(
x(s), s, r(s)

)
dω(s)

∣∣
∣∣

2

+ 10λ2(t – t0)
∫ t

t0

h2(x(s), s, r(s)
)

ds

+ 10
∣∣
∣∣

∫ t

t0

h
(
x(s), s, r(s)

)
dÑ(s)

∣∣
∣∣

2

. (36)

By the Doob martingale inequality, one can gain

E
(

sup
t0≤t≤t0+T+δ

∣
∣x(t)

∣
∣2

)

≤ 5E
∣
∣x(t0)

∣
∣2 + 5(T + δ)E

∫ t0+T+δ

t0

f 2(x(s), s, r(s)
)

ds

+ 5(T + δ)E
∫ t0+T+δ

t0

u2(x(s – δ), s, r(s)
)

ds

+ 20E
∫ t0+T+δ

t0

g2(x(s), s, r(s)
)

ds

+ 10λ2(T + δ)E
∫ t0+T+δ

t0

h2(x(s), s, r(s)
)

ds

+ 40λE
∫ t0+T+δ

t0

h2(x(s), s, r(s)
)

ds

≤ 5E‖ϕ‖2 + 5L2
1(T + δ)

∫ t0+T+δ

t0

E
∣
∣x(s)

∣
∣2 ds
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+ 5K2(T + δ)
∫ t0+T+δ

t0

E
∣∣x(s – δ)

∣∣2 ds

+ 20L2
2

∫ t0+T+δ

t0

E
∣∣x(s)

∣∣2 ds

+ 10λ2L2
3(T + δ)E

∫ t0+T+δ

t0

E
∣
∣x(s)

∣
∣2 ds

+ 40λL2
3E

∫ t0+T+δ

t0

E
∣∣x(s)

∣∣2 ds. (37)

By (27), one obtains

E
(

sup
t0≤t≤t0+T+δ

∣∣x(t)
∣∣2

)

≤ 5
[
1 + L2

1(T + δ) + K2(T + δ) + 4L2
2 + 2λ2L2

3(T + δ) + 8λL2
3
]

× (T + δ)M1E‖ϕ‖2

�: M3E‖ϕ‖2. (38)

Applying the Hölder inequality, one can compute

E
(

sup
t0≤t≤t0+T+δ

∣∣x(t)
∣∣2

)
≤ M

p
2
3 E‖ϕ‖p. (39)

The proof is complete. �

Lemma 3.2 Let (A1) hold and p ∈ (0, 1). Given t0 ≥ δ and T ≥ 0 arbitrarily. Denote
y(t; x(t0), r(t0), t0) = y(t) for all t ≥ t0. Then

E
∣
∣x(t) – y(t)

∣
∣p ≤ M

p
2
4 E‖ϕ|p, for ∀t ∈ [t0, t0 + T + δ], (40)

where

M4 �: M4(p, δ, T) = M2K(T + δ)e[2L1+L2
2+λL2

3+2λL3+3K ](T+δ). (41)

Proof It follows from (6) and (10) that one gains

d
[
x(t) – y(t)

]
=

[
f
(
x(t), t, r(t)

)
– f

(
y(t), t, r(t)

)]
dt

+
[
u
(
x(t – δ), t, r(t)

)
– u

(
y(t), t, r(t)

)]
dt

+
[
g
(
x(t), t, r(t)

)
– g

(
y(t), t, r(t)

)]
dω(t)

+
[
h
(
x(t), t, r(t)

)
– h

(
y(t), t, r(t)

)]
dN(t). (42)

Applying the Itô’s formula to |x(t) – y(t)|2, one gets

E
∣
∣x(t) – y(t)

∣
∣2

= E
∣
∣x(t0) – y(t0)

∣
∣2 + 2E

∫ t

t0

(
x(s) – y(s)

)T(
f
(
x(s), s, r(s)

)
– f

(
y(s), s, r(s)

))
ds
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+ 2E
∫ t

t0

(
x(s) – y(s)

)T(
u
(
x(s – δ), s, r(s)

)
– u

(
y(s), s, r(s)

))
ds

+ E
∫ t

t0

∣
∣g

(
x(s), s, r(s)

)
– g

(
y(s), s, r(s)

)∣∣2 ds

+ λE
∫ t

t0

∣∣h
(
x(s), s, r(s)

)
– h

(
y(s), s, r(s)

)∣∣2 ds

+ 2λE
∫ t

t0

(
x(s) – y(s)

)T(
h
(
x(s), s, r(s)

)
– h

(
y(s), s, r(s)

))
ds. (43)

Using (A1), one can further obtain

E
∣∣x(t) – y(t)

∣∣2

≤ 2L1

∫ t

t0

E
∣∣x(s) – y(s)

∣∣2 ds + 2KE
∫ t

t0

∣∣x(s) – y(s)
∣∣∣∣x(s – δ) – y(s)

∣∣ds

+ L2
2

∫ t

t0

E
∣
∣x(s) – y(s)

∣
∣2 ds + λL2

3

∫ t

t0

E
∣
∣x(s) – y(s)

∣
∣2 ds

+ 2λL3

∫ t

t0

E
∣∣x(s) – y(s)

∣∣2 ds

�:
(
2L1 + L2

2 + λL2
3 + 2λL3

)∫ t

t0

E
∣
∣x(s) – y(s)

∣
∣2 ds

+ 2KE
∫ t

t0

∣∣x(s) – y(s)
∣∣∣∣x(s – δ) – y(s)

∣∣ds. (44)

Noting that

E
∫ t

t0

∣∣x(s) – y(s)
∣∣∣∣x(s – δ) – y(s)

∣∣ds

= E
∫ t

t0

∣
∣x(s) – y(s)

∣
∣
∣
∣x(s – δ) – x(s) + x(s) – y(s)

∣
∣ds

≤ E
∫ t

t0

∣∣x(s) – y(s)
∣∣∣∣x(s – δ) – x(s)

∣∣ds + E
∫ t

t0

∣∣x(s) – y(s)
∣∣2 ds

≤ 3
2

∫ t

t0

E
∣
∣x(s) – y(s)

∣
∣2 ds +

1
2

∫ t

t0

E
∣
∣x(s – δ) – x(s)

∣
∣2 ds. (45)

Substituting (45) into (44), one has

E
∣
∣x(t) – y(t)

∣
∣2 ≤ (

2L1 + L2
2 + λL2

3 + 2λL3 + 3K
) ∫ t

t0

E
∣
∣x(s) – y(s)

∣
∣2 ds

+ K
∫ t

t0

E
∣∣x(s – δ) – x(s)

∣∣2 ds. (46)

By (33), one can get for t ∈ [t0, t0 + T + δ],

E
∣
∣x(t) – y(t)

∣
∣2 ≤ (

2L1 + L2
2 + λL2

3 + 2λL3 + 3K
) ∫ t

t0

E
∣
∣x(s) – y(s)

∣
∣2 ds

+ M2K(T + δ)E‖ϕ‖2. (47)
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According to the Gronwall inequality, one gets

E
∣
∣x(t) – y(t)

∣
∣2 ≤ M4E‖ϕ‖2. (48)

Further, using the Hölder inequality, it follows that

E
∣∣x(t) – y(t)

∣∣p ≤ M
p
2
4 E‖ϕ‖p. (49)

The proof is complete. �

Theorem 3.3 Let (A1) and (A2) hold. There is a positive number δ̄ such that the solution
of the controlled SDEwMJ (6) is almost surely exponentially stable provided δ < δ̄, that is,

lim sup
t→∞

log(|x(t; xt0 , r(t0), t0)|)
t

< 0 a.s. (50)

In practice, one can choose a constant ε ∈ (0, 1) and set T = 1
γ

log( 4pM
ε

). Let δ̄ is the unique
root to the following equation

2p(M
p
2
2 + 2pM

p
2
4
)

= 1 – ε, (51)

where M2 and M4 have been defined in (20) and (41), respectively.

Remark 2 Note that the left side of (51) is an increasing continuous function of δ. When
δ = 0, one can obtain M2 = M4 = 0. Therefore, the left side of (51) is 0 when δ = 0. More-
over, the left side of (51) tends to +∞ when δ → +∞. Then, one can assert that the equa-
tion (51) admits a unique positive root δ̄. The root δ̄ can be obtained numerically, but its
explicit form can not be expressed.

Proof Step 1: Denote x(t; xt0 , r(t0), t0) = x(t) and r(t; r(t0), t0) = r(t). Fix δ ∈ (0, δ̄). Let us
consider x(t) on [δ, 2δ + T], which can be regarded as the solution of (6) with the initial
value xδ and r(δ) at t = δ. Also consider the solution y(t; x(δ), r(δ), δ) of (10) on t ∈ [δ, δ + T]
with the initial value x(δ) and r(δ) at t = δ. Denote y(δ + T ; x(δ), r(δ), δ) = y(δ + T). By (A2),
one can get

E
∣∣y(δ + T)

∣∣p ≤ Me–γ T E
∣∣x(δ)

∣∣p. (52)

For

E
∣
∣x(δ + T)

∣
∣p ≤ 2pE

∣
∣x(δ + T) – y(δ + T)

∣
∣p + 2pE

∣
∣y(δ + T)

∣
∣p, (53)

then it follows from Lemma 3.2 and (52) that one gets

E
∣∣x(δ + T)

∣∣p ≤ 2pM
p
2
4 E‖xδ‖p + 2pMe–γ T E

∣∣x(δ)
∣∣p

≤ 2p(Me–γ T + M
p
2
4
)
E‖xδ‖p. (54)
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Applying (17) and (54), one can further get

E‖x2δ+T‖p = E
(

sup
–δ≤θ≤0

∣∣x(2δ + T + θ )
∣∣p

)
= E

(
sup

0≤v≤δ

∣∣x(δ + T + v)
∣∣p

)

= E
(

sup
0≤v≤δ

∣∣x(δ + T + v) – x(δ + T) + x(δ + T)
∣∣p

)

≤ 2pE
(

sup
0≤v≤δ

∣
∣x(δ + T + v) – x(δ + T)

∣
∣p

)
+ 2pE

∣
∣x(δ + T)

∣
∣p

≤ 2pM
p
2
2 E‖xδ‖p + 4p(Me–γ T + M

p
2
4
)
E‖xδ‖p. (55)

Choose T = 1
γ

log( 4pM
ε

). Therefore,

E‖x2δ+T‖p ≤ [
ε + 2p(M

p
2
2 + 2pM

p
2
4
)]

E‖xδ‖p. (56)

For δ < δ̄, then it follows from (51) that ε + 2p(M
p
2
2 + 2pM

p
2
4 ) < 1, one can assert that there

exists a λ̃ > 0 such that ε + 2p(M
p
2
2 + 2pM

p
2
4 ) = e–λ̃(δ+T). Then

E‖x2δ+T‖p ≤ e–λ̃(δ+T)E‖xδ‖p. (57)

Step 2: Consider the solution x(t) on t ∈ [2δ + T , δ + 2(δ + T)], which can be regarded as
the solution of (6) with the initial data x2δ+T and r(2δ + T) at t = 2δ + T . Similar to proof
of (57), one can prove

E‖xδ+2(δ+T)‖p ≤ e–λ̃(δ+T)E‖x2δ+T‖p ≤ e–2λ̃(δ+T)E‖xδ‖p. (58)

By induction, one gains

E‖xδ+k(δ+T)‖p ≤ e–λ̃(δ+T)E‖xδ+(k–1)(δ+T)‖p ≤ · · · ≤ e–kλ̃(δ+T)E‖xδ‖p, (59)

for all k = 1, 2, . . . . Using (18) and (59), one gets

E
(

sup
δ+k(δ+T)≤t≤δ+(k+1)(T+δ)

∣∣x(t)
∣∣p

)
≤ M

p
2
3 E‖xδ+k(δ+T)‖p

≤ M
p
2
3 e–kλ̃(δ+T)E‖xδ‖p, (60)

for all k = 0, 1, 2, . . . . Hence, for t ∈ [δ + k(δ + T), δ + (k + 1)(δ + T)], applying the Chebyshev
inequality, one gets

E
(

sup
δ+k(δ+T)≤t≤δ+(k+1)(T+δ)

∣∣x(t)
∣∣p ≥ e– 1

2 kλ̃(δ+T)
)

≤ M
p
2
3 e– 1

2 kλ̃(δ+T)E‖xδ‖p. (61)

By the Borel–Cantelli lemma, one obtains for almost all ω ∈ � that there exists a positive
integer k0 satisfying

sup
δ+k(δ+T)≤t≤δ+(k+1)(T+δ)

∣
∣x(t)

∣
∣p < e– 1

2 kλ̃(δ+T),∀k ≥ k0,
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which implies

lim sup
t→∞

1
t

log
(∣∣x(t)

∣
∣) ≤ –

λ̃

2p
a.s.

The proof is complete. �

Remark 3 It follows from Theorem 3.3 that an unstable SDEwMJ can be stabilized by a
delay feedback control. It is well known that SDEs, SDEwMSs, and SDEs with Poisson
jumps are the special cases of SDEwMJs. Though [1, 16, 17] well studied the stabilization
problem of SDEwMSs by state feedback controls, authors in these papers neither designed
the feedback controls with delay nor took Poisson jumps into account. Authors in [18–20]
designed the feedback controls depending on a past state, but they did not consider the
Poisson jumps. Therefore, the results in this paper cover part of the results in [1, 16–20].

4 An example
In this section, an example is provided to illustrate the obtained results. Before giving an
example, a lemma is presented as follows.

Lemma 4.1 ([28]) The Markov chain r(t) is irreducible, that is, π� = 0, and
∑

i∈S πi = 1
has a unique stationary distribution π = (π1,π2, . . . ,πN ) ∈ R1×N satisfying πi > 0 for each
i = 1, 2, . . . , N .

Example Let B(t) be a scalar Brown motion and N(t) be a Poisson process with intensity
λ = 1. Let r(t) be a right-continuous Markov chain taking values S = {1, 2} with generator

� = (γij)2×2 =

[
–1 1
1 –1

]

.

It follows from Lemma 4.1 that this Markov chain r(t) is irreducible and π = (1/2, 1/2).
Consider the following 1-dimensional Black-Scholes model with the Markovian switching
and Poisson jumps

dx(t) = a
(
r(t)

)
x(t) dt + b

(
r(t)

)
x(t) dω(t) + c

(
r(t)

)
x(t) dN(t), t ≥ 0, (62)

with the initial value y(0) = 1 and r(0) = 1, and

if i = 1, a(1) = 0.1, b(1) = 0.2, c(1) = 0.02,

if i = 2, a(2) = 0.12, b(2) = 0.1, c(2) = 0.01.

It is easy to check that L1 = 0.12, L2 = 0.2, L3 = 0.02. It follows from Theorem 3.1 in [28]
that one can get

lim
t→∞

1
t

log
(∣∣x(t)

∣∣) = �2
i=1πi

(
a(i) –

1
2

b2(i) + λ log
∣∣1 + c(i)

∣∣
)

= 0.1124 > 0 a.s.

That is, the system (62) is not almost surely exponentially stable.
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Let us now design a delay feedback control to stabilize the system (62). Consider a linear
delay feedback controller of the form u(x, t, i) = d(i)x (i = 1, 2). Therefore, the controlled
system is given by

dx(t) =
[
a
(
r(t)

)
x(t) + d

(
r(t)

)
x(t – δ)

]
dt + b

(
r(t)

)
x(t) dB(t) + c

(
r(t)

)
x(t) dN(t), (63)

where d(1) = –1.3 and d(2) = –1.2. So, the condition (A1) is satisfied with L1 = 0.12, L2 =
0.2, L3 = 0.02 and K = 1.3.

The auxiliary controlled system is of the form

dy(t) =
[
a
(
r(t)

)
y(t) + d

(
r(t)

)
y(t)

]
dt + b

(
r(t)

)
y(t) dB(t) + c

(
r(t)

)
y(t) dN(t). (64)

Set V (y, i, t) = |y|p (i = 1, 2) and p = 0.999. One can compute for ∀i = 1, 2,

LV (y, i, t) ≤ –1.0689|y|p. (65)

Therefore, c1 = c2 = 1, λ1 = 1.0689. It follows from Lemma 2.1 that the auxiliary controlled
system (64) is the pth moment exponentially stable with M = c2/c1 = 1 and γ = λ1/c2 =
1.0689, that is, the condition (A2) is true. Choose ε = 0.95, thus T = 1

γ
log( 4pM

ε
) = 1.3436.

By computing, one can choose δ < δ̄ = 4.5262×10–7, where δ̄ is the unique positive root of
(51). Then all the conditions of Theorem 3.3 are satisfied. Therefore, the controlled system
(63) is almost surely exponentially stable.

5 Conclusion
So far, there are few results on the stabilization analysis of SDEwMJs. This paper dis-
cussed that an unstable SDEwMJ could be stabilized by a delayed feedback control u(x(t –
δ), t, r(t)) designed in the drift term, and the delay δ is bounded by a constant δ̄. Moreover,
the implicit lower bound for δ̄ can be computed numerically. As a product, the almost sure
exponential stability of the controlled SDEwMJ is obtained. An example is also given to
verify the obtained results.
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