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1 Introduction
It is well known that the Triebel-Lizorkin spaces contain many important function spaces
such as Lebesgue spaces, Hardy spaces, Sobolev spaces, and Lipschitz spaces. Over the
last several years, a considerable amount of attention has been given to investigate the
boundedness for singular integral operators with various rough kernels on the Triebel—-
Lizorkin spaces. Particularly, many scholars devoted to studying the bounds for singular
integral operators with singularity along various sets under the rough kernels Q € H!(S"!)
and #z € A, (R,) for some y > 1. For example, see [10] for the polynomial mappings, [29]
for the homogeneous mappings, [27] for the surfaces to revolution. It is unknown whether
the singular integral operators associated to polynomial curves under the rough kernels
are bounded on the Triebel-Lizorkin spaces. The main purpose of this paper is to address
the question. In addition, we establish the bounds for the related maximal singular integral
operators on the Lebesgue and Triebel-Lizorkin spaces.

Before stating our main results, let us recall some pertinent definitions, notations, and
backgrounds. Let # > 2 be an integer and let S”! denote the unit sphere in R” equipped
with the normalized Lebesgue measure do. Let € L}(S"!) be a homogeneous function

of degree zero on R” and satisfy

/ Q(u)do (u) = 0. (1.1)
gn-1
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The singular integral operator T}, is defined as

h
2O - )y (2)

Thaf (x) = p.v./
RYI
where f € S(R") (the Schwartz class) and #z € A;(R,). For y > 0, the notation A, (R,)
denotes the set of all measurable functions /# on R, := (0, 00) satisfying

1 R 1/y
IAlla,®,) = Sup(l—2 / |h(e)|” dt) < 0.
R>0 0

It is not difficult to see that L°(R,) = A (R}) € A, (R,) € A, (R,) for 0 < y; < 5 < 00.
For the sake of simplicity, we denote T}, o = Tq when h = 1.

The theory of singular integral originated in Calderén and Zygmund’s work [4] in which
they used the rotation method to establish the LZ(R")(1 < p < 00) of Tq if 2 € Llog L(S" ™).
Since then, more and more scholars have been devoted to studying the boundedness of
singular integrals with various rough kernels. Particularly, Coifman and Weiss [12] proved
that T is of type (p, p) for 1 < p < 00 if Q € H'(S"™1) (see also [15]). It was remarkable that
Q € H'(S" 1) turned out to be the weakest size condition for the L” boundedness of T
up to now. Later on, an active extension to the theory was due to Fefferman [23] who dis-
covered that the Calder6n-Zygmund rotation method is no longer available if T}, ¢ is also
rough in the radial direction, for instance # € L*(R,), so that new methods must be ad-
dressed. More precisely, Fefferman [23] showed that T}, is of type (p,p) for 1 < p < o0 if
Q € Lip, (S"!) for some o > 0 and & € L™(R,). Fefferman’s result was later improved by
Namazi [32] by assuming © € L1(S"!) for some ¢ > 1 instead of 2 € Lip,(S"!). Mean-
while, Duoandikoetxea and Rubio de Francia [16] used the Littlewood—Paley theory to
improve the results to the case 2 € L9(S"™!) for any ¢ > 1 and / € A»(R,). The bounded-
ness for rough singular integral operators on Tribel-Lizorkin spaces has also been stud-
ied extensively by many authors. In 2002, Chen, Fan, and Ying [5] first showed that T
is bounded on EL(R") if Q € L"(S™!) for some r > 1. Later on, the result was extended
and improved by many authors. For example, see [2, 6] for the case Q € Fz(S") (the
Grafakos—Stefanov function class in [25]), [9, 10] for the case Q € H(S"1).

For the operators T and T}, q, the singularities are along the diagonal {x = y}. However,
many problems in analysis have led one to consider singular integral operators with sin-
gularity along more general sets. One of the principal motivations for the study of such
operators is the requirements of several complex variables and large classes of “subelliptic”
equations (see [37, 39]). So more and more scholars are devoted to studying the L” bounds
for rough singular integral operators with singularity along various sets. For example, see
[3, 22, 34] for polynomial mappings, [17, 19] for real-analytic submanifolds, [11, 28] for
homogeneous mappings, [1, 18, 20, 26] for polynomial curves. Other interesting works
can be found in [7, 8, 35, 36, 42], among others.

In this paper we focus on the singular integrals associated to polynomial curves with
rough kernels. Let /4,2 be given as in (1.2) and P be a real polynomial on R satisfying
P(0) = 0. For a function ¢ : R, — R, we define the singular integral operator associated to
polynomial compound curves {P(¢(|y|))y/|y];y € R"} by

I
Thopef (%) = p.v. / Sx=P(e(Iy1))y/Iy1) W dy, (1.3)

R”
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where f € S(R"). When ¢(f) = t, we denote T} qp, = Tjop. Particularly, Tyop = Tho
when P(t) = t. In 1997, Fan and Pan [20] first established the L? boundedness for T}, q p
if h € L°(R,) and 2 € H*(S"1). Subsequently, Al-Hasan and Pan [1] improved the result
by establishing the following.

Theorem A ([1]) Leth € L®(R,) and Q € HY(S"!) satisfy (1.1). Then, for 1 < p < oo, there
exists a constant C > 0 independent of h, Q2 and the coefficients of P such that

I Thepf llr@ny < Cllallro@o R gy If lr@n,  Yf € LP(R”).

Later on, the L” mapping properties for 7)o p have been investigated by many au-
thors. For example, see [18] for the case # =1 and Q € F3(S"!), [26] for the case
Q e Llog L(S™™).

Based on (2.4) and Theorem A, a natural question is the following.

Question 1.1 Is Tj,qp bounded on Fy(R”) if 1 € A, (R,) for some y € (1,00] and Q €
Hl(sn—l)?

Our investigation will not only address this question, but also deal with a more general
class of operators. More specifically, we have the following result.

Theorem 1.1 Let P be a real polynomial on R satisfying P(0) = 0 and ¢ € §; or §,. Here,
51 (resp., F2) is the set of all functions ¢ : R, — R satisfying the following condition (a)
(resp., (b)):
(a) ¢ is an increasing C' function such that t¢'(t) > Cpp(t) and ¢(2t) < cpp(¢) for all
t >0, where Cy and cy are independent of t.
(b) ¢ is a decreasing C* function such that t¢'(t) < —Cyp(t) and ¢(t) < cp¢(2¢) for all
t >0, where Cy and cy are independent of t.
Suppose that Q € H'(S"!) satisfies (1.1) and h € A, (R,) for some y € (1,00].
Then
(i) Fora eRand (1/p,1/q) € R,, there exists a constant C > 0 independent of
h,y, 2 and the coefficients of P such that

| Tnsepaf lpagen < C¥ Nl s, @l s I L o e

1 )2,

Here, R, is the interior of the convex hull of three squares (%, % +

1 1 1)2 1 142
G~ mmeyy 2) 5 and (3,1 -5,)"
(i) Fora>0and (1/p,1/q) € R,, there exists a constant C > 0 independent of

h,y, 2 and the coefficients of P such that

”Th,Q,P,(pf”pg’q(Rn) = CV,”h”Ay(]RJr)”Q”Hl(sn—l)”f”pg'q(]]gn)'

Remark 1.1 There are some model examples in the class §; such as t*(« > 0),t*(In(1 +
t))?(a, B > 0),¢1Inln(e + ¢), real-valued polynomials P on R with positive coefficients and
P(0) = 0, and so on. We now give examples in the class , such as #*(§ < 0) and £ In(1 +
1/t). It was pointed out in [26] that for ¢ € §; (or §3) there exists a constant B, > 1 such
that p(26) = B,g(0) (or ¢(t) = Byp(20)).
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Remark 1.2 (i) It is clear that R,;, C R,, for y1 < y» and R = (0,1) x (0,1). In view of
(2.4), we see that Theorem 1.1 essentially improved and generalized Theorem A.

(ii) Our methods used to deal with Fourier transform estimates of some measures are
different from those in the proof of Theorem A. In fact, the authors in [1] used the TT*
method to prove Theorem A. However, the TT* method is not needed in the proof of
Theorem 1.1.

(iii) Part (i) of Theorem 1.1 improved and generalized Theorem 1 in [9], in which the
authors showed that T}, g is bounded on F£/(R") for & € Rand 1 < p, g < 00, provided that
heL*®R,)and Q € H(S"1).

(iv) Theorem 1.1 is new, even in the special case i=lora =0, =2, p(t) = t,or P(t) = ¢.

The second motivation of this paper is concerned with the L” boundedness of maximal
truncated singular integrals associated to polynomial curves. Let /1, 2, P, ¢ be given as in

(1.3). The maximal truncated singular integral operator T} 0, is defined by

TZQ’P’J (%) := sup

>0

Qy/lyl)h
/H f(x—P(w(IyI))y/lyl)Wdy, (1.4)
y|>€

where f € S(R"). The type of operator T, » , was first studied by Fan, Guo, and Pan [18]
who proved that T;,Q,P,w is bounded on L#(R”) for (28 - 1)/(28 -2)<p<2B8-1ifh=1,
@(t) = t, and Q € F5(S"!) for some B > 3/2. Recently, Liu [26] proved that T;,Q'le is of
type (p, p) for 1 < p < 0o, provided that ¢ € 1 or Fo, Q € Llog L(S"1) and / satisfies certain
radial condition.

Based on (2.1), (2.2) and the results related to T}, o2 natural question is the following.

Question 1.2 Is T;,Q,P,qz bounded on L”(R”) for some p > 1 under the same conditions of
Theorem 1.17

This question can be addressed by the following.

Theorem 1.2 Let P, ¢ be given as in Theorem 1.1. Suppose that Q € H'(S" 1) satisfies (1.1)
and h € A, (R,) for some y € (4/3,00]. Then there exists a constant C > 0 independent of
h,y, Q2 and the coefficients of P such that

| T pf | oigeny < C¥ Wl @ | QU s sty I Np ey, Yf € P (RY).

Here,p e (y’,00) ify >2o0rpe(y,2y'/(y' -2))ify € (4/3,2).

Remark 1.3 Theorem 1.2 is new, even in the special case 1 =1 or ¢(¢) = ¢. It is unknown
whether the operator T, p,, appearing in Theorem 1.2 is bounded on L”(R") for some
p>1if y €(1,4/3], even in the special case ¢(t) = £, which is very interesting.

The third motivation of this paper is concerned with the boundedness of maximal
truncated singular integrals associated to polynomial curves on Triebel-Lizorkin spaces.
The first work related to the boundedness for maximal singular integral operator on
Triebel-Lizorkin spaces was due to Zhang and Chen [43], who showed that the max-
imal singular integral operator is bounded on F£4(R”) and F,?(R") for 0 < « < 1 and
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1 < p,q < oo by assuming that Q € H!(S"!). Recently, Liu, Xue, and Yabuta [30] estab-
lished the boundedness for the maximal singular integral operators associated to polyno-
mial mappings on Triebel-Lizorkin spaces under the conditions /2 € A, (R,) with some
y >1and Q € Llog L(S"!). Very recently, the authors [31] obtained the boundedness for
T}, o p,, on Triebel-Lizorkin spaces, provided that k=1, Q € Fg(S"1) with some B > 3/2
and ¢ € §3, where Js is the set of all functions ¢ satisfying the following conditions:

(a) ¢ is a positive increasing function on (0, 00) such that #2¢/(¢) is monotonic on (0, 00)
for some § € R;

(b) There exist positive constants Cy and ¢, such that £¢’(t) > Cy¢(£) and ¢(2£) < ¢, (2)
forall £ > 0.

Itis clear that §3 C §1. There are some model examples for the class §3 such as t*(« > 0),
t#1n(1 + £)(B > 1), tInln(e + t), real-valued polynomials P on R with positive coefficients
and P(0) = 0 and so on.

Based on the above, it is natural to ask the following question.

Question 1.3 Is TZ,Q,P,q) defined in (1.4) bounded on the Triebel-Lizorkin spaces if # =1
and Q € H'(5"1)?

Our next result will give a positive answer to Question 1.3.

Theorem 1.3 Let P be a real polynomial on R satisfying P(0) = 0 and ¢ € §s3. Suppose that
h=1and Q € H(S") satisfies (1.1). Then, for 0 <o < 1 and 1 < p,q < oo, there exists a
constant C > 0 independent of Q2 and the coefficients of P such that

I T;,Q,P,gafnﬁg'q(n%n) = ClRlme-yflpagn, Yfe FA(R");

| T |y < CIQU b1 sr Il ppagny, VS € ELU(RY).

Moreover, both Ty, », : FPURY) — FPYR") and Thape : FPY(R") — FLYR™) are contin-

uous.

Remark 1.4 The boundedness part in Theorem 1.3 implies [43, Theorem 1.2] when P(¢) =
¢(t) = t. It should be pointed out that Theorem 1.3 is new, even in the special case ¢(t) = t.

The paper is organized as follows. In Sect. 2 we present some preliminary definitions
and lemmas, which are the main ingredients of proving Theorems 1.1-1.3. The proofs of
Theorems 1.1-1.3 will be given in Sect. 3. It should be pointed out that the main methods
and ideas employed in this paper are a combination of ideas and arguments from [1, 21,
22, 27, 30, 41]. However, some new techniques are needed in the main proofs. The new
ideas invented in our proofs are to define suitable measures and to estimate them suitably.

Throughout the paper, for any p € [1,00], we denote p’ by the conjugate index of p,
which satisfies 1/p+ 1/p’ = 1. Here, we set 1 = 0o and oo’ = 1. The letter C or ¢, sometimes
with certain parameters, will stand for positive constants not necessarily the same one at
each occurrence, but are independent of the essential variables. In what follows, we set
R, ={¢ e R;1/2 < [¢]| < 1}. Let A((f) be the difference of f for an arbitrary function f
defined on R” and ¢ € R”, i.e,, Ay (f)(x) = f; (x) —f (x), where f; (x) = f(x + {). Forany t € R,
we set exp(t) = 2. We also use the conventions Y, ,a; =0and [[, . a; = 1.
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2 Preliminary definitions and lemmas
2.1 Preliminary definitions

In this subsection we give the definitions of several rough kernels and their relationships.

Definition 2.1 (Hardy spaces) The Hardy space H'(S"!) is the set of all L!(S"™!) functions
which satisfy ||f || z1(gs-1y < 00, where

1-— 2
/ 9(9)46{0(9) do (w).
gn-1 |V —9|

1211 -1y := / sup
S

7-1 0<r<1

Definition 2.2 (L(log L)*(5"!) class) The class L(log L)*(S"!) for a > 0 denotes the class
of all measurable functions Q on S"~! which satisfy

19211 Lgog zye (-1 = /S,H |2(0)|1og* (|22(0)] +2) do (6) < oc.

Definition 2.3 (Grafakos—Stefanov class) The Grafakos—Stefanov class F4(S"!) for 8 > 0
denotes the set of all integrable functions over S"! which satisfy the condition

1 B
sup / Q)| <log+ —) do (v) < 00,
uesn-1 Jsn-1 |I/l . Vl

We remark that F5(S"!) was introduced by Grafakos and Stefanov [25] in the study of
the L” boundedness of singular integral operator with rough kernels.
The following inclusion relations are known:

L'(S"") € L(log L) (S"') € L(logL)”(S*™")  forr>1and 0< B, < Bi;

)&
L(logL) (") C H'(S" ") CL'(S*") forp=1; (2.1)
L(logL)?(S"") ¢ H'(S"") € L(log L)’ (S"") for0< B <1;
0

<Pa<Pi;
Jze(s ) c Fp(s™), B>0;

]:}‘31 (Sn_l) - ]:ﬂz (sn_l)’

N Fs(s"Y) g HY (™) 2 | F(sm). (2.2)
B>1 p>1

Let us present the definitions of Triebel-Lizorkin spaces.

Definition 2.4 (Triebel-Lizorkin spaces) Let S’'(R") be the tempered distribution class
on R”. For @ € R and 0 < p,q < oo(p # 00), we define the homogeneous Triebel-Lizorkin
spaces F£4(R") by

ER(R") = {f e S'(R") : |Ifllppagm = H(Zz"“w *fw)uq

i€Z

< oo}, (2.3)
LP(R™)

where @(S) = ¢(2/€) for i € Z and ¢ € C>°(R") satisfies the conditions: 0 < ¢(x) < 1;
supp(¢p) C {x:1/2 < |x| <2}; ¢(x) > ¢ >01if 3/5 < |x| < 5/3. The inhomogeneous versions
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of Triebel-Lizorkin spaces are denoted by F4(R”) and are obtained by adding the term
1© £l &) to the right-hand side of (2.3) with } _,_; replaced by ) .. ;, where ® € S(R”),
supp(©) C {£: 16| <2}, O(x) > ¢ > 0'if || < 5/3.

The following properties are well known (see [24, 40]):

Fg’Z(R”) = LP(R") for 1 < p < 00; (2.4)
FbA (R”) ~ FP4 (R") nrL? (R”) and
I[fllpg,q(Rn) ~ I[fllﬁg,q(Rn) +fllpwny fora>0,1<p,q<oco. (2.5)

Our next definition is concerned with the H*(S*"!) atom.

Definition 2.5 (H!(S""!) atom) A function a: S"! — C is a (1,00) atom if there exist
¥ € S"!and ¢ € (0,1] such that

supp(a) C "' NB(®,0), where B(#,0) = {y eR”:|ly-1|< Q}; (2.6)

lall oo g1y < o™ (2.7)

[ avrastn=o 8)
gn-1

2.2 Preliminary lemmas
We start now the following atomic decomposition of H'(S"1).

Lemma 2.1 ([13,14]) Let Q € H'(S"!) satisfy (1.1). Then there exist a sequence of complex

numbers {c;};>1 and a sequence of (1,00) atoms {$2j}j=1 such that

o0 o0
Q=) ¢ [Qlme1y~)_lgl.
j=1 j=1

In order to deal with certain estimates for Fourier transforms of some measures, we need

the following properties for (1, c0) atom.

Lemma 2.2 ([21]) Let { = ($1,...,8n) #(0,...,0) and ¢' = ¢/|¢| = (&{,...,¢,,). Suppose that
n >3 and b(-) is a (1,00) atom on S"~* supported in S"* N B(¢', 0), where ¢ € (0,1]. Let

E) = (1-)"xcan® [ b(s,(1-5%)"5) do (),

N

n-3)/2 1/2. .
Gyls) = (1-2)" X(_m(s)/ [b(s (1-)75) | do ).
s
Then there exists a positive constant C, independent of b, such that

supp(Fp) C (¢1 —2r(¢'),¢1 +2r(Z")),
supp(Gp) C (g1 —2r(¢"), ¢ +2r(¢'));
-1

IE o < Clr(e)| ™) 1Gslem < Clr(¢)| 7
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/ Fu(s)ds =0,
R

where r(¢") = 1§17 A (§) and Ag(§) = (0%¢1,082, -+, 08n).-

Lemma 2.3 ([21]) Let ¢ = (£1,42) #(0,0) and ¢’ = ¢/1¢| = (¢{,¢y). Suppose that n = 2 and
b(-) is a (1,00) atom on S' supported in S* N B(¢', 0), where o € (0,1]. Let

Fo(s) = (1-5) " xan @ (b(s (1-52)"%) + b(s,~(1-51) ")),
Gy(s) = (1 —sz)_l/ZX(f1,1)(S)(|b(s, (1 —s2)1/2)| + |b(s,—(1 _SZ)I/Z)D'

Then there exists a positive constant C, independent of b, such that

supp(Fp) C (¢1 —2r(¢'), ¢y +2r(2")),  supp(Gp) C (g1 —2r(2'), g1 +2r(2)));

/ Fu(s)ds =0;
R

Pl = ClAS) ™ 1Gylhago = Clr(e)] ™

for some q € (1,2), where r(¢') = |¢ |71 Ay(¢)| and Ay(¢) = (0741, 082).
The following oscillatory estimates are useful for our proofs.

Lemma 2.4 ([33, Corollary, p. 186]) Let [ € N\ {0}, {,ud,-}f:1 C R, and {di}f:1 be distinct
positive real numbers. Let yr € C1([0,1]). Then there exists C > 0 independent of{uj};zl
such that

T T
[ ettt s w0 ar) <y (jwo)l + [ vl ar)
B 5
holds for 0 <8 <t <1 and € = min{1/dy, 1/1}.
Lemma 2.5 ([31]) Let ®(£) = t*1 + pot® + - - + u,t™, where {1}, are real parameters,

and {o;}, are distinct positive (not necessarlly integer) exponents. Suppose that ¢ € §s
and t2 ¢’ (t) is monotonic on (0,00 ) for some § € R. Then, for any r >0 and A #0,

/ exp(de(go(t))) < Clrg(r)™|™,

/2
with € = min{1/o, 1/n}. Here, C > 0 is independent of {j1;}},, but may depend on ¢ and §.

We end this section by presenting a well-known result.

Lemma 2.6 ([38, pp. 476-478]) Let P = (P1,...,P;) with each P; being a real polynomial
defined on R". Then the maximal operator Mp defined by

Mpf(x) = sup—‘/l -P() dt‘

r>0

Page 8 of 27
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satisfies
”M'Pf”LP(Rd) < Cp”f“[}’(]Rd)’ V1 <p<OO andf € Lp(Rd).
Here, C, > 0 is independent of the coefficients of {P;}.| and f.

3 Proofs of Theorems 1.1-1.3
In this section we prove Theorems 1.1-1.3. In Sect. 3.1 we present some notation and
lemmas, which are the main ingredients of proving Theorems 1.1-1.3. The proofs of The-

orems 1.1-1.3 will be given in Sect. 3.2.

3.1 Some notation and lemmas
In what follows, let N € N\ {0} and P(¢) = ZZI a;t' with ay # 0. Then there exist 0 < /; <
Iy <--- <) = N such that P(t) = Zfil all.tll' with a;; #0 forall 1 <i < A. Set

S
Py(t)=0,  Pyt)= Zalstls, 1<s<A. (3.1)
i=1

It is clear that P(t) = Po(¢t) and [; >sfor 1 <s < A.
Let &, Q2 be given as in (1.2). For 0 <s < A, ,& € R”, a vector 6 € S""1, and a function

¢ :[0,00) — R, we set

A
Foo(n8)= > aye(ly))"e 6.

i=s+1

Define the measures {0, k6,s}kez and {|oy, k65| }kez by

vy QWy/ly)h
Ihcakos(E) = /Zk, e cexp(Ps(w(Iyl))y - & +r5,g(y,g))wd ,
Yi<lyl< +1)y
hake, Qy/ly)h
onakasl(€) = /Zk iy PBO D) 8+ rs,gw,é))w &,
Yi<ly|< +1)y

where P is given as in (3.1). Note that I 4(y, §) is independent of y/|y|. In view of (1.1), it
is easy to see that

onokoo(&) =0, VkeZ&eR" (32)
We have the following estimates.

Lemma 3.1 Let h € A, (R,) for some y € (1,00] and Q2 be a (1,00) atom satisfying (2.6)—
(2.8) with0< o <1land® =6 =(1,0,...,0) € S\, Assume that ¢ € F, or ¢ € Fo. Then,
forl<s<Aandé& =(&,...,&,) #(0,...,0), there exists a constant C > 0 independent of
h,Q,y,& and {a;} | such that

—

— . "\l
|25 (&) = Ohngkos-1(E)| < C¥/ Il a, (r,) min{1, (247D7")

Ly(&)

} (3.3)
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where

Ly(&) = (a,0°€1, a1,062, ..., a1,0x). (3.4)

Proof We only prove (3.3) for the case ¢ € §1 since another case ¢ € §, is analogous.
Fix 1 <s< A and &' = £/|§| = (§;,...,§,). Let O be the rotation such that O(§’) = ¥
and 07! denote the inverse of O. Then O?(¢') = (§],75,...,1,). Let Q,_1 be a rotation in
R"! such that Q,_1(&5,...,&.) = (). ..,n,) and R be a transformation by R(z1, 25, ..., 2,) =
(z1,Qu-1(22,...,2,)). Then, for any y' = (4,5),...,y,) € S"!, we have & - R(y) =0 -y = u
and Q(O7IR(Y)) is a (1,00) atom with supported in S"~' N B(¢',0). By some changes of
variables, we have

ks
olk+1)y’ A s o
) /W’ exp (;%21 ayp(t)'s '9) /Sn_l Q(y) exp (121: a,p(0)" -J/> do (y') () —
olk+1)y’ A
- /2 o P (Zl a ()& |s{>

- d
x /S A exp (Z a,p(t)i|glE - O_IR()/)> do (y’)h(t)Tt
i=1

o+ 1)y’ A s dt
= /2 exp(Zw(t)’ws{) /R FA<u)exp<Zazi¢(t>h|s|u) duh(®)—, (3.5)

k !
4 i=s+1 i=1

where A(y') = Q(O~1R(y)) and Fy is defined as in Lemma 2.2 (in case # > 2) or Lemma 2.3
(in case n = 2). Notice that A(-) is a (1, 00) atom with supported in B(¢’, 0). Invoking Lem-
mas 2.2 and 2.3, one finds that

supp(Fa) C (& —2r(&'), & +2r(&)). (3.6)
1FallLo®) < C|f(~§/)|_l, ifn>3; (3.7)
IEallzaq < Clr(g)| 7, ifn=2 (3.8)

for some g € (1,2). Here, (&) = |£| 'L, (&), where A, (§) = (0%&1, 062, ..., 0&,) for n > 3 and

AQ(E) = (QZSI, Q‘Ez) form=2.
In view of (3.5) and (3.6),

|05 (&) = Ohgros-1(E)|

2(k+1)y’ A s—1
/2 o ew(me(ﬂ”lElE{) /R FA(u)eXp<Zazi¢(t)li|E|u>

i=s+1 i=1

d
x (exp(a,e(0)*1§1€]) — exp(ai,e(t)*|€|u)) duh(t){ ’

ok+1)y’

/ dt
S/ /|FA(u)|min{2,2mp(2(k+1)” )ls|als“§||§{ —u|}du|h(t)|—
2k’ R ¢
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o (k+1)

5min{2,411|alsé|r(§/)<p(2(k+1)”/)ls}f / |h(t |—f|FA |du (3.9

2ky
From (3.7) and (3.8), one sees that there exists C > 0 independent of %, 2, y such that

[ |Fau)| du < C. (3.10)
R

Moreover, by Holder’s inequality, one has

olk+1)y’ oky/+i+1 d
t
h(t)|— / h(t)|—
/2‘/()// ‘ ‘ Z oky!+i )’ t
v’ 2/<y’+i+1 d 1/y 2/<y’+i+1 1/y
t dt
2. 'h‘”'y—) (Lo %)
— oky’+i t oky’+i t
i=0
<2 ([¥']+ 1)1kl ay @) (02" <4y’ ||hlla, @, (3.11)

Here, [x] = max{k € Z: k <«x} for x € R. Finally, it follows from (3.9)—(3.11) that

Gnsoids (&) = Oarkers-1(6)| < CY' 1Bl o, .y min{1, o (24*17) " |Ly(e

where C > 0 is independent of /, 2, y. This proves (3.3) and completes the proof. d
Lemma 3.2 Let h € A, (R,) for some y € (1,00] and Q be a (1,00) atom satisfying (2.6)—
(28) withO<o <land ¥ =0 =(1,0,...,0) € S"\. Assume that ¢ € F, or ¢ € F». Then,
forl1<s<Aand& = (&,...,§) #(0,...,0), there exist § > 0 and C > 0 independent of
h,Q,y,&, and {a;}2 | such that
_— , . N? ~1/(2Lsy's
|Gkas(€)] < Cy/llhll s, ey min{1, (¢ (27)"|Ly(&)]) "7}, (3.12)

where Ly(€) is given as (3.4) and § =1 ifn>3 and § >2 ifn=2.

Proof We only prove (3.12) for the case ¢ € §; since another case is analogous. By (3.5)
and Holder’s inequality, we have

oke)y!
< /k/ /FA(u)exp<Zulgo(t |§|u) du |h(t)|—
2 i=1
2(k+l)y/ Uy 2(k+l)y’ s V' 1y
dt dt
r— F, ) L at
< (/W’ |h(t))| P ) (/;ky, /1; A(M)exp<;all<p(t) |$|u> du ; )

olk+1)y’

de\"” 1 2,0 1y'~1/2,0
(L ) g e
oky

olk+1)y’ Zdt min{1/y’,1/2}
/FA(u) exp(Za;go(t)l |§|u> du —) . (3.13)

x</
k/
2 i=1
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Notice that

2(k+1)y’ 1y
([ or)
2ky’ t

[y'] Zk)//+i+1 dt 1y
- (Z/ M(t)f?) < ([ ]+ DAL, @) " =< @) Ihlla, @0

0 2ky’+i

A

This together with (3.10) and (3.13) implies

|Oe2os(E)|

/)max{1/2,1/y}

<4y 4l A, ®.)

olk+1)y’

(0

By some changes of variables and the properties for ¢, we have

2 min{1/y’,1/2}
dt
— . (3.14)

/ FA(u)exp<Zw(t |s|u) du

i=1

2(k+1)y’

./;kr’

/FA(u exp(Zalq) |§|u> du

i=1

'] kv’ +usl
<Z/k /FA(M eXp(Zﬂz(ﬂ |s|u>du —
n=0 v i=1
[V/] (ﬂ(zky/-fﬂ‘fl) s l dt
< Fayexp( Y aytilglu ) du] ——=
HZ;/V’W'“‘) /R ! ; L ()¢ (971(2))
1 '] (kv +usly 2
e )ex apth|E|lu ) du| =
=G 2 /2M / p(Z Lt )
1 V1l o 2
:C— /;,zky st /I%FA 6Xp<2al(p 2k)’ +M+1) lz|§-|u) dul =
¢ n=0 ky'+ i=1
P2V T
A 2t
ky'+pu+1 l, “@r
C_Z/ e exp(Zﬂzz (2t mu)du
1 V'l
<& 2 [ | IrwrEe
! : I dt
ky +pu+1\bi 1 _ at
X f exp(;w@ )th18) (u v)) ~|dudy. (3.15)

Fix © €{0,1,...,[y’]}, we get by Lemma 2.4 that

1
/ exp
< 1

¢

< len{l, (|ﬂ13%'|(p(2ky/+ﬂ+l)ls|u _ vl)—l/ls}

5 ’ . d
(Z (2711 g (u - V)) Tt’

i=1
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< C(jay& (2% 1Y iy — )V, (3.16)

where § = 1if n > 3 and § = ¢’ if n = 2. Here, g is given as in the proof of Lemma 3.1. Here,
the constant C > 0 is independent of u, v, &, 11, k, and {a;,};_;. In view of (3.15) with (3.16),

ok+1)y’

/W’

< (0@ )" [ [ FAGOEG -1 dur (317)

2
dt

t

/R Fa(u) exp(Zaliw<t>lf|5|u> du

i=1

Define the function b(u) = r(§')F4(r(£')u + &{). In view of (3.6)—(3.8) we see that supp(b) C
(=2,2) and |||l o (r) < C for n > 3 and ||b]|;a@w) < C for n = 2. By some changes of variables,

//|FA(M)FA(V)||M—V|_1/(156)dudv
RJR

2 2
=|r($/){71/(135)’/‘ / |b(u)b(v)||u—V|’1/(ls‘s)dudv. (3.18)
2J2

When n > 3, by the fact ||b|| @) < C and § = 1, we get

2 p2 2 p2
f f |b(u)m||u—v|’1”‘dudv§Cf lu—v| ™Yo dudv < C.
—2J-2 -2 J-2

When # = 2, by the fact ||b]|1e®) < C and Holder’s inequality,
2 2 L )
f / |b(u)b(v)||u — | VD) gy dy
2J-2

2 p2 1/q
sCIIblliq(Rn)(f f |u—v|-1”sdudv> <C.
-2J-2

Therefore, we get from (3.18) that

/ / | FA)Ea )l = v dudy < C|r(g") [, (3.19)
RJR

It follows from (3.19) and (3.17) that

o+ 1)y’ s 5 »
/2ky’ /RF Alu)exp (Zl ay ()" Ié‘lu> du| =
<Cy'(p(@)"|Le)) ™, (3.20)

where C > 0 is independent of 4,2, y,0,&,k and {a;,};_,. In view of (3.20) and (3.14),

|O'ms($)i < Cy/||h||Ay(R+)((p(2kV/)ls )—min{l/y’,1/2}/(155)

Ly(&)] , (321)
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where C > 0 is independent of /,Q,y,0,&,k, and {a;,};_,. On the other hand, we get by
(3.5), (3.10), and (3.11) that

2(k+1)y’ dt
ko) < IFall ) / I LGl iy e 7 L PN (322)
oky
Then (3.12) follows from (3.21) and (3.22). O

Lemma 3.3 Let h € A, (R,) for some y € (1,00] and Q be a (1,00) atom satisfying (2.1)—
(23)withO<o <land ¥ =60=(1,0,...,0) €S L. Let p € F, or ¢ € F. Then, fory' <p <
00, there exists a constant C > 0 independent of h,2,y,§,6, and {a;s};"=1 such that

H sup||onaxe.0l *f| H < Cy'lhlla,@)llf llo@n,  ¥f € LP(R"). (3.23)
ke, LP(R")

Proof We only consider the case ¢ € §; since another one can be obtained similarly. Fix

k € Z, by a change of variables,

120)h())
(k0] () = Za o(lyl)e ) LOHDDI
2ky <[y <2tk+ D)y’ Iyl

ok’ A 1 gt
= /2kv/ f<x— Zﬂl,iﬂ(t)’@)|h(t)|7||9||L1(sn1)~

j=1

It is clear that || Q]| 1(su-1) < C. By Holder’s inequality and a change of variables, one has

|lonako0l *f(%)]

ok’ A ,

= C/W P(’C— ;az,w(tm)
] aoky'+itl A

=¢ ; /zkyuf P(" - ; ﬂz,»w(t)’w)

¥ 2ky/+i+1
< Clllla, ®,) (/k }/( Zaz,ﬁl’(t 16)
- oky'+i

i=0

dt
o) &

dt
o) &

17y’
dt
t

[y’] g0(2ky +L+1 dt 17y
= Cllhlla, =, agtht || —
» )Z (k7' Z o (D¢ (9 (2)
[y ] o 2ky +l+1) t l/y/
<C|h 5o —
= Clialla, . £ (/(p 2ky'+i) P( Zaz ) ; )

1// )1/1//

A
<Cy' 4l a, ®,) (sup ; }/(x Za; téQ)
r>0 |t|<r

j=1
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It follows that

A }// 1/}//

: 1 ,
sup|lonaieol *f(®)] < Cy'llAlla, @, | sup - / x=Y atio)| dt] .
kez r>0 T Jyg<r 1

This together with Lemma 2.6 yields (3.23). O

The following result is the main ingredient of proving Theorem 1.2.

Lemma 3.4 Let A >0, A € N\ {0} and {oks:0 <s < A and k € Z} be a family of uni-
formly bounded Borel measures on R" with oyo(§) = 0 for every k € Z and § € R". For
1<s<A,letns>1,v>1,6,Bs >0, {ars,} be a sequence of positive numbers, £; € N\ {0}
and Ly : R" — RY be a linear transformation. Suppose that there exists a constant C > 0
independent of A such that the following are satisfied for k € Z,€ e R" and s € {1,..., A}:
(@) 1675(8)] < CAmin{L, |ags,Ls(§)7");
) 165(8) — Oks1(5) < CAlags, Ls(§)1P";
(©) infrez L2 > p¥ or infey 52 > pY;
)

ks, Ak+1,s,v

(d) For some q € (1,0), it holds that
H sup||ogs| * ]| H < CA|fllia@n, Yf € L1(R").
keZ LI(R")

Then there exists a constant C > 0 such that

ZOIA*f

sup

<CA ”f”l}’(]R")r Vf er” (RH): (324')
keZ

LP(R)

wherep=2ifqg=2,p€(q,2] ifqe (1,2),and p € [2, mln{q, ) ifq>2.Here, C>0
is independent of A, v, {L;}2,,f, but may depend on p,n, A, {E }s o ABsIE, and
{65}5=17 {ns}s=1-

Proof We shall adopt the method following from [22] to prove this lemma. For simplicity,

l<+lsv

we only consider the case infxcz > ny, since another one can be proved similarly.

Forse{l,...,A}, we set r; = rank(L ) and let 7)/(§) = (§1,...,&,,) be the projection from
R” to R’s. Invoking [22, Lemma 6.1], there exist two nonsingular linear transformations
H;:Rs — RS and G, : R” — R” such that

|Hym)! Go(€)| < |Lo(§)| < &|Hm G (&)]. (3.25)

Let ¢ € C3°(R) be such that supp(¢) = {|¢| <1} and ¢(¢) =1 for |t| < 1/2. Fors € {1,..., A},
we define a sequence of measures {(tss}xez on R” by

A A
(&) = 505(8) [ | @ (a7 Gi(®)]) - 3ea @) [ [ @ (ansnHim Gi()]). (326

j=s+1 Jj=s

It is not difficult to see that

A
On = Y ks (3.27)
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In view of (3.27) we write

sup

fom*f

/k

< Zsup

sl€

ZM}S xf

A
=T, (328)
s=1

Therefore, for (3.24), it suffices to show that
| T2 oy < CoANf v (3.29)

forall1 <s< A,wherep=2ifg=2,andp e (q,2]ifge(1,2),and p € [2, mln{q, }) if
q > 2. Here, C, > 0 is independent of A, v, L, f, but may depend on p, n, A, £, Bs, 8, ns

Let ¥ € S(R) be such that y(§) = 1 when |£| < 1 and ¥ (§) = 0 when |&]| > 1,. Define the
function ®; by @k(é) = Y (aksylHs) Gs(§)]). Write

k-1
Z,L/,]S*f Dy To(f) + (8 - de)*ZM]S*f Dy * Z Wi *f
j=k j=k j==
=D (F) + L2 (F) + I s(f),

where § is the Dirac delta function and

T(f) =Y s *f. (3.30)

keZ

It follows that

T (f) < sup| L1 (f)| + sup|lio(f) | + sup| L3 (f)|. (3.31)

keZ keZ keZ
We first prove that

| T ey < CoAIlf v (332)

forpe (q+1’ - 1) and s € {1,..., A}, where C, > 0 is independent of A, v, L, f, but may de-

pend on p,n, A, €5, Bs, 85, ns. In view of assumptions (a) and (b) and (3.26),

|0 (©)] < CA(|ars L )" + |arsiLs )]s (3.33)

|7s(&)| < CAmin{1, |ax, L(€)

N areLs (€)Y (3.34)

Let {W }kez be a sequence of nonnegative functions in C5°(R) such that

supp(Wis) C (At o @its,) D Wi =1,

keZ
a\
‘(%) "Ijk,s(t)

where C; are independent of s, v, and k. Define the Fourier multiplier operator S;; by

<Clt|7(j=1,2,...) forallt>0andjeN,

S (€) = Y (|H! G(8)|)f §) forjeZ. (3.35)
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Thus, the operator T, can be decomposed as

Ts(f) = Z Mk,s * Zsj+k,ssj+k,sf = Z Zsﬁk,s(ﬂk,s * Sj+k,§f) = Z Ts,j(f)- (336)

kel jeZ JEZ kel JEL

By the Littlewood—Paley theory, Plancherel’s theorem, and assumption (c), we then use
(3.33) and (3.34) to obtain

1/2
| o0 12y < CH (Z | ks Sj+/<,sf|2>

keZ

(2 ,%

-1 n
keZ uj+k+1,S,VS IHS”’S Gs (E)Iiuﬁk—l,s,v

L2(R")

5 ) 1/2
INAG] de)
< CAn;MIfll2qny (3.37)

for some ¢ > 0, where C > 0 is independent of A, v, L, f, but may depend on £, B;, 55, ;-
On the other hand, by our assumption (d), (3.26) and a well-known result on maximal
functions (see [22]), there exists a constant C > 0 independent of A, v, L such that

Hsupl sl % £ HL < CAf e, ¥ € L9(RY) (3.38)
keZ

q(R"

for any 1 <s < A. Using (3.38) and the lemma in [16, pp. 544],

H (Z |bs >x<gk|2)1/2 (Z ng|2>1/2

kel keZ

(3.39)

<CA
)

P (R" LP(R™)

for |1/p — 1/2| = 1/(2¢) and arbitrary functions {gi}x € L?(£2,R"). Here, C, > 0 is indepen-
dent of A, v, L;. Combining (3.39) with the Littlewood—Paley theory implies

12
(Z ks * Sj+k,sf|2>

|72 e < €|

keZ. LP(R”)
1/2
< CAH (Z |S;+k,J|2) < CAIf llen, (3.40)
keZ LP(R™)

where |1/p — 1/2| = 1/(2g) and C > 0 is independent of A, v, L;. By interpolation between

(3.37) and (3.40), we have that, for any p € (%, %) and some ¢’ >0,

| Tei )| o eny < CANTE P If e (3.41)

Inequality (3.41) together with (3.36) and Minkowski’s inequality implies (3.32).
By (3.32) and a well-known result on maximal functions (see [22]), we have that, for all
29 2q
p € (m) qu)»

Higgllk,l(f)l |y = CIT | reny = oAl v, (342)

where C, > 0 is independent of A, v, L, f, but may depend on p, 1, {5, B, 8, 5.

Page 17 of 27
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We now estimate || supycz [k 2(F)|ll 2 ®n). Write

sup|1kzm|<2iup|<a D) * Winks % f| = D _L(f). (3.43)
j=0

j=0

An application of (3.38) shows that
50 ey = CJsopliganst < 111, = CAW e (3.44)

In view of Plancherel’s theorem, (3.25), and (3.33), we have that, for some ¢ > 0,

2

1/2
<Z|(6 - q)k) * Wjik,s *f|2>

keZ

< G ©|f&)| de
Z/{‘“k,s,vHsﬂrZGs@)ZlJ’u] . ’ lf ‘

O <

L2(R")

keZ
=2 Z f G @ 17©)] ds
keZ i=—o0 z_slvfu‘s |<az lsv}

k
< CZ Z Azns—c(/#k—i)/ V(S)}Zdé

keZ i=—o0 la t_slv<|L5($)‘<az lsv}
o0
< CANT Y 0 I e
i=0
2 —jc) £112
S CA ns]C|V||L2(Rn)'
It follows that
150 2y < CANT > I N2y (3.45)
An interpolation between (3.44) and (3.45) gives that

(11%) HLp(Rn) < CAN;Y||f Nl gy

forsome T >0and p € [2,q] ifg>2 or p € (¢,2] if g € (1,2) or p = 2 if g = 2. Combining
this with (3.43) leads to

sup)J, H <cA . 3.46
H k€§| 2(F)| o f Il oy (3.46)

forpe(2,qlifg>2orpe(q,2]ifqge(1,2)orp=2ifg=2.

It remains to estimate || supyz [lx3(F)| |l o ®n). Write

Zq>k*ﬂk 1s*f

j=1

Zsup|d>k * iy % f] = ZL(f) (3.47)

sup|1k3(f)| = ?up
j=1
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In view of (3.38), one can get

D ey = Csuplimisl « 1], 5, = CAV Nisceny (348)

In view of Plancherel’s theorem, we use (3.33) and (3.25) to get
O 2y

1/2
(Z | D o fhkjs *f|2>

keZ

: T ) )
<1<GZZ/{ﬂk,s,vHsnr’;Gs(g)<,,S}|Mk’ NI

= C(/l; Z|M’k_15 | X”ksv|Ls &) <tsns} V | dE)

keZ

L2(R")

1/2

1/2

< CAM;™ + 7 ) If 2wy

1/2
(S“PZ ks Lo(E)[ " + s L&) ") x aks,vlLs<s>|<esns}>

§eR" yen

< CA;" + 07 ) If Il 2y, (3.49)

where in the last inequality of (3.49) we have used the properties of lacunary sequence
and the fact that £,n; > 1, v > 1. Here, C > 0 is independent of A, v, L;, but may depend on
n, s, Bs, 85, s An interpolation between (3.48) and (3.49) leads to

O o geny = CAM + 057 1f 1l 2gemy (3.50)

for some 0 >0, where p € [2,q] ifg>2orp e (q,2] if g€ (1,2) or p=2if g = 2. By (3.47),
(3.50), and Minkowski’s inequality,

supl], H <caA . 351
H k€§| 13(F)| o f Il oy (3.51)

forpe(2,q)ifg>2o0rpe(q2]ifqe(1,2) or p=2if g =2. Then (3.29) follows from
(3.31), (3.42), (3.46), and (3.51). This finishes the proof of Lemma 3.4. O

The following result is the main ingredient of proving Theorem 1.1.

Lemma 3.5 Let A,ve N\ {0}. For1 <s <A, let {asy}kez be a lacunary sequence of posi-
tive numbers. For 1 <s < A, let 8, > 0,1, > 1,4, € N\ {0}, and L, : R” — R% be linear trans-
formations. Let {04 : 0 <5 < A and k € Z} be a family of measures on R" with o = 0 for
every k € Z. Suppose that there exist po,qo > 1 satisfying (po,qo) # (2,2) and ¢, A > 0 inde-
pendent of v and {Li}2 | such that the following conditions are satisfied for any 1 <s < A,
keZ,& eR", and {g;} € LP°(R", £7(¢%)):

(@) 1G5x(8)] < cAmin{1, aks, Ls(€) "}

(b) 165k(§) = Tk (€)] < cAlags, Ls(E);

(c) infiez, % > 1 or infiez, % > 1g;

Page 19 of 27
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(d)

” (Z (Z logk *nglz)qo/z> 1/q0

jeZ “keZ LPO(R™)
qo/2\ V/q0
E CA ‘ (Z (Z |gk’j|2> ) ’
jeZ “kel LPO (R

Then, for o € R and (1/p,1/q) € B1By \ {(1/po, 1/90), (1/2,1/2)}, there exists a
constant C > 0 independent of v and {L}~, such that

ZGA’k*f

keZ

S CA |V||F£'q(Rn)’
B ®m

where By = (1/2,1/2), By = (1/po, 1/q0) and BB, is the line segment from By to B,.

Proof Assume that inficz, aflzﬁ > ny for all 1 <s < A, the corresponding result has been
proved in [27, Lemma 2.5]. Similar arguments will give the corresponding result for the

case infyez % > p¥. The details are omitted. O
Al+1,5,v s

In order to prove Theorem 1.3, we need the following characterization of the Triebel—

Lizorkin spaces.

Lemma 3.6 ([41]) LetO<a<1,1<p<o00,1<qg=<00,andl <r<min{p,q}. Then

, qir\ 1/q
A H (Z 2l </ | 204 ()] dC) )
keZ Ry

LP(R)
Our main ingredient of proving Theorem 1.3 is the following boundedness criterion.

Lemma 3.7 Letv> 1, A € N\ {0}, and {oys: k € Z,1 <s < A} be a family of Borel mea-
sures on R" with oy = 0 for all k € Z. Let |ox | be the total variation of oy . Let {aysy}kez
be a lacunary sequence of positive numbers. For 1 <s < A, let ns > 1, 5, vs > 0, M € N\ {0},
and Ly : R" — RMs be linear transformations. Suppose that there exist C,A > 0 independent
of vsuch that, for 1 <s < A, k € Z, and & € R", the following conditions are satisfied:

(a) Max{|6%s(§) = Tn 1 ()] 110ksl (§) = (051 1)1} < CAlags, Lo(E)IM;

(b) max{|6xs(€)], [loksl (€)1} < CAmin{1, a,Ls(€)| P/}

(c) There exists O € R” such that supy.y ||oko| * f(x)| < CA|f(x + O)| for any x € R”;

(d) infyez % > 1y or infrez aiff:y > 15

(e) There exz’s’tpo,qo > 1 satisfying (po, qo) 7 (2,2), 1 < ro <min{py, qo}, and 2 < u < 0o

such that
1/u 90 1/q9
u
(2] (o sl )
17" \keZ L'0(Ry) LPO(R™)

q0 ) 1/q0
L'0(Ry) LPO(R")

s

leZ

1/u
(Z Igz,;,kI”>
keZ
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Then, for a € (0,1) and (1/p,1/q) € P1P> \ {(1/po, 1/90)}, there exists a constant
C > 0 independent of A and v such that

q\ l/q
H (Z plae ( / sup|[0el % 1Ag 1.7 dc) )
17, Ry, keZ

V1<s<A.

< CA ”.f”}"g'q(R”)’
1P(RM)

Here, P1P, denotes the line segment from Py to P, with Py = (1/2,1/2) and
Pz = (l/p(), I/Q()).
(g) Suppose also that the following inequality holds for 1 <s < A:

‘ (Z (Z |ok,s *gkﬂz)q"”) Vg0

JjEZ “kel

(gl

JjEZ “kel

LPO(R")

L0 (R")

Then, for a € (0,1) and (1/p,1/q) € P1P; \ {(1/po, 1/q0), (1/2,1/2)}, there exists a
constant C > 0 independent of A and v such that

q\ l/q
(E lqe (/ sup d{) )
Ry, kel

leZ
Proof The lemma can be proved by the arguments similar to those used in deriving [30,
Lemma 2.9]. We omit the details. O

00
ZO‘]"A * A2—l£f

j=k

= CA“f”Fg’q(Rn)'
LP(R™)

3.2 Proofs of Theorems 1.1-1.3

Proof of Theorem 1.1 Let h, 2, P, ¢ be given as in Theorem 1.1. Invoking Lemma 2.1, there
exist a sequence of complex numbers {c; ,'0:01 and a sequence of (1,00) atoms {Q,'};’f1 such

that Q = 210:01 ¢ and || Q|11 sn-1) & 35 I¢jl. By the definition of T,q,p,, one has

[e¢]
Thopef =Y GTheypef- (3.52)

j=1

In view of (3.52) and the definition of F5?(R"), we have that, for 1 < p,q < 0o and « € R,
[ee]
I Thepef lgpagn < D16 Thoypef | 2 gn-
j=1

Therefore, to prove Theorem 1.1, it suffices to prove that there exists C > 0 is independent
of 1, y, 2 and the coefficients of P such that

I Thapef llpagn < Cy IRl a, @ lf 1l 24 gn, (3.53)

holds for any (1,00) atom 2 and @ e R and (p,q) € R,.
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Given a (1, 00) atom  satisfying (2.6)—(2.8) with 0 < o0 < 1 and ¥ € S"~1. Without loss of
generality we may assume that ¥ =6 = (1,0,...,0). By the definition of 6,0 40,4, we have

Thopef =Y Onoksn *f- (3.54)
keZ

Note that if ¢ € §1 or ¢ € F, there exist C;, C; > 0 depending only on ¢ such that

2
<% o viso (3.55)

0|
In view of (3.55) and Lemma 3.1,

—

Tnras(E) = Oharana ()] < Cy' Ikl s, @, min{1L, (p(27)" L©)"). (3.56)

By the properties of ¢ and applying the arguments similar to those used in deriving [27,
Lemma 2.4], one obtains that there exists C > 0 independent of /,Q,y and {a,}; such
that

q/2\ 1/q
2
H (z(z (Ohsnis * | ) )

JjEZ “kel

LP(R"™)

<Z <Z ng,i|2>q/2> "

JEZ “kel

<Cy'lhlla,®y (3.57)

LP(R")

forall 1 <s < A and (1/p,1/q) € R,. Then (3.53) follows from (3.2), (3.54), (3.56), (3.57),
and Lemmas 3.2 and 3.5. O

Proof of Theorem 1.2 Let h, 2, P, ¢ be given as in Theorem 1.2. By Lemma 2.1, there exist
a sequence of complex numbers {c,-}joz"1 and a sequence of (1,00) atoms {Qj}ffl such that

Q=37 ¢ and [|Q| 1 g1y & Z;’fl |¢j|. In view of the definition of T}, , ,

o0
Thopu < Z ljl T;,Q,-,P,J- (3.58)
=1

In view of (3.58), to prove Theorem 1.2, it suffices to show that there exists C > 0 indepen-
dent of 1, y, Q and the coefficients of P such that

I T;,Q,P,ga.f||[p(Rn) < Cy'lhll o, @) If Il emy (3.59)

holds for any (1,00) atom Q2 and p € (y',00) if y > 2 or p € (y/, ]/2,—’:/2) if y € (4/3,2). Let
Q be a (1,00) atom satisfying (2.6)—(2.8) with 0 < ¢ < 1 and ¢ € S"!. Without loss of
generality, we may assume that 9 =6 = (1,0,...,0). Let {Uh,QJ(,@,s}sA:O be given as in the
proof of Theorem 1.1. By a simple argument following from the proof of [18, Theorem 2],
one has

Z onajon *f |- (3.60)

Trapaf < Sup|longisal *f|+sup
keZ =k

€
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By (3.2), (3.54), (3.56), (3.60), and Lemmas 3.2—-3.4, we have (3.59) for p € (y’,00) if y > 2
orpe(y, },2,):,2) ify €(4/3,2). O

Proof of Theorem 1.3 Let h, 2, P, ¢ be given as in Theorem 1.3. Notice that

A (T apef) ()] = |TZQow x+8) = Thopf @)]
= |Thapaft @) = Trap S @] < Trgp, (A:())®), Vx¢eR™

This together with Lemma 3.6 and (3.52) implies that, for « € (0,1) and 1 < p, g < 00,

“ T;,Q,P,wf “ EDA(Rm)

<o(z2 ([ 1eaettianlac))

leZ

|5 (] i)

leZ

o0
<CY gl
j=1

LP(RM)

LP(R")

q\ l/q
(Z 2/ (/m | T;tk,Qj,P,zp (B21:(0) | d() )

leZ

(3.61)

LP(R™)

Therefore, to establish the bounds for T;;,Q,P, ,on Fé”q(R”), it suffices to show that

(2 ([ enria))

leZ

=< C”-f”Fg'q(R") (3.62)
)

holds for any (1, 00) atom 2 and « € (0,1) and 1 < p,g < 0o. Here, C > 0 is independent of
Q and the coefficients of P.

In what follows, let Q be a (1, 00) atom satisfying (2.6)—(2.8) with 0 < 0 < 1 and ¢ € S"1.
Without loss of generality, we may assume that # = 6 = (1,0,...,0). Let P, {P}2 ), {Ts 012,
{Ls}2,, and {o4,0.40,5}2, be given as in the proof of Theorem 1.1. We define the measures
{vrs o™ and {Jvesl 15" by

_ - I Qu/lyl)
v,s<5)=/ exp( > a0 (y))ie -0 dy, 0<s<A,
¢ 2k<|y|<2k+l ; w () yl” i’

Ves(€) = onapps—n, A +1=<s<2A,

S
— e o) 120/
|vk,s|(5)=/ exp( D aro(ol)'e -0 ) 2 gy o<,
2k|y|<2k+l 1 ||

[Visl(§) = lonaios-al, A+1=<s<2A.
Let & = (&1,...,&,). By (1.1) and a change of variable, one has

T(E)=0, YO<s<A. (3.63)
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Invoking Lemma 2.5, one finds

k+1 s d
| Vel 8)] = ‘/ eXP(Zﬂliw(t)l"&)?t
i=1

Combining this with the trivial estimate ||;;;| (&)| < Cyields that

Vsl (8)] < Cmin{1, (0(2%)*lay&1) "), 1<s<A.

By the definition of |vi| and the arguments similar to those used to derive (3.12),

Vsl )] = [1ome ka1 (6)]

€20l g1y < C((p(zkﬂ)ls'ﬂlsgl|)—1/ls_

(3.64)

< Cmin{1, (p(25) 5 L a(®)]) VAN for A+ 1 <5 <2A. (3.65)

We get from (3.12) that

|0es(8)| = |omaks—a €)]

< Cmin{1, (9(25)** [Ly_a(®)]) VAN for A +1 <5 <2A.

One can easily check that

[ENGErG]

o(k+1) s s-1 dt
‘/2; (exp(Z aziw(t)lifl) —exp<zﬂli§0(t)li§1>> 7
i=1 i=1

< Co(2V)*|ay&| < Co(2%)*lay&l, for1<s<A.

€211 2151y

Arguments similar to (3.56) show that

| Vies | (€) = Vis—11()| = |lonko.5-a1(E) = [onoko,s-a-1()]

< Cmin{1,¢(2)" "L a(8)]} forA+1<s<2A.

In view of (3.56),

|03 (8) = Vs 1(8)| = |onmarkon-n (&) — onaipsa-1(E)|

< Cmin{1,¢(25)" L a(§)]} for A+1<s<2A.
We now define linear transformations /; : R” — R” for 1 <s <2A by

a1 ifl<s<A;

L p(8) ifA+1<s<2A.

IS(S) =

(3.66)

(3.67)

(3.68)

(3.69)
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We also set

I if1<s<A;

Vs =

lon HA+1<s<2A

and

L ifl1<s<A;
,3_ Sls
=

1 .
m lfA+1§S§2A

It follows from (3.63)—(3.69) that

max{|‘fkti(%-) - V/k,;(f”: /,\ (;,:) - h)/k,\s—l|(%_)|} < C|2k)’s[s(

)|} < CAmin{1, |2 L,(8)| ), 1<s<2A. (3.71)

1<s<2A; (3.70)

max{ !\7;?5(
It is not difficult to see that
iup\ ol *f ()| < CIfI(x). (3.72)
€z

From (3.60) we see that

Zle[\ *f

i=k

Than<SUP||vszl *f | +sup (3.73)

Using Lemmas 2.4 and 2.5 in [31], we obtain that, forany 1 <s <2A and 1< p,q,r < 00,

q/2\ 1/q q/2\ 1/q
H(Z(ZWk,s*gk,iIz) ) <C <Z<Z|gk,i|2) ) ; (3.74)
i€Z “keZ LP(R") i€Z “kel LP(R™)
1/2 19 1/q
2
(2| (Zmwess?) | )
iez "' “kezZ L"(Rn) LP(R")
1/2 19 1/q
(2 () )
i€z " NkeZ LM (Rn) LP(R™)

By (3.63), (3.70)—(3.72), (3.74), (3.75) and invoking Lemma 3.7, we have that, for o €
(0,1),1<p,g<o00,and 1 <s <2A,

q\ 1/q
H <Z olae ( / sup| x| * |A21{f||d§) ) < Clfll gy (3.76)
17, Ry, keZ LP(R™)
00 q\ l/q
H (Z 2lqa( sup| Y " vian * Agi,f dg) > < Clfllzpagen- (3.77)
leZ. R keZ | i_p LP(R)

Then (3.62) follows from (3.73), (3.76), and (3.77). Furthermore, the boundedness for
Ty ap, ,on FPY(R") follows from the boundedness for Ty ap, ,on EPYRM), (2.4), (2.5), and
Theorem 1.2. By (3.61), (3.62) and the arguments similar to those used in deriving the
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continuity part of [31, Theorem 1.1], we can get the continuity part in Theorem 1.3. This
completes the proof of Theorem 1.3. O
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