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Abstract
In this paper, the authors establish the boundedness of singular integral operators
associated to polynomial curves as well as the related maximal operators with rough
kernels � ∈ H1(Sn–1) and h ∈ �γ (R+) for some γ > 1 on the Triebel–Lizorkin spaces. It
should be pointed out that the bounds are independent of the coefficients of the
polynomials in the definition of the operators. The main results of this paper not only
improve and generalize essentially some known results but also complement some
recent boundedness results.
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1 Introduction
It is well known that the Triebel–Lizorkin spaces contain many important function spaces
such as Lebesgue spaces, Hardy spaces, Sobolev spaces, and Lipschitz spaces. Over the
last several years, a considerable amount of attention has been given to investigate the
boundedness for singular integral operators with various rough kernels on the Triebel–
Lizorkin spaces. Particularly, many scholars devoted to studying the bounds for singular
integral operators with singularity along various sets under the rough kernels � ∈ H1(Sn–1)
and h ∈ �γ (R+) for some γ > 1. For example, see [10] for the polynomial mappings, [29]
for the homogeneous mappings, [27] for the surfaces to revolution. It is unknown whether
the singular integral operators associated to polynomial curves under the rough kernels
are bounded on the Triebel–Lizorkin spaces. The main purpose of this paper is to address
the question. In addition, we establish the bounds for the related maximal singular integral
operators on the Lebesgue and Triebel–Lizorkin spaces.

Before stating our main results, let us recall some pertinent definitions, notations, and
backgrounds. Let n ≥ 2 be an integer and let Sn–1 denote the unit sphere in R

n equipped
with the normalized Lebesgue measure dσ . Let � ∈ L1(Sn–1) be a homogeneous function
of degree zero on R

n and satisfy

∫
Sn–1

�(u) dσ (u) = 0. (1.1)
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The singular integral operator Th,� is defined as

Th,�f (x) := p.v.
∫
Rn

�(y/|y|)h(|y|)
|y|n f (x – y) dy, (1.2)

where f ∈ S(Rn) (the Schwartz class) and h ∈ �1(R+). For γ > 0, the notation �γ (R+)
denotes the set of all measurable functions h on R+ := (0,∞) satisfying

‖h‖�γ (R+) = sup
R>0

(
1
R

∫ R

0

∣∣h(t)
∣∣γ dt

)1/γ

< ∞.

It is not difficult to see that L∞(R+) = �∞(R+) � �γ2 (R+) � �γ1 (R+) for 0 < γ1 < γ2 < ∞.
For the sake of simplicity, we denote Th,� = T� when h ≡ 1.

The theory of singular integral originated in Calderón and Zygmund’s work [4] in which
they used the rotation method to establish the Lp(Rn)(1 < p < ∞) of T� if � ∈ L log L(Sn–1).
Since then, more and more scholars have been devoted to studying the boundedness of
singular integrals with various rough kernels. Particularly, Coifman and Weiss [12] proved
that T� is of type (p, p) for 1 < p < ∞ if � ∈ H1(Sn–1) (see also [15]). It was remarkable that
� ∈ H1(Sn–1) turned out to be the weakest size condition for the Lp boundedness of T�

up to now. Later on, an active extension to the theory was due to Fefferman [23] who dis-
covered that the Calderón–Zygmund rotation method is no longer available if Th,� is also
rough in the radial direction, for instance h ∈ L∞(R+), so that new methods must be ad-
dressed. More precisely, Fefferman [23] showed that Th,� is of type (p, p) for 1 < p < ∞ if
� ∈ Lipα(Sn–1) for some α > 0 and h ∈ L∞(R+). Fefferman’s result was later improved by
Namazi [32] by assuming � ∈ Lq(Sn–1) for some q > 1 instead of � ∈ Lipα(Sn–1). Mean-
while, Duoandikoetxea and Rubio de Francia [16] used the Littlewood–Paley theory to
improve the results to the case � ∈ Lq(Sn–1) for any q > 1 and h ∈ �2(R+). The bounded-
ness for rough singular integral operators on Tribel–Lizorkin spaces has also been stud-
ied extensively by many authors. In 2002, Chen, Fan, and Ying [5] first showed that T�

is bounded on Ḟp,q
α (Rn) if � ∈ Lr(Sn–1) for some r > 1. Later on, the result was extended

and improved by many authors. For example, see [2, 6] for the case � ∈ Fβ (Sn–1) (the
Grafakos–Stefanov function class in [25]), [9, 10] for the case � ∈ H1(Sn–1).

For the operators T� and Th,�, the singularities are along the diagonal {x = y}. However,
many problems in analysis have led one to consider singular integral operators with sin-
gularity along more general sets. One of the principal motivations for the study of such
operators is the requirements of several complex variables and large classes of “subelliptic”
equations (see [37, 39]). So more and more scholars are devoted to studying the Lp bounds
for rough singular integral operators with singularity along various sets. For example, see
[3, 22, 34] for polynomial mappings, [17, 19] for real-analytic submanifolds, [11, 28] for
homogeneous mappings, [1, 18, 20, 26] for polynomial curves. Other interesting works
can be found in [7, 8, 35, 36, 42], among others.

In this paper we focus on the singular integrals associated to polynomial curves with
rough kernels. Let h,� be given as in (1.2) and P be a real polynomial on R satisfying
P(0) = 0. For a function ϕ : R+ →R, we define the singular integral operator associated to
polynomial compound curves {P(ϕ(|y|))y/|y|; y ∈R

n} by

Th,�,P,ϕ f (x) := p.v.
∫
Rn

f
(
x – P

(
ϕ
(|y|))y/|y|)�(y/|y|)h(|y|)

|y|n dy, (1.3)
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where f ∈ S(Rn). When ϕ(t) ≡ t, we denote Th,�,P,ϕ = Th,�,P . Particularly, Th,�,P = Th,�

when P(t) ≡ t. In 1997, Fan and Pan [20] first established the L2 boundedness for Th,�,P

if h ∈ L∞(R+) and � ∈ H1(Sn–1). Subsequently, Al-Hasan and Pan [1] improved the result
by establishing the following.

Theorem A ([1]) Let h ∈ L∞(R+) and � ∈ H1(Sn–1) satisfy (1.1). Then, for 1 < p < ∞, there
exists a constant C > 0 independent of h,� and the coefficients of P such that

‖Th,�,Pf ‖Lp(Rn) ≤ C‖h‖L∞(R+)‖�‖H1(Sn–1)‖f ‖Lp(Rn), ∀f ∈ Lp(
R

n).

Later on, the Lp mapping properties for Th,�,P have been investigated by many au-
thors. For example, see [18] for the case h ≡ 1 and � ∈ Fβ (Sn–1), [26] for the case
� ∈ L log L(Sn–1).

Based on (2.4) and Theorem A, a natural question is the following.

Question 1.1 Is Th,�,P bounded on Fp,q
α (Rn) if h ∈ �γ (R+) for some γ ∈ (1,∞] and � ∈

H1(Sn–1)?

Our investigation will not only address this question, but also deal with a more general
class of operators. More specifically, we have the following result.

Theorem 1.1 Let P be a real polynomial on R satisfying P(0) = 0 and ϕ ∈ F1 or F2. Here,
F1 (resp., F2) is the set of all functions φ : R+ → R satisfying the following condition (a)
(resp., (b)):

(a) φ is an increasing C1 function such that tφ′(t) ≥ Cφφ(t) and φ(2t) ≤ cφφ(t) for all
t > 0, where Cφ and cφ are independent of t.

(b) φ is a decreasing C1 function such that tφ′(t) ≤ –Cφφ(t) and φ(t) ≤ cφφ(2t) for all
t > 0, where Cφ and cφ are independent of t.

Suppose that � ∈ H1(Sn–1) satisfies (1.1) and h ∈ �γ (R+) for some γ ∈ (1,∞].
Then
(i) For α ∈R and (1/p, 1/q) ∈Rγ , there exists a constant C > 0 independent of

h,γ ,� and the coefficients of P such that

‖Th,�,P,ϕ f ‖Ḟp,q
α (Rn) ≤ Cγ ′‖h‖�γ (R+)‖�‖H1(Sn–1)‖f ‖Ḟp,q

α (Rn).

Here, Rγ is the interior of the convex hull of three squares ( 1
2 , 1

2 + 1
max{2,γ ′} )2,

( 1
2 – 1

max{2,γ ′} , 1
2 )2, and ( 1

2γ
, 1 – 1

2γ
)2.

(ii) For α > 0 and (1/p, 1/q) ∈Rγ , there exists a constant C > 0 independent of
h,γ ,� and the coefficients of P such that

‖Th,�,P,ϕ f ‖Fp,q
α (Rn) ≤ Cγ ′‖h‖�γ (R+)‖�‖H1(Sn–1)‖f ‖Fp,q

α (Rn).

Remark 1.1 There are some model examples in the class F1 such as tα(α > 0), tα(ln(1 +
t))β (α,β > 0), t ln ln(e + t), real-valued polynomials P on R with positive coefficients and
P(0) = 0, and so on. We now give examples in the class F2 such as tδ(δ < 0) and t–1 ln(1 +
1/t). It was pointed out in [26] that for ϕ ∈ F1 (or F2) there exists a constant Bϕ > 1 such
that ϕ(2t) ≥ Bϕϕ(t) (or ϕ(t) ≥ Bϕϕ(2t)).
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Remark 1.2 (i) It is clear that Rγ1 � Rγ2 for γ1 < γ2 and R∞ = (0, 1) × (0, 1). In view of
(2.4), we see that Theorem 1.1 essentially improved and generalized Theorem A.

(ii) Our methods used to deal with Fourier transform estimates of some measures are
different from those in the proof of Theorem A. In fact, the authors in [1] used the TT∗

method to prove Theorem A. However, the TT∗ method is not needed in the proof of
Theorem 1.1.

(iii) Part (i) of Theorem 1.1 improved and generalized Theorem 1 in [9], in which the
authors showed that Th,� is bounded on Ḟp,q

α (Rn) for α ∈R and 1 < p, q < ∞, provided that
h ∈ L∞(R+) and � ∈ H1(Sn–1).

(iv) Theorem 1.1 is new, even in the special case h ≡ 1 or α = 0, q = 2, ϕ(t) ≡ t, or P(t) ≡ t.

The second motivation of this paper is concerned with the Lp boundedness of maximal
truncated singular integrals associated to polynomial curves. Let h,�, P,ϕ be given as in
(1.3). The maximal truncated singular integral operator T∗

h,�,P,ϕ is defined by

T∗
h,�,P,ϕ f (x) := sup

ε>0

∣∣∣∣
∫

|y|>ε

f
(
x – P

(
ϕ
(|y|))y/|y|)�(y/|y|)h(|y|)

|y|n dy
∣∣∣∣, (1.4)

where f ∈ S(Rn). The type of operator T∗
h,�,P,ϕ was first studied by Fan, Guo, and Pan [18]

who proved that T∗
h,�,P,ϕ is bounded on Lp(Rn) for (2β – 1)/(2β – 2) < p < 2β – 1 if h ≡ 1,

ϕ(t) ≡ t, and � ∈ Fβ (Sn–1) for some β > 3/2. Recently, Liu [26] proved that T∗
h,�,P,ϕ is of

type (p, p) for 1 < p < ∞, provided that ϕ ∈ F1 orF2, � ∈ L log L(Sn–1) and h satisfies certain
radial condition.

Based on (2.1), (2.2) and the results related to T∗
h,�,P,ϕ , a natural question is the following.

Question 1.2 Is T∗
h,�,P,ϕ bounded on Lp(Rn) for some p > 1 under the same conditions of

Theorem 1.1?

This question can be addressed by the following.

Theorem 1.2 Let P,ϕ be given as in Theorem 1.1. Suppose that � ∈ H1(Sn–1) satisfies (1.1)
and h ∈ �γ (R+) for some γ ∈ (4/3,∞]. Then there exists a constant C > 0 independent of
h,γ ,� and the coefficients of P such that

∥∥T∗
h,�,P,ϕ f

∥∥
Lp(Rn) ≤ Cγ ′‖h‖�γ (R+)‖�‖H1(Sn–1)‖f ‖Lp(Rn), ∀f ∈ Lp(

R
n).

Here, p ∈ (γ ′,∞) if γ ≥ 2 or p ∈ (γ ′, 2γ ′/(γ ′ – 2)) if γ ∈ (4/3, 2).

Remark 1.3 Theorem 1.2 is new, even in the special case h ≡ 1 or ϕ(t) ≡ t. It is unknown
whether the operator Th,�,P,ϕ appearing in Theorem 1.2 is bounded on Lp(Rn) for some
p > 1 if γ ∈ (1, 4/3], even in the special case ϕ(t) = t, which is very interesting.

The third motivation of this paper is concerned with the boundedness of maximal
truncated singular integrals associated to polynomial curves on Triebel–Lizorkin spaces.
The first work related to the boundedness for maximal singular integral operator on
Triebel–Lizorkin spaces was due to Zhang and Chen [43], who showed that the max-
imal singular integral operator is bounded on Ḟp,q

α (Rn) and Fp,q
α (Rn) for 0 < α < 1 and
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1 < p, q < ∞ by assuming that � ∈ H1(Sn–1). Recently, Liu, Xue, and Yabuta [30] estab-
lished the boundedness for the maximal singular integral operators associated to polyno-
mial mappings on Triebel–Lizorkin spaces under the conditions h ∈ �γ (R+) with some
γ > 1 and � ∈ L log L(Sn–1). Very recently, the authors [31] obtained the boundedness for
T∗

h,�,P,ϕ on Triebel–Lizorkin spaces, provided that h ≡ 1, � ∈ Fβ (Sn–1) with some β > 3/2
and ϕ ∈ F3, where F3 is the set of all functions φ satisfying the following conditions:

(a) φ is a positive increasing function on (0,∞) such that tδφ′(t) is monotonic on (0,∞)
for some δ ∈R;

(b) There exist positive constants Cφ and cφ such that tφ′(t) ≥ Cφφ(t) and φ(2t) ≤ cφφ(t)
for all t > 0.

It is clear that F3 � F1. There are some model examples for the class F3 such as tα(α > 0),
tβ ln(1 + t)(β ≥ 1), t ln ln(e + t), real-valued polynomials P on R with positive coefficients
and P(0) = 0 and so on.

Based on the above, it is natural to ask the following question.

Question 1.3 Is T∗
h,�,P,ϕ defined in (1.4) bounded on the Triebel–Lizorkin spaces if h ≡ 1

and � ∈ H1(Sn–1)?

Our next result will give a positive answer to Question 1.3.

Theorem 1.3 Let P be a real polynomial on R satisfying P(0) = 0 and ϕ ∈ F3. Suppose that
h ≡ 1 and � ∈ H1(Sn–1) satisfies (1.1). Then, for 0 < α < 1 and 1 < p, q < ∞, there exists a
constant C > 0 independent of � and the coefficients of P such that

∥∥T∗
h,�,P,ϕ f

∥∥
Ḟp,q
α (Rn) ≤ C‖�‖H1(Sn–1)‖f ‖Ḟp,q

α (Rn), ∀f ∈ Ḟp,q
α

(
R

n);
∥∥T∗

h,�,P,ϕ f
∥∥

Fp,q
α (Rn) ≤ C‖�‖H1(Sn–1)‖f ‖Fp,q

α (Rn), ∀f ∈ Fp,q
α

(
R

n).

Moreover, both T∗
h,�,P,ϕ : Fp,q

α (Rn) → Ḟp,q
α (Rn) and T∗

h,�,P,ϕ : Fp,q
α (Rn) → Fp,q

α (Rn) are contin-
uous.

Remark 1.4 The boundedness part in Theorem 1.3 implies [43, Theorem 1.2] when P(t) =
ϕ(t) ≡ t. It should be pointed out that Theorem 1.3 is new, even in the special case ϕ(t) ≡ t.

The paper is organized as follows. In Sect. 2 we present some preliminary definitions
and lemmas, which are the main ingredients of proving Theorems 1.1–1.3. The proofs of
Theorems 1.1–1.3 will be given in Sect. 3. It should be pointed out that the main methods
and ideas employed in this paper are a combination of ideas and arguments from [1, 21,
22, 27, 30, 41]. However, some new techniques are needed in the main proofs. The new
ideas invented in our proofs are to define suitable measures and to estimate them suitably.

Throughout the paper, for any p ∈ [1,∞], we denote p′ by the conjugate index of p,
which satisfies 1/p + 1/p′ = 1. Here, we set 1′ = ∞ and ∞′ = 1. The letter C or c, sometimes
with certain parameters, will stand for positive constants not necessarily the same one at
each occurrence, but are independent of the essential variables. In what follows, we set
Rn = {ζ ∈ R

n; 1/2 < |ζ | ≤ 1}. Let �ζ (f ) be the difference of f for an arbitrary function f
defined on R

n and ζ ∈R
n, i.e., �ζ (f )(x) = fζ (x) – f (x), where fζ (x) = f (x + ζ ). For any t ∈R,

we set exp(t) = e–2π it . We also use the conventions
∑

i∈∅ ai = 0 and
∏

i∈∅ ai = 1.
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2 Preliminary definitions and lemmas
2.1 Preliminary definitions
In this subsection we give the definitions of several rough kernels and their relationships.

Definition 2.1 (Hardy spaces) The Hardy space H1(Sn–1) is the set of all L1(Sn–1) functions
which satisfy ‖f ‖H1(Sn–1) < ∞, where

‖�‖H1(Sn–1) :=
∫

Sn–1
sup

0≤r<1

∣∣∣∣
∫

Sn–1
�(θ )

1 – r2

|rw – θ |n dσ (θ )
∣∣∣∣dσ (w).

Definition 2.2 (L(log L)α(Sn–1) class) The class L(log L)α(Sn–1) for α > 0 denotes the class
of all measurable functions � on Sn–1 which satisfy

‖�‖L(log L)α (Sn–1) :=
∫

Sn–1

∣∣�(θ )
∣∣ logα

(∣∣�(θ )
∣∣ + 2

)
dσ (θ ) < ∞.

Definition 2.3 (Grafakos–Stefanov class) The Grafakos–Stefanov classFβ (Sn–1) for β > 0
denotes the set of all integrable functions over Sn–1 which satisfy the condition

sup
u∈Sn–1

∫
Sn–1

∣∣�(v)
∣∣
(

log+ 1
|u · v|

)β

dσ (v) < ∞.

We remark that Fβ (Sn–1) was introduced by Grafakos and Stefanov [25] in the study of
the Lp boundedness of singular integral operator with rough kernels.

The following inclusion relations are known:

Lr(Sn–1)
� L(log L)β1

(
Sn–1)

� L(log L)β2
(
Sn–1) for r > 1 and 0 < β2 < β1;

L(log L)β
(
Sn–1)

� H1(Sn–1)
� L1(Sn–1) for β ≥ 1; (2.1)

L(log L)β
(
Sn–1)

� H1(Sn–1)
� L(log L)β

(
Sn–1) for 0 < β < 1;

Fβ1

(
Sn–1)

�Fβ2

(
Sn–1), 0 < β2 < β1;

⋃
q>1

Lq(Sn–1)
�Fβ

(
Sn–1), β > 0;

⋂
β>1

Fβ

(
Sn–1)

� H1(Sn–1)
�

⋃
β>1

Fβ

(
Sn–1). (2.2)

Let us present the definitions of Triebel–Lizorkin spaces.

Definition 2.4 (Triebel–Lizorkin spaces) Let S ′(Rn) be the tempered distribution class
on R

n. For α ∈ R and 0 < p, q ≤ ∞(p �= ∞), we define the homogeneous Triebel–Lizorkin
spaces Ḟp,q

α (Rn) by

Ḟp,q
α

(
R

n) :=
{

f ∈ S ′(
R

n) : ‖f ‖Ḟp,q
α (Rn) =

∥∥∥∥
(∑

i∈Z
2–iαq|�i ∗ f |q

)1/q∥∥∥∥
Lp(Rn)

< ∞
}

, (2.3)

where �̂i(ξ ) = φ(2iξ ) for i ∈ Z and φ ∈ C∞
c (Rn) satisfies the conditions: 0 ≤ φ(x) ≤ 1;

supp(φ) ⊂ {x : 1/2 ≤ |x| ≤ 2}; φ(x) > c > 0 if 3/5 ≤ |x| ≤ 5/3. The inhomogeneous versions
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of Triebel–Lizorkin spaces are denoted by Fp,q
α (Rn) and are obtained by adding the term

‖�∗ f ‖Lp(Rn) to the right-hand side of (2.3) with
∑

i∈Z replaced by
∑

i≥1, where � ∈ S(Rn),
supp(�̂) ⊂ {ξ : |ξ | ≤ 2}, �̂(x) > c > 0 if |x| ≤ 5/3.

The following properties are well known (see [24, 40]):

Ḟp,2
0

(
R

n) = Lp(
R

n) for 1 < p < ∞; (2.4)

Fp,q
α

(
R

n) ∼ Ḟp,q
α

(
R

n) ∩ Lp(
R

n) and

‖f ‖Fp,q
α (Rn) ∼ ‖f ‖Ḟp,q

α (Rn) + ‖f ‖Lp(Rn) for α > 0, 1 < p, q < ∞. (2.5)

Our next definition is concerned with the H1(Sn–1) atom.

Definition 2.5 (H1(Sn–1) atom) A function a : Sn–1 → C is a (1,∞) atom if there exist
ϑ ∈ Sn–1 and � ∈ (0, 1] such that

supp(a) ⊂ Sn–1 ∩ B(ϑ ,�), where B(ϑ ,�) =
{

y ∈R
n : |y – ϑ | < �

}
; (2.6)

‖a‖L∞(Sn–1) ≤ �–n+1; (2.7)
∫

Sn–1
a(y) dσ (y) = 0. (2.8)

2.2 Preliminary lemmas
We start now the following atomic decomposition of H1(Sn–1).

Lemma 2.1 ([13, 14]) Let � ∈ H1(Sn–1) satisfy (1.1). Then there exist a sequence of complex
numbers {cj}j≥1 and a sequence of (1,∞) atoms {�j}j≥1 such that

� =
∞∑
j=1

cj�j, ‖�‖H1(Sn–1) ≈
∞∑
j=1

|cj|.

In order to deal with certain estimates for Fourier transforms of some measures, we need
the following properties for (1,∞) atom.

Lemma 2.2 ([21]) Let ζ = (ζ1, . . . , ζn) �= (0, . . . , 0) and ζ ′ = ζ /|ζ | = (ζ ′
1, . . . , ζ ′

n). Suppose that
n ≥ 3 and b(·) is a (1,∞) atom on Sn–1 supported in Sn–1 ∩ B(ζ ′,�), where � ∈ (0, 1]. Let

Fb(s) =
(
1 – s2)(n–3)/2

χ(–1,1)(s)
∫

Sn–2
b
(
s,

(
1 – s2)1/2ỹ

)
dσ (ỹ),

Gb(s) =
(
1 – s2)(n–3)/2

χ(–1,1)(s)
∫

Sn–2

∣∣b(
s,

(
1 – s2)1/2ỹ

)∣∣dσ (ỹ).

Then there exists a positive constant C, independent of b, such that

supp(Fb) ⊂ (
ζ ′

1 – 2r
(
ζ ′), ζ ′

1 + 2r
(
ζ ′)),

supp(Gb) ⊂ (
ζ ′

1 – 2r
(
ζ ′), ζ ′

1 + 2r
(
ζ ′));

‖Fb‖L∞(R) ≤ C
∣∣r(ζ ′)∣∣–1, ‖Gb‖L∞(R) ≤ C

∣∣r(ζ ′)∣∣–1;
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∫
R

Fb(s) ds = 0,

where r(ζ ′) = |ζ |–1|A�(ζ )| and A�(ζ ) = (�2ζ1,�ζ2, . . . ,�ζn).

Lemma 2.3 ([21]) Let ζ = (ζ1, ζ2) �= (0, 0) and ζ ′ = ζ /|ζ | = (ζ ′
1, ζ ′

2). Suppose that n = 2 and
b(·) is a (1,∞) atom on S1 supported in S1 ∩ B(ζ ′,�), where � ∈ (0, 1]. Let

Fb(s) =
(
1 – s2)–1/2

χ(–1,1)(s)
(
b
(
s,

(
1 – s2)1/2) + b

(
s, –

(
1 – s2)1/2)),

Gb(s) =
(
1 – s2)–1/2

χ(–1,1)(s)
(∣∣b(

s,
(
1 – s2)1/2)∣∣ +

∣∣b(
s, –

(
1 – s2)1/2)∣∣).

Then there exists a positive constant C, independent of b, such that

supp(Fb) ⊂ (
ζ ′

1 – 2r
(
ζ ′), ζ ′

1 + 2r
(
ζ ′)), supp(Gb) ⊂ (

ζ ′
1 – 2r

(
ζ ′), ζ ′

1 + 2r
(
ζ ′));

∫
R

Fb(s) ds = 0;

‖Fb‖Lq(R) ≤ C
∣∣r(ζ ′)∣∣–1+1/q, ‖Gb‖Lq(R) ≤ C

∣∣r(ζ ′)∣∣–1+1/q,

for some q ∈ (1, 2), where r(ζ ′) = |ζ |–1|A�(ζ )| and A�(ζ ) = (�2ζ1,�ζ2).

The following oscillatory estimates are useful for our proofs.

Lemma 2.4 ([33, Corollary, p. 186]) Let l ∈ N \ {0}, {μi}l
i=1 ⊂ R, and {di}l

i=1 be distinct
positive real numbers. Let ψ ∈ C1([0, 1]). Then there exists C > 0 independent of {μj}l

j=1

such that
∣∣∣∣
∫ τ

δ

exp
(
μ1td1 + · · · + μltdl

)
ψ(t) dt

∣∣∣∣ ≤ C|μ1|–ε

(∣∣ψ(τ )
∣∣ +

∫ τ

δ

∣∣ψ ′(t)
∣∣dt

)

holds for 0 ≤ δ < τ ≤ 1 and ε = min{1/d1, 1/l}.

Lemma 2.5 ([31]) Let �(t) = tα1 + μ2tα2 + · · · + μntαn , where {μi}n
i=2 are real parameters,

and {αi}n
i=1 are distinct positive (not necessarily integer) exponents. Suppose that ϕ ∈ F3

and tδϕ′(t) is monotonic on (0,∞) for some δ ∈R. Then, for any r > 0 and λ �= 0,

∣∣∣∣
∫ r

r/2
exp

(
λ�

(
ϕ(t)

))dt
t

∣∣∣∣ ≤ C
∣∣λϕ(r)α1

∣∣–ε ,

with ε = min{1/α1, 1/n}. Here, C > 0 is independent of {μi}n
i=2, but may depend on ϕ and δ.

We end this section by presenting a well-known result.

Lemma 2.6 ([38, pp. 476–478]) Let P = (P1, . . . , Pd) with each Pi being a real polynomial
defined on R

n. Then the maximal operator MP defined by

MP f (x) = sup
r>0

1
rn

∣∣∣∣
∫

|t|≤r
f
(
x – P(t)

)
dt

∣∣∣∣
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satisfies

‖MP f ‖Lp(Rd) ≤ Cp‖f ‖Lp(Rd), ∀1 < p < ∞ and f ∈ Lp(
R

d).

Here, Cp > 0 is independent of the coefficients of {Pi}d
i=1 and f .

3 Proofs of Theorems 1.1–1.3
In this section we prove Theorems 1.1–1.3. In Sect. 3.1 we present some notation and
lemmas, which are the main ingredients of proving Theorems 1.1–1.3. The proofs of The-
orems 1.1–1.3 will be given in Sect. 3.2.

3.1 Some notation and lemmas
In what follows, let N ∈ N \ {0} and P(t) =

∑N
i=1 aiti with aN �= 0. Then there exist 0 < l1 <

l2 < · · · < l� = N such that P(t) =
∑�

i=1 ali tli with ali �= 0 for all 1 ≤ i ≤ �. Set

P0(t) = 0, Ps(t) =
s∑

i=1

als t
ls , 1 ≤ s ≤ �. (3.1)

It is clear that P(t) = P�(t) and ls ≥ s for 1 ≤ s ≤ �.
Let h,� be given as in (1.2). For 0 ≤ s ≤ �, y, ξ ∈ R

n, a vector θ ∈ Sn–1, and a function
ϕ : [0,∞) →R, we set

�s,θ (y, ξ ) =
�∑

i=s+1

aliϕ
(|y|)liθ · ξ .

Define the measures {σh,�,k,θ ,s}k∈Z and {|σh,�,k,θ ,s|}k∈Z by

σ̂h,�,k,θ ,s(ξ ) =
∫

2kγ ′ <|y|≤2(k+1)γ ′ exp
(
Ps

(
ϕ
(|y|))y′ · ξ + �s,θ (y, ξ )

)�(y/|y|)h(|y|)
|y|n dy,

̂|σh,�,k,θ ,s|(ξ ) =
∫

2kγ ′ <|y|≤2(k+1)γ ′ exp
(
Ps

(
ϕ
(|y|))y′ · ξ + �s,θ (y, ξ )

) |�(y/|y|)h(|y|)|
|y|n dy,

where Ps is given as in (3.1). Note that �s,θ (y, ξ ) is independent of y/|y|. In view of (1.1), it
is easy to see that

σh,�,k,θ ,0(ξ ) = 0, ∀k ∈ Z, ξ ∈ R
n. (3.2)

We have the following estimates.

Lemma 3.1 Let h ∈ �γ (R+) for some γ ∈ (1,∞] and � be a (1,∞) atom satisfying (2.6)–
(2.8) with 0 < � ≤ 1 and ϑ = θ = (1, 0, . . . , 0) ∈ Sn–1. Assume that ϕ ∈ F1 or ϕ ∈ F2. Then,
for 1 ≤ s ≤ � and ξ = (ξ1, . . . , ξn) �= (0, . . . , 0), there exists a constant C > 0 independent of
h,�,γ , ξ and {als}�s=1 such that

∣∣σ̂h,�,k,θ ,s(ξ ) – ̂σh,�,k,θ ,s–1(ξ )
∣∣ ≤ Cγ ′‖h‖�γ (R+) min

{
1,ϕ

(
2(k+1)γ ′)ls ∣∣Ls(ξ )

∣∣}, (3.3)
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where

Ls(ξ ) =
(
als�

2ξ1, als�ξ2, . . . , als�ξn
)
. (3.4)

Proof We only prove (3.3) for the case ϕ ∈ F1 since another case ϕ ∈ F2 is analogous.
Fix 1 ≤ s ≤ � and ξ ′ = ξ /|ξ | = (ξ ′

1, . . . , ξ ′
n). Let O be the rotation such that O(ξ ′) = ϑ

and O–1 denote the inverse of O. Then O2(ξ ′) = (ξ ′
1,η′

2, . . . ,η′
n). Let Qn–1 be a rotation in

R
n–1 such that Qn–1(ξ ′

2, . . . , ξ ′
n) = (η′

2, . . . ,η′
n) and R be a transformation by R(z1, z2, . . . , zn) =

(z1, Qn–1(z2, . . . , zn)). Then, for any y′ = (u, y′
2, . . . , y′

n) ∈ Sn–1, we have ϑ · R(y′) = ϑ · y′ = u
and �(O–1R(y′)) is a (1,∞) atom with supported in Sn–1 ∩ B(ξ ′,�). By some changes of
variables, we have

σ̂h,�,k,θ ,s(ξ )

=
∫ 2(k+1)γ ′

2kγ ′ exp

(
�∑

i=s+1

aliϕ(t)liξ · θ
)∫

Sn–1
�

(
y′) exp

( s∑
i=1

aliϕ(t)liξ · y′
)

dσ
(
y′)h(t)

dt
t

=
∫ 2(k+1)γ ′

2kγ ′ exp

(
�∑

i=s+1

aliϕ(t)li |ξ |ξ ′
1

)

×
∫

Sn–1
A

(
y′) exp

( s∑
i=1

aliϕ(t)li |ξ |ξ ′ ·O–1R
(
y′)

)
dσ

(
y′)h(t)

dt
t

=
∫ 2(k+1)γ ′

2kγ ′ exp

(
�∑

i=s+1

aliϕ(t)li |ξ |ξ ′
1

)∫
R

FA(u) exp

( s∑
i=1

aliϕ(t)li |ξ |u
)

duh(t)
dt
t

, (3.5)

where A(y′) = �(O–1R(y′)) and FA is defined as in Lemma 2.2 (in case n > 2) or Lemma 2.3
(in case n = 2). Notice that A(·) is a (1,∞) atom with supported in B(ξ ′,�). Invoking Lem-
mas 2.2 and 2.3, one finds that

supp(FA) ⊂ (
ξ ′

1 – 2r
(
ξ ′), ξ ′

1 + 2r
(
ξ ′)). (3.6)

‖FA‖L∞(R) ≤ C
∣∣r(ξ ′)∣∣–1, if n ≥ 3; (3.7)

‖FA‖Lq(R) ≤ C
∣∣r(ξ ′)∣∣–1+1/q, if n = 2 (3.8)

for some q ∈ (1, 2). Here, r(ξ ′) = |ξ |–1L�(ξ ), where A�(ξ ) = (�2ξ1,�ξ2, . . . ,�ξn) for n ≥ 3 and
A�(ξ ) = (�2ξ1,�ξ2) for n = 2.

In view of (3.5) and (3.6),

∣∣σ̂h,�,k,θ ,s(ξ ) – ̂σh,�,k,θ ,s–1(ξ )
∣∣

=

∣∣∣∣∣
∫ 2(k+1)γ ′

2kγ ′ exp

(
�∑

i=s+1

aliϕ(t)li |ξ |ξ ′
1

)∫
R

FA(u) exp

( s–1∑
i=1

aliϕ(t)li |ξ |u
)

× (
exp

(
alsϕ(t)ls |ξ |ξ ′

1
)

– exp
(
alsϕ(t)ls |ξ |u))

duh(t)
dt
t

∣∣∣∣∣

≤
∫ 2(k+1)γ ′

2kγ ′

∫
R

∣∣FA(u)
∣∣min

{
2, 2πϕ

(
2(k+1)γ ′)ls |alsξ |∣∣ξ ′

1 – u
∣∣}du

∣∣h(t)
∣∣dt

t
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≤ min
{

2, 4π |alsξ |r(ξ ′)ϕ(
2(k+1)γ ′)ls}∫ 2(k+1)γ ′

2kγ ′
∣∣h(t)

∣∣dt
t

∫
R

∣∣FA(u)
∣∣du. (3.9)

From (3.7) and (3.8), one sees that there exists C > 0 independent of h,�,γ such that

∫
R

∣∣FA(u)
∣∣du ≤ C. (3.10)

Moreover, by Hölder’s inequality, one has

∫ 2(k+1)γ ′

2kγ ′
∣∣h(t)

∣∣dt
t

=
[γ ′]∑
i=0

∫ 2kγ ′+i+1

2kγ ′+i

∣∣h(t)
∣∣dt

t

≤
[γ ′]∑
i=0

(∫ 2kγ ′+i+1

2kγ ′+i

∣∣h(t)
∣∣γ dt

t

)1/γ (∫ 2kγ ′+i+1

2kγ ′+i

dt
t

)1/γ ′

≤ 21/γ ([
γ ′] + 1

)‖h‖�γ (R+)(ln 2)1/γ ′ ≤ 4γ ′‖h‖�γ (R+). (3.11)

Here, [x] = max{k ∈ Z : k ≤ x} for x ∈R. Finally, it follows from (3.9)–(3.11) that

∣∣σ̂h,�,k,θ ,s(ξ ) – ̂σh,�,k,θ ,s–1(ξ )
∣∣ ≤ Cγ ′‖h‖�γ (R+) min

{
1,ϕ

(
2(k+1)γ ′)ls ∣∣Ls(ξ )

∣∣},

where C > 0 is independent of h,�,γ . This proves (3.3) and completes the proof. �

Lemma 3.2 Let h ∈ �γ (R+) for some γ ∈ (1,∞] and � be a (1,∞) atom satisfying (2.6)–
(2.8) with 0 < � ≤ 1 and ϑ = θ = (1, 0, . . . , 0) ∈ Sn–1. Assume that ϕ ∈ F1 or ϕ ∈ F2. Then,
for 1 ≤ s ≤ � and ξ = (ξ1, . . . , ξn) �= (0, . . . , 0), there exist δ > 0 and C > 0 independent of
h,�,γ , ξ , and {als}�s=1 such that

∣∣σ̂h,�,k,θ ,s(ξ )
∣∣ ≤ Cγ ′‖h‖�γ (R+) min

{
1,

(
ϕ
(
2kγ ′)ls ∣∣Ls(ξ )

∣∣)–1/(2lsγ ′δ)}, (3.12)

where Ls(ξ ) is given as (3.4) and δ = 1 if n ≥ 3 and δ > 2 if n = 2.

Proof We only prove (3.12) for the case ϕ ∈ F1 since another case is analogous. By (3.5)
and Hölder’s inequality, we have

∣∣σ̂h,�,k,θ ,s(ξ )
∣∣

≤
∫ 2(k+1)γ ′

2kγ ′

∣∣∣∣∣
∫
R

FA(u) exp

( s∑
i=1

aliϕ(t)li |ξ |u
)

du

∣∣∣∣∣
∣∣h(t)

∣∣dt
t

≤
(∫ 2(k+1)γ ′

2kγ ′
∣∣h(t)

∣∣γ dt
t

)1/γ
(∫ 2(k+1)γ ′

2kγ ′

∣∣∣∣∣
∫
R

FA(u) exp

( s∑
i=1

aliϕ(t)li |ξ |u
)

du

∣∣∣∣∣
γ ′

dt
t

)1/γ ′

≤
(∫ 2(k+1)γ ′

2kγ ′
∣∣h(t)

∣∣γ dt
t

)1/γ

‖FA‖max{1–2/γ ′ ,0}
L1(R)

(
γ ′)max{1/γ ′–1/2,0}

×
(∫ 2(k+1)γ ′

2kγ ′

∣∣∣∣∣
∫
R

FA(u) exp

( s∑
i=1

aliϕ(t)li |ξ |u
)

du

∣∣∣∣∣
2

dt
t

)min{1/γ ′ ,1/2}
. (3.13)
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Notice that

(∫ 2(k+1)γ ′

2kγ ′
∣∣h(t)

∣∣γ dt
t

)1/γ

≤
( [γ ′]∑

i=0

∫ 2kγ ′+i+1

2kγ ′+i

∣∣h(t)
∣∣γ dt

t

)1/γ

≤ (
2
([

γ ′] + 1
)‖h‖γ

�γ (R+)
)1/γ ≤ (

4γ ′)1/γ ‖h‖�γ (R+).

This together with (3.10) and (3.13) implies

∣∣σ̂h,�,k,θ ,s(ξ )
∣∣

≤ (
4γ ′)max{1/2,1/γ }‖h‖�γ (R+)

×
(∫ 2(k+1)γ ′

2kγ ′

∣∣∣∣∣
∫
R

FA(u) exp

( s∑
i=1

aliϕ(t)li |ξ |u
)

du

∣∣∣∣∣
2

dt
t

)min{1/γ ′ ,1/2}
. (3.14)

By some changes of variables and the properties for ϕ, we have

∫ 2(k+1)γ ′

2kγ ′

∣∣∣∣∣
∫
R

FA(u) exp

( s∑
i=1

aliϕ(t)li |ξ |u
)

du

∣∣∣∣∣
2

dt
t

≤
[γ ′]∑
μ=0

∫ 2kγ ′+μ+1

2kγ ′+μ

∣∣∣∣∣
∫
R

FA(u) exp

( s∑
i=1

aliϕ(t)li |ξ |u
)

du

∣∣∣∣∣
2

dt
t

≤
[γ ′]∑
μ=0

∫ ϕ(2kγ ′+μ+1)

ϕ(2kγ ′+μ)

∣∣∣∣∣
∫
R

FA(u) exp

( s∑
i=1

ali t
li |ξ |u

)
du

∣∣∣∣∣
2

dt
ϕ–1(t)ϕ′(ϕ–1(t))

≤ 1
Cϕ

[γ ′]∑
μ=0

∫ ϕ(2kγ ′+μ+1)

ϕ(2kγ ′+μ)

∣∣∣∣∣
∫
R

FA(u) exp

( s∑
i=1

ali t
li |ξ |u

)
du

∣∣∣∣∣
2

dt
t

=
1

Cϕ

[γ ′]∑
μ=0

∫ 1

ϕ(2kγ ′+μ+1)
ϕ(2kγ ′+μ)

∣∣∣∣∣
∫
R

FA(u) exp

( s∑
i=1

aliϕ
(
2kγ ′+μ+1)li tli |ξ |u

)
du

∣∣∣∣∣
2

dt
t

≤ 1
Cϕ

[γ ′]∑
μ=0

∫ 1

c–1
ϕ

∣∣∣∣∣
∫
R

FA(u) exp

( s∑
i=1

aliϕ
(
2kγ ′+μ+1)li tli |ξ |u

)
du

∣∣∣∣∣
2

dt
t

≤ 1
Cϕ

[γ ′]∑
μ=0

∫
R

∫
R

∣∣FA(u)FA(v)
∣∣

×
∣∣∣∣∣
∫ 1

c–1
ϕ

exp

( s∑
i=1

aliϕ
(
2kγ ′+μ+1)li tli |ξ |(u – v)

)
dt
t

∣∣∣∣∣du dv. (3.15)

Fix μ ∈ {0, 1, . . . , [γ ′]}, we get by Lemma 2.4 that

∣∣∣∣∣
∫ 1

c–1
ϕ

exp

( s∑
i=1

aliϕ
(
2kγ ′+μ+1)li tli |ξ |(u – v)

)
dt
t

∣∣∣∣∣
≤ C min

{
1,

(|alsξ |ϕ(
2kγ ′+μ+1)ls |u – v|)–1/ls}
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≤ C
(|alsξ |ϕ(

2kγ ′+i+1)li |u – v|)–1/(lsδ), (3.16)

where δ = 1 if n ≥ 3 and δ = q′ if n = 2. Here, q is given as in the proof of Lemma 3.1. Here,
the constant C > 0 is independent of u, v, ξ ,μ, k, and {ali}s

i=1. In view of (3.15) with (3.16),

∫ 2(k+1)γ ′

2kγ ′

∣∣∣∣∣
∫
R

FA(u) exp

( s∑
i=1

aliϕ(t)li |ξ |u
)

du

∣∣∣∣∣
2

dt
t

≤ Cγ ′(ϕ(
2kγ ′)ls |alsξ |)–1/(lsδ)

∫
R

∫
R

∣∣FA(u)FA(v)
∣∣|u – v|–1/(lsδ) du dv. (3.17)

Define the function b(u) = r(ξ ′)FA(r(ξ ′)u + ξ ′
1). In view of (3.6)–(3.8) we see that supp(b) ⊂

(–2, 2) and ‖b‖L∞(R) ≤ C for n ≥ 3 and ‖b‖Lq(R) ≤ C for n = 2. By some changes of variables,

∫
R

∫
R

∣∣FA(u)FA(v)
∣∣|u – v|–1/(lsδ) du dv

=
∣∣r(ξ ′)∣∣–1/(lsδ)

∫ 2

–2

∫ 2

–2

∣∣b(u)b(v)
∣∣|u – v|–1/(lsδ) du dv. (3.18)

When n ≥ 3, by the fact ‖b‖L∞(R) ≤ C and δ = 1, we get

∫ 2

–2

∫ 2

–2

∣∣b(u)b(v)
∣∣|u – v|–1/ls du dv ≤ C

∫ 2

–2

∫ 2

–2
|u – v|–1/ls du dv ≤ C.

When n = 2, by the fact ‖b‖Lq(R) ≤ C and Hölder’s inequality,

∫ 2

–2

∫ 2

–2

∣∣b(u)b(v)
∣∣|u – v|–1/(lsq′) du dv

≤ C‖b‖2
Lq(Rn)

(∫ 2

–2

∫ 2

–2
|u – v|–1/ls du dv

)1/q′

≤ C.

Therefore, we get from (3.18) that

∫
R

∫
R

∣∣FA(u)FA(v)
∣∣|u – v|–1/(slsδ) du dv ≤ C

∣∣r(ξ ′)∣∣–1/(lsδ). (3.19)

It follows from (3.19) and (3.17) that

∫ 2(k+1)γ ′

2kγ ′

∣∣∣∣∣
∫
R

FA(u) exp

( s∑
i=1

aliϕ(t)li |ξ |u
)

du

∣∣∣∣∣
2

dt
t

≤ Cγ ′(ϕ(
2kγ ′)ls ∣∣Ls(ξ )

∣∣)–1/(lsδ), (3.20)

where C > 0 is independent of h,�,γ ,�, ξ , k and {ali}s
i=1. In view of (3.20) and (3.14),

∣∣σ̂h,�,k,θ ,s(ξ )
∣∣ ≤ Cγ ′‖h‖�γ (R+)

(
ϕ
(
2kγ ′)ls ∣∣Ls(ξ )

∣∣)– min{1/γ ′ ,1/2}/(lsδ), (3.21)
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where C > 0 is independent of h,�,γ ,�, ξ , k, and {ali}s
i=1. On the other hand, we get by

(3.5), (3.10), and (3.11) that

∣∣σ̂h,�,k,θ ,s(ξ )
∣∣ ≤ ‖FA‖L1(R)

∫ 2(k+1)γ ′

2kγ ′
∣∣h(t)

∣∣dt
t

≤ Cγ ′‖h‖�γ (R+). (3.22)

Then (3.12) follows from (3.21) and (3.22). �

Lemma 3.3 Let h ∈ �γ (R+) for some γ ∈ (1,∞] and � be a (1,∞) atom satisfying (2.1)–
(2.3) with 0 < � ≤ 1 and ϑ = θ = (1, 0, . . . , 0) ∈ Sn–1. Let ϕ ∈ F1 or ϕ ∈ F2. Then, for γ ′ < p <
∞, there exists a constant C > 0 independent of h,�,γ , ξ , θ , and {als}�s=1 such that

∥∥∥sup
k∈Z

∣∣|σh,�,k,θ ,0| ∗ f
∣∣∥∥∥

Lp(Rn)
≤ Cγ ′‖h‖�γ (R+)‖f ‖Lp(Rn), ∀f ∈ Lp(

R
n). (3.23)

Proof We only consider the case ϕ ∈ F1 since another one can be obtained similarly. Fix
k ∈ Z, by a change of variables,

|σh,�,k,θ ,0| ∗ f (x) =
∫

2kγ ′ <|y|≤2(k+1)γ ′ f

(
x –

�∑
j=1

aljϕ
(|y|)ljθ

)
|�(y)h(|y|)|

|y|n dy

=
∫ 2(k+1)γ ′

2kγ ′ f

(
x –

�∑
j=1

aljϕ(t)ljθ

)∣∣h(t)
∣∣dt

t
‖�‖L1(Sn–1).

It is clear that ‖�‖L1(Sn–1) ≤ C. By Hölder’s inequality and a change of variables, one has

∣∣|σh,�,k,θ ,0| ∗ f (x)
∣∣

≤ C
∫ 2(k+1)γ ′

2kγ ′

∣∣∣∣∣f
(

x –
�∑

j=1

aljϕ(t)ljθ

)∣∣∣∣∣
∣∣h(t)

∣∣dt
t

≤ C
[γ ′]∑
i=0

∫ 2kγ ′+i+1

2kγ ′+i

∣∣∣∣∣f
(

x –
�∑

j=1

aljϕ(t)ljθ

)∣∣∣∣∣
∣∣h(t)

∣∣dt
t

≤ C‖h‖�γ (R+)

[γ ′]∑
i=0

(∫ 2kγ ′+i+1

2kγ ′+i

∣∣∣∣∣f
(

x –
�∑

j=1

aljϕ(t)ljθ

)∣∣∣∣∣
γ ′

dt
t

)1/γ ′

= C‖h‖�γ (R+)

[γ ′]∑
i=0

(∫ ϕ(2kγ ′+i+1)

ϕ(2kγ ′+i)

∣∣∣∣∣f
(

x –
�∑

j=1

alj t
ljθ

)∣∣∣∣∣
γ ′

dt
ϕ–1(t)ϕ′(ϕ–1(t))

)1/γ ′

≤ C‖h‖�γ (R+)

[γ ′]∑
i=0

(∫ ϕ(2kγ ′+i+1)

ϕ(2kγ ′+i)

∣∣∣∣∣f
(

x –
�∑

j=1

alj t
ljθ

)∣∣∣∣∣
γ ′

dt
t

)1/γ ′

≤ Cγ ′‖h‖�γ (R+)

(
sup
r>0

1
r

∫
|t|≤r

∣∣∣∣∣f
(

x –
�∑

j=1

alj t
ljθ

)∣∣∣∣∣
γ ′

dt

)1/γ ′

.
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It follows that

sup
k∈Z

∣∣|σh,�,k,θ ,0| ∗ f (x)
∣∣ ≤ Cγ ′‖h‖�γ (R+)

(
sup
r>0

1
r

∫
|t|≤r

∣∣∣∣∣f
(

x –
�∑

j=1

alj t
ljθ

)∣∣∣∣∣
γ ′

dt

)1/γ ′

.

This together with Lemma 2.6 yields (3.23). �

The following result is the main ingredient of proving Theorem 1.2.

Lemma 3.4 Let A > 0, � ∈ N \ {0} and {σk,s : 0 ≤ s ≤ � and k ∈ Z} be a family of uni-
formly bounded Borel measures on R

n with σk,0(ξ ) = 0 for every k ∈ Z and ξ ∈ R
n. For

1 ≤ s ≤ �, let ηs > 1, v ≥ 1, δs,βs > 0, {ak,s,v} be a sequence of positive numbers, �s ∈ N \ {0}
and Ls : Rn → R

�s be a linear transformation. Suppose that there exists a constant C > 0
independent of A such that the following are satisfied for k ∈ Z, ξ ∈ R

n and s ∈ {1, . . . ,�}:
(a) |σ̂k,s(ξ )| ≤ CA min{1, |ak,s,vLs(ξ )|–δs/v};
(b) |σ̂k,s(ξ ) – σ̂k,s–1(ξ ) ≤ CA|ak,s,vLs(ξ )|βs/v;
(c) infk∈Z

ak+1,s,v
ak,s,v

≥ ηv
s or infk∈Z

ak,s,v
ak+1,s,v

≥ ηv
s ;

(d) For some q ∈ (1,∞), it holds that
∥∥∥sup

k∈Z

∣∣|σk,s| ∗ f
∣∣∥∥∥

Lq(Rn)
≤ CA‖f ‖Lq(Rn), ∀f ∈ Lq(

R
n).

Then there exists a constant C > 0 such that
∥∥∥∥∥sup

k∈Z

∣∣∣∣∣
∞∑
j=k

σj,� ∗ f

∣∣∣∣∣
∥∥∥∥∥

Lp(Rn)

≤ CA‖f ‖Lp(Rn), ∀f ∈ Lp(
R

n), (3.24)

where p = 2 if q = 2, p ∈ (q, 2] if q ∈ (1, 2), and p ∈ [2, min{q, 2q
q–1 }) if q > 2. Here, C > 0

is independent of A, v, {Ls}�s=1, f , but may depend on p, n,�, {�s}�s=1, {βs}�s=1 and
{δs}�s=1, {ηs}�s=1.

Proof We shall adopt the method following from [22] to prove this lemma. For simplicity,
we only consider the case infk∈Z

ak+1,s,v
ak,s,v

≥ ηv
s , since another one can be proved similarly.

For s ∈ {1, . . . ,�}, we set rs = rank(Ls) and let πn
rs (ξ ) = (ξ1, . . . , ξrs ) be the projection from

R
n to R

rs . Invoking [22, Lemma 6.1], there exist two nonsingular linear transformations
Hs : Rrs →R

rs and Gs : Rn →R
n such that

∣∣Hsπ
n
rs Gs(ξ )

∣∣ ≤ ∣∣Ls(ξ )
∣∣ ≤ �s

∣∣Hsπ
n
rs Gs(ξ )

∣∣. (3.25)

Let φ ∈ C∞
0 (R) be such that supp(φ) = {|t| ≤ 1} and φ(t) ≡ 1 for |t| < 1/2. For s ∈ {1, . . . ,�},

we define a sequence of measures {μk,s}k∈Z on R
n by

μ̂k,s(ξ ) = σ̂k,s(ξ )
�∏

j=s+1

φ
(∣∣ak,j,vHjπ

n
rj

Gj(ξ )
∣∣) – σ̂k,s–1(ξ )

�∏
j=s

φ
(∣∣ak,j,vHjπ

n
rj

Gj(ξ )
∣∣). (3.26)

It is not difficult to see that

σk,� =
�∑

s=1

μk,s. (3.27)
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In view of (3.27) we write

sup
k∈Z

∣∣∣∣∣
∞∑
j=k

σj,� ∗ f

∣∣∣∣∣ ≤
�∑

s=1

sup
k∈Z

∣∣∣∣∣
∞∑
j=k

μj,s ∗ f

∣∣∣∣∣ =:
�∑

s=1

T∗
s (f ). (3.28)

Therefore, for (3.24), it suffices to show that

∥∥T∗
s (f )

∥∥
Lp(Rn) ≤ CpA‖f ‖Lp(Rn) (3.29)

for all 1 ≤ s ≤ �, where p = 2 if q = 2, and p ∈ (q, 2] if q ∈ (1, 2), and p ∈ [2, min{q, 2q
q–1 }) if

q > 2. Here, Cp > 0 is independent of A, v, Ls, f , but may depend on p, n,�,�s,βs, δs,ηs.
Let ψ ∈ S(R) be such that ψ(ξ ) ≡ 1 when |ξ | < 1 and ψ(ξ ) ≡ 0 when |ξ | > ηs. Define the

function �k by �̂k(ξ ) = ψ(ak,s,v|Hsπ
n
rs Gs(ξ )|). Write

∞∑
j=k

μj,s ∗ f = �k ∗ Ts(f ) + (δ – �k) ∗
∞∑
j=k

μj,s ∗ f – �k ∗
k–1∑

j=–∞
μj,s ∗ f

=: Ik,1(f ) + Ik,2(f ) + Ik,3(f ),

where δ is the Dirac delta function and

Ts(f ) =
∑
k∈Z

μk,s ∗ f . (3.30)

It follows that

T∗
s (f ) ≤ sup

k∈Z

∣∣Ik,1(f )
∣∣ + sup

k∈Z

∣∣Ik,2(f )
∣∣ + sup

k∈Z

∣∣Ik,3(f )
∣∣. (3.31)

We first prove that

∥∥Ts(f )
∥∥

Lp(Rn) ≤ CpA‖f ‖Lp(Rn) (3.32)

for p ∈ ( 2q
q+1 , 2q

q–1 ) and s ∈ {1, . . . ,�}, where Cp > 0 is independent of A, v, Ls, f , but may de-
pend on p, n,�,�s,βs, δs,ηs. In view of assumptions (a) and (b) and (3.26),

∣∣μ̂k,s(ξ )
∣∣ ≤ CA

(∣∣ak,s,vLs(ξ )
∣∣βs/v +

∣∣ak,s,vLs(ξ )
∣∣1/v); (3.33)

∣∣μ̂k,s(ξ )
∣∣ ≤ CA min

{
1,

∣∣ak,s,vLs(ξ )
∣∣–δs/v +

∣∣ak,s,vLs(ξ )
∣∣–1/v}. (3.34)

Let {�k,s}k∈Z be a sequence of nonnegative functions in C∞
0 (R) such that

supp(�k,s) ⊂ [
a–1

k+1,s,v, a–1
k–1,s,v

]
,

∑
k∈Z

�2
k,s(t) = 1,

∣∣∣∣
(

d
dt

)j

�k,s(t)
∣∣∣∣ ≤ Cj|t|–j(j = 1, 2, . . .) for all t > 0 and j ∈N,

where Cj are independent of s, v, and k. Define the Fourier multiplier operator Sj,s by

Ŝj,sf (ξ ) = �j,s
(∣∣Hsπ

n
rs Gs(ξ )

∣∣)f̂ (ξ ) for j ∈ Z. (3.35)
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Thus, the operator Ts can be decomposed as

Ts(f ) =
∑
k∈Z

μk,s ∗
∑
j∈Z

Sj+k,sSj+k,sf =
∑
j∈Z

∑
k∈Z

Sj+k,s(μk,s ∗ Sj+k,sf ) =:
∑
j∈Z

Ts,j(f ). (3.36)

By the Littlewood–Paley theory, Plancherel’s theorem, and assumption (c), we then use
(3.33) and (3.34) to obtain

∥∥Ts,j(f )
∥∥

L2(Rn) ≤ C
∥∥∥∥
(∑

k∈Z
|μk,s ∗ Sj+k,sf |2

)1/2∥∥∥∥
L2(Rn)

≤ C
(∑

k∈Z

∫
a–1

j+k+1,s,v≤|Hsπn
rs Gs(ξ )|≤a–1

j+k–1,s,v

∣∣μ̂k,s(ξ )
∣∣2∣∣f̂ (ξ )

∣∣2 dξ

)1/2

≤ CAη–c|j|
s ‖f ‖L2(Rn) (3.37)

for some c > 0, where C > 0 is independent of A, v, Ls, f , but may depend on �s,βs, δs,ηs.
On the other hand, by our assumption (d), (3.26) and a well-known result on maximal

functions (see [22]), there exists a constant C > 0 independent of A, v, Ls such that
∥∥∥sup

k∈Z

∣∣|μk,s| ∗ f
∣∣∥∥∥

Lq(Rn)
≤ CA‖f ‖Lq(Rn), ∀f ∈ Lq(

R
n) (3.38)

for any 1 ≤ s ≤ �. Using (3.38) and the lemma in [16, pp. 544],

∥∥∥∥
(∑

k∈Z
|μk,s ∗ gk|2

)1/2∥∥∥∥
Lp(Rn)

≤ CpA
∥∥∥∥
(∑

k∈Z
|gk|2

)1/2∥∥∥∥
Lp(Rn)

(3.39)

for |1/p – 1/2| = 1/(2q) and arbitrary functions {gk}k ∈ Lp(�2,Rn). Here, Cp > 0 is indepen-
dent of A, v, Ls. Combining (3.39) with the Littlewood–Paley theory implies

∥∥Ts,j(f )
∥∥

Lp(Rn) ≤ C
∥∥∥∥
(∑

k∈Z
|μk,s ∗ Sj+k,sf |2

)1/2∥∥∥∥
Lp(Rn)

≤ CA
∥∥∥∥
(∑

k∈Z
|Sj+k,sf |2

)1/2∥∥∥∥
Lp(Rn)

≤ CA‖f ‖Lp(Rn), (3.40)

where |1/p – 1/2| = 1/(2q) and C > 0 is independent of A, v, Ls. By interpolation between
(3.37) and (3.40), we have that, for any p ∈ ( 2q

q+1 , 2q
q–1 ) and some c′ > 0,

∥∥Ts,j(f )
∥∥

Lp(Rn) ≤ CAη–c′|j|
s ‖f ‖Lp(Rn). (3.41)

Inequality (3.41) together with (3.36) and Minkowski’s inequality implies (3.32).
By (3.32) and a well-known result on maximal functions (see [22]), we have that, for all

p ∈ ( 2q
q+1 , 2q

q–1 ),

∥∥∥sup
k∈Z

∣∣Ik,1(f )
∣∣∥∥∥

Lp(Rn)
≤ C

∥∥Ts(f )
∥∥

Lp(Rn) ≤ CpA‖f ‖Lp(Rn), (3.42)

where Cp > 0 is independent of A, v, Ls, f , but may depend on p, n,�s,βs, δs,ηs.
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We now estimate ‖ supk∈Z |Ik,2(f )|‖Lp(Rn). Write

sup
k∈Z

∣∣Ik,2(f )
∣∣ ≤

∞∑
j=0

sup
k∈Z

∣∣(δ – �k) ∗ μj+k,s ∗ f
∣∣ =:

∞∑
j=0

Ij(f ). (3.43)

An application of (3.38) shows that

∥∥Ij(f )
∥∥

Lq(Rn) ≤ C
∥∥∥sup

k∈Z

∣∣|μj+k,s| ∗ |f |∣∣
∥∥∥

Lq(Rn)
≤ CA‖f ‖Lq(Rn). (3.44)

In view of Plancherel’s theorem, (3.25), and (3.33), we have that, for some c > 0,

∥∥Ij(f )
∥∥2

L2(Rn) ≤
∥∥∥∥
(∑

k∈Z

∣∣(δ – �k) ∗ μj+k,s ∗ f
∣∣2

)1/2∥∥∥∥
2

L2(Rn)

≤
∑
k∈Z

∫
{ak,s,v|Hsπn

rs Gs(ξ )|≥1}

∣∣μ̂j+k,s(ξ )
∣∣2∣∣f̂ (ξ )

∣∣2 dξ

≤
∑
k∈Z

k∑
i=–∞

∫
{a–1

i,s,v≤|Ls(ξ )|<a–1
i–1,s,v}

∣∣μ̂j+k,s(ξ )
∣∣2∣∣f̂ (ξ )

∣∣2 dξ

≤ C
∑
k∈Z

k∑
i=–∞

A2η–c(j+k–i)
s

∫
{a–1

i,s,v≤|Ls(ξ )|<a–1
i–1,s,v}

∣∣f̂ (ξ )
∣∣2 dξ

≤ CA2η–jc
s

∞∑
i=0

η–ic
s ‖f ‖2

L2(Rn)

≤ CA2η–jc
s ‖f ‖2

L2(Rn).

It follows that

∥∥Ij(f )
∥∥

L2(Rn) ≤ CAη–jc/2
s ‖f ‖L2(Rn). (3.45)

An interpolation between (3.44) and (3.45) gives that

∥∥Ij(f )
∥∥

Lp(Rn) ≤ CAη–τ j
s ‖f ‖Lp(Rn)

for some τ > 0 and p ∈ [2, q] if q > 2 or p ∈ (q, 2] if q ∈ (1, 2) or p = 2 if q = 2. Combining
this with (3.43) leads to

∥∥∥sup
k∈Z

∣∣Ik,2(f )
∣∣∥∥∥

Lp(Rn)
≤ CA‖f ‖Lp(Rn) (3.46)

for p ∈ [2, q] if q > 2 or p ∈ (q, 2] if q ∈ (1, 2) or p = 2 if q = 2.
It remains to estimate ‖ supk∈Z |Ik,3(f )|‖Lp(Rn). Write

sup
k∈Z

∣∣Ik,3(f )
∣∣ = sup

k∈Z

∣∣∣∣∣
∞∑
j=1

�k ∗ μk–j,s ∗ f

∣∣∣∣∣ ≤
∞∑
j=1

sup
k∈Z

|�k ∗ μk–j,s ∗ f | =:
∞∑
j=1

Jj(f ). (3.47)
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In view of (3.38), one can get

∥∥Jj(f )
∥∥

Lq(Rn) ≤ C
∥∥∥sup

k∈Z

∣∣|μj–k,s| ∗ |f |∣∣
∥∥∥

Lq(Rn)
≤ CA‖f ‖Lq(Rn). (3.48)

In view of Plancherel’s theorem, we use (3.33) and (3.25) to get

∥∥Jj(f )
∥∥

L2(Rn)

≤
∥∥∥∥
(∑

k∈Z
|�k ∗ μk–j,s ∗ f |2

)1/2∥∥∥∥
L2(Rn)

≤
(∑

k∈Z

∫
{ak,s,v|Hsπn

rs Gs(ξ )|≤ηs}

∣∣μ̂k–j,s(ξ )
∣∣2∣∣f̂ (ξ )

∣∣2 dξ

)1/2

≤ C
(∫

Rn

∑
k∈Z

∣∣μ̂k–j,s(ξ )
∣∣2

χ{ak,s,v|Ls(ξ )|≤�sηs}
∣∣f̂ (ξ )

∣∣2 dξ

)1/2

≤ CA
(
η–βsj

s + η–j
s

)‖f ‖L2(Rn)

×
(

sup
ξ∈Rn

∑
k∈Z

(∣∣ak,s,vLs(ξ )
∣∣2βs/v +

∣∣ak,s,vLs(ξ )
∣∣2/v)

χ{ak,s,v|Ls(ξ )|≤�sηs}
)1/2

≤ CA
(
η–βsj

s + η–j
s

)‖f ‖L2(Rn), (3.49)

where in the last inequality of (3.49) we have used the properties of lacunary sequence
and the fact that �sηs > 1, v ≥ 1. Here, C > 0 is independent of A, v, Ls, but may depend on
n,�s,βs, δs,ηs. An interpolation between (3.48) and (3.49) leads to

∥∥Jj(f )
∥∥

Lp(Rn) ≤ CA
(
η–θβsj

s + η–θ j
s

)‖f ‖L2(Rn) (3.50)

for some θ > 0, where p ∈ [2, q] if q > 2 or p ∈ (q, 2] if q ∈ (1, 2) or p = 2 if q = 2. By (3.47),
(3.50), and Minkowski’s inequality,

∥∥∥sup
k∈Z

∣∣Ik,3(f )
∣∣∥∥∥

Lp(Rn)
≤ CA‖f ‖Lp(Rn) (3.51)

for p ∈ [2, q] if q > 2 or p ∈ (q, 2] if q ∈ (1, 2) or p = 2 if q = 2. Then (3.29) follows from
(3.31), (3.42), (3.46), and (3.51). This finishes the proof of Lemma 3.4. �

The following result is the main ingredient of proving Theorem 1.1.

Lemma 3.5 Let �, v ∈N \ {0}. For 1 ≤ s ≤ �, let {ak,s,v}k∈Z be a lacunary sequence of posi-
tive numbers. For 1 ≤ s ≤ �, let δs > 0,ηs > 1,�s ∈N\{0}, and Ls : Rn →R

�s be linear trans-
formations. Let {σs,k : 0 ≤ s ≤ � and k ∈ Z} be a family of measures on R

n with σ0,k = 0 for
every k ∈ Z. Suppose that there exist p0, q0 > 1 satisfying (p0, q0) �= (2, 2) and c, A > 0 inde-
pendent of v and {Ls}�s=1 such that the following conditions are satisfied for any 1 ≤ s ≤ �,
k ∈ Z, ξ ∈ R

n, and {gk,j} ∈ Lp0 (Rn,�q0 (�2)):
(a) |σ̂s,k(ξ )| ≤ cA min{1, |ak,s,vLs(ξ )|–δs/v};
(b) |σ̂s,k(ξ ) – σ̂s–1,k(ξ )| ≤ cA|ak,s,vLs(ξ )|1/v;
(c) infk∈Z

ak+1,s,v
ak,s,v

≥ ηv
s or infk∈Z

ak,s,v
ak+1,s,v

≥ ηv
s ;
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(d)

∥∥∥∥
(∑

j∈Z

(∑
k∈Z

|σs,k ∗ gk,j|2
)q0/2)1/q0∥∥∥∥

Lp0 (Rn)

≤ cA
∥∥∥∥
(∑

j∈Z

(∑
k∈Z

|gk,j|2
)q0/2)1/q0∥∥∥∥

Lp0 (Rn)
.

Then, for α ∈R and (1/p, 1/q) ∈ B1B2 \ {(1/p0, 1/q0), (1/2, 1/2)}, there exists a
constant C > 0 independent of v and {Ls}�s=1 such that

∥∥∥∥
∑
k∈Z

σ�,k ∗ f
∥∥∥∥

Ḟp,q
α (Rn)

≤ CA‖f ‖Ḟp,q
α (Rn),

where B1 = (1/2, 1/2), B2 = (1/p0, 1/q0) and B1B2 is the line segment from B1 to B2.

Proof Assume that infk∈Z
ak+1,s,v
ak,s,v

≥ ηv
s for all 1 ≤ s ≤ �, the corresponding result has been

proved in [27, Lemma 2.5]. Similar arguments will give the corresponding result for the
case infk∈Z

ak,s,v
ak+1,s,v

≥ ηv
s . The details are omitted. �

In order to prove Theorem 1.3, we need the following characterization of the Triebel–
Lizorkin spaces.

Lemma 3.6 ([41]) Let 0 < α < 1, 1 < p < ∞, 1 < q ≤ ∞, and 1 ≤ r < min{p, q}. Then

‖f ‖Ḟp,q
α (Rn) ≈

∥∥∥∥
(∑

k∈Z
2kqα

(∫
Rn

∣∣�2–kζ (f )
∣∣r dζ

)q/r)1/q∥∥∥∥
Lp(Rn)

.

Our main ingredient of proving Theorem 1.3 is the following boundedness criterion.

Lemma 3.7 Let v ≥ 1, � ∈ N \ {0}, and {σk,s : k ∈ Z, 1 ≤ s ≤ �} be a family of Borel mea-
sures on R

n with σk,0 = 0 for all k ∈ Z. Let |σk,s| be the total variation of σk,s. Let {ak,s,v}k∈Z
be a lacunary sequence of positive numbers. For 1 ≤ s ≤ �, let ηs > 1,βs,γs > 0, Ms ∈N\{0},
and Ls : Rn →R

Ms be linear transformations. Suppose that there exist C, A > 0 independent
of v such that, for 1 ≤ s ≤ �, k ∈ Z, and ξ ∈R

n, the following conditions are satisfied:
(a) max{|σ̂k,s(ξ ) – σ̂k,s–1(ξ )|, | ̂|σk,s|(ξ ) – |̂σk,s–1|(ξ )|} ≤ CA|ak,s,vLs(ξ )|1/v;
(b) max{|σ̂k,s(ξ )|, | ̂|σk,s|(ξ )|} ≤ CA min{1, |ak,s,vLs(ξ )|–βs/v};
(c) There exists ϑ ∈R

n such that supk∈Z ||σk,0| ∗ f (x)| ≤ CA|f (x + ϑ)| for any x ∈R
n;

(d) infk∈Z
ak+1,s,v
ak,s,v

≥ ηv
s or infk∈Z

ak,s,v
ak+1,s,v

≥ ηv
s ;

(e) There exist p0, q0 > 1 satisfying (p0, q0) �= (2, 2), 1 < r0 < min{p0, q0}, and 2 ≤ u < ∞
such that

∥∥∥∥
(∑

l∈Z

∥∥∥∥
(∑

k∈Z

∣∣|σk,s| ∗ gl,ζ ,k
∣∣u

)1/u∥∥∥∥
q0

Lr0 (Rn)

)1/q0∥∥∥∥
Lp0 (Rn)

≤ CA
∥∥∥∥
(∑

l∈Z

∥∥∥∥
(∑

k∈Z
|gl,ζ ,k|u

)1/u∥∥∥∥
q0

Lr0 (Rn)

)1/q0∥∥∥∥
Lp0 (Rn)

.
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Then, for α ∈ (0, 1) and (1/p, 1/q) ∈ P1P2 \ {(1/p0, 1/q0)}, there exists a constant
C > 0 independent of A and v such that

∥∥∥∥
(∑

l∈Z
2lqα

(∫
Rn

sup
k∈Z

∣∣|σk,s| ∗ |�2–lζ f |∣∣dζ

)q)1/q∥∥∥∥
Lp(Rn)

≤ CA‖f ‖Ḟp,q
α (Rn),

∀1 ≤ s ≤ �.

Here, P1P2 denotes the line segment from P1 to P2 with P1 = (1/2, 1/2) and
P2 = (1/p0, 1/q0).

(g) Suppose also that the following inequality holds for 1 ≤ s ≤ �:

∥∥∥∥
(∑

j∈Z

(∑
k∈Z

|σk,s ∗ gk,j|2
)q0/2)1/q0∥∥∥∥

Lp0 (Rn)

≤ CA
∥∥∥∥
(∑

j∈Z

(∑
k∈Z

|gk,j|2
)q0/2)1/q0∥∥∥∥

Lp0 (Rn)
.

Then, for α ∈ (0, 1) and (1/p, 1/q) ∈ P1P2 \ {(1/p0, 1/q0), (1/2, 1/2)}, there exists a
constant C > 0 independent of A and v such that

∥∥∥∥∥
(∑

l∈Z
2lqα

(∫
Rn

sup
k∈Z

∣∣∣∣∣
∞∑
j=k

σj,� ∗ �2–lζ f

∣∣∣∣∣dζ

)q)1/q∥∥∥∥∥
Lp(Rn)

≤ CA‖f ‖Ḟp,q
α (Rn).

Proof The lemma can be proved by the arguments similar to those used in deriving [30,
Lemma 2.9]. We omit the details. �

3.2 Proofs of Theorems 1.1–1.3

Proof of Theorem 1.1 Let h,�, P,ϕ be given as in Theorem 1.1. Invoking Lemma 2.1, there
exist a sequence of complex numbers {cj}∞j=1 and a sequence of (1,∞) atoms {�j}∞j=1 such
that � =

∑∞
j=1 cj�j and ‖�‖H1(Sn–1) ≈ ∑∞

j=1 |cj|. By the definition of Th,�,P,ϕ , one has

Th,�,P,ϕ f =
∞∑
j=1

cjTh,�j ,P,ϕ f . (3.52)

In view of (3.52) and the definition of Ḟp,q
α (Rn), we have that, for 1 < p, q < ∞ and α ∈R,

‖Th,�,P,ϕ f ‖Ḟp,q
α (Rn) ≤

∞∑
j=1

|cj|‖Th,�j ,P,ϕ f ‖Ḟp,q
α (Rn).

Therefore, to prove Theorem 1.1, it suffices to prove that there exists C > 0 is independent
of h,γ ,� and the coefficients of P such that

‖Th,�,P,ϕ f ‖Ḟp,q
α (Rn) ≤ Cγ ′‖h‖�γ (R+)‖f ‖Ḟp,q

α (Rn), (3.53)

holds for any (1,∞) atom � and α ∈R and (p, q) ∈Rγ .
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Given a (1,∞) atom � satisfying (2.6)–(2.8) with 0 < � ≤ 1 and ϑ ∈ Sn–1. Without loss of
generality we may assume that ϑ = θ = (1, 0, . . . , 0). By the definition of σh,�,k,θ ,�, we have

Th,�,P,ϕ f =
∑
k∈Z

σh,�,k,θ ,� ∗ f . (3.54)

Note that if ϕ ∈ F1 or ϕ ∈ F2, there exist C1, C2 > 0 depending only on ϕ such that

C1 ≤ ϕ(2t)
ϕ(t)

≤ C2, ∀t > 0. (3.55)

In view of (3.55) and Lemma 3.1,

∣∣σ̂h,�,k,θ ,s(ξ ) – ̂σh,�,k,θ ,s–1(ξ )
∣∣ ≤ Cγ ′‖h‖�γ (R+) min

{
1,

(
ϕ
(
2kγ ′)ls ∣∣Ls(ξ )

∣∣)1/γ ′}
. (3.56)

By the properties of ϕ and applying the arguments similar to those used in deriving [27,
Lemma 2.4], one obtains that there exists C > 0 independent of h,�,γ and {ali}�i=1 such
that

∥∥∥∥
(∑

j∈Z

(∑
k∈Z

|σh,�,k,θ ,s ∗ gk,j|2
)q/2)1/q∥∥∥∥

Lp(Rn)

≤ Cγ ′‖h‖�γ (R+)

∥∥∥∥
(∑

j∈Z

(∑
k∈Z

|gk,j|2
)q/2)1/q∥∥∥∥

Lp(Rn)
(3.57)

for all 1 ≤ s ≤ � and (1/p, 1/q) ∈ Rγ . Then (3.53) follows from (3.2), (3.54), (3.56), (3.57),
and Lemmas 3.2 and 3.5. �

Proof of Theorem 1.2 Let h,�, P,ϕ be given as in Theorem 1.2. By Lemma 2.1, there exist
a sequence of complex numbers {cj}∞j=1 and a sequence of (1,∞) atoms {�j}∞j=1 such that
� =

∑∞
j=1 cj�j and ‖�‖H1(Sn–1) ≈ ∑∞

j=1 |cj|. In view of the definition of T∗
h,�,P,ϕ ,

T∗
h,�,P,ϕ f ≤

∞∑
j=1

|cj|T∗
h,�j ,P,ϕ f . (3.58)

In view of (3.58), to prove Theorem 1.2, it suffices to show that there exists C > 0 indepen-
dent of h,γ ,� and the coefficients of P such that

∥∥T∗
h,�,P,ϕ f

∥∥
Lp(Rn) ≤ Cγ ′‖h‖�γ (R+)‖f ‖Lp(Rn) (3.59)

holds for any (1,∞) atom � and p ∈ (γ ′,∞) if γ ≥ 2 or p ∈ (γ ′, 2γ ′
γ ′–2 ) if γ ∈ (4/3, 2). Let

� be a (1,∞) atom satisfying (2.6)–(2.8) with 0 < � ≤ 1 and ϑ ∈ Sn–1. Without loss of
generality, we may assume that ϑ = θ = (1, 0, . . . , 0). Let {σh,�,k,θ ,s}�s=0 be given as in the
proof of Theorem 1.1. By a simple argument following from the proof of [18, Theorem 2],
one has

T∗
h,�,P,ϕ f ≤ sup

k∈Z

∣∣|σh,�,k,θ ,�| ∗ f
∣∣ + sup

k∈Z

∣∣∣∣∣
∞∑
j=k

σh,�,j,θ ,� ∗ f

∣∣∣∣∣. (3.60)
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By (3.2), (3.54), (3.56), (3.60), and Lemmas 3.2–3.4, we have (3.59) for p ∈ (γ ′,∞) if γ ≥ 2
or p ∈ (γ ′, 2γ ′

γ ′–2 ) if γ ∈ (4/3, 2). �

Proof of Theorem 1.3 Let h,�, P,ϕ be given as in Theorem 1.3. Notice that

∣∣�ζ

(
T∗

h,�,P,ϕ f
)
(x)

∣∣ =
∣∣T∗

h,�,P,ϕ f (x + ζ ) – T∗
h,�,P,ϕ f (x)

∣∣
=

∣∣T∗
h,�,P,ϕ fζ (x) – T∗

h,�,P,ϕ f (x)
∣∣ ≤ T∗

h,�,P,ϕ
(�ζ (f )

)
(x), ∀x, ζ ∈R

n.

This together with Lemma 3.6 and (3.52) implies that, for α ∈ (0, 1) and 1 < p, q < ∞,

∥∥T∗
h,�,P,ϕ f

∥∥
Ḟp,q
α (Rn)

≤ C
∥∥∥∥
(∑

l∈Z
2lqα

(∫
Rn

∣∣�2–lζ

(
T∗

h,�,P,ϕ f
)∣∣dζ

)q)1/q∥∥∥∥
Lp(Rn)

≤ C
∥∥∥∥
(∑

l∈Z
2lqα

(∫
Rn

∣∣T∗
h,�,P,ϕ

(�2–lζ (f )
)∣∣dζ

)q)1/q∥∥∥∥
Lp(Rn)

≤ C
∞∑
j=1

|cj|
∥∥∥∥
(∑

l∈Z
2lqα

(∫
Rn

∣∣T∗
h,�j ,P,ϕ

(�2–lζ (f )
)∣∣dζ

)q)1/q∥∥∥∥
Lp(Rn)

. (3.61)

Therefore, to establish the bounds for T∗
h,�,P,ϕ on Ḟp,q

α (Rn), it suffices to show that

∥∥∥∥
(∑

l∈Z
2lqα

(∫
Rn

∣∣T∗
h,�,P,ϕ

(�2–lζ (f )
)∣∣dζ

)q)1/q∥∥∥∥
Lp(Rn)

≤ C‖f ‖Ḟp,q
α (Rn) (3.62)

holds for any (1,∞) atom � and α ∈ (0, 1) and 1 < p, q < ∞. Here, C > 0 is independent of
� and the coefficients of P.

In what follows, let � be a (1,∞) atom satisfying (2.6)–(2.8) with 0 < � ≤ 1 and ϑ ∈ Sn–1.
Without loss of generality, we may assume that ϑ = θ = (1, 0, . . . , 0). Let P, {Ps}�s=0, {�s,θ }�s=0,
{Ls}�s=1, and {σh,�,k,θ ,s}�s=0 be given as in the proof of Theorem 1.1. We define the measures
{νk,s}2�

0 and {|νk,s|}2�
0 by

ν̂k,s(ξ ) =
∫

2k <|y|≤2k+1
exp

( s∑
i=1

aliϕ
(|y|)liξ · θ

)
�(y/|y|)

|y|n dy, 0 ≤ s ≤ �,

νk,s(ξ ) = σh,�,k,θ ,s–�, � + 1 ≤ s ≤ 2�,

|̂νk,s|(ξ ) =
∫

2k <|y|≤2k+1
exp

( s∑
i=1

aliϕ
(|y|)liξ · θ

)
|�(y/|y|)|

|y|n dy, 0 ≤ s ≤ �,

|νk,s|(ξ ) = |σh,�,k,θ ,s–�|, � + 1 ≤ s ≤ 2�.

Let ξ = (ξ1, . . . , ξn). By (1.1) and a change of variable, one has

ν̂k,s(ξ ) = 0, ∀0 ≤ s ≤ �. (3.63)
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Invoking Lemma 2.5, one finds

∣∣|̂νk,s|(ξ )
∣∣ =

∣∣∣∣∣
∫ 2(k+1)

2k
exp

( s∑
i=1

aliϕ(t)liξ1

)
dt
t

∣∣∣∣∣‖�‖L1(Sn–1) ≤ C
(
ϕ
(
2k+1)ls |alsξ1|

)–1/ls .

Combining this with the trivial estimate ||̂νk,s|(ξ )| ≤ C yields that

∣∣|̂νk,s|(ξ )
∣∣ ≤ C min

{
1,

(
ϕ
(
2k)ls |alsξ1|

)–1/ls}, 1 ≤ s ≤ �. (3.64)

By the definition of |νk,s| and the arguments similar to those used to derive (3.12),

∣∣|̂νk,s|(ξ )
∣∣ =

∣∣ ̂|σh,�,k,s–�|(ξ )
∣∣

≤ C min
{

1,
(
ϕ
(
2k)ls–�

∣∣Ls–�(ξ )
∣∣)–1/(2(s–�)ls–�δ)}, for � + 1 ≤ s ≤ 2�. (3.65)

We get from (3.12) that

∣∣ν̂k,s(ξ )
∣∣ =

∣∣ ̂σh,�,k,s–�(ξ )
∣∣

≤ C min
{

1,
(
ϕ
(
2k)ls–�

∣∣Ls–�(ξ )
∣∣)–1/(2(s–�)ls–�δ)}, for � + 1 ≤ s ≤ 2�. (3.66)

One can easily check that

∣∣|̂νk,s|(ξ ) – |̂νk,s–1|(ξ )
∣∣

=

∣∣∣∣∣
∫ 2(k+1)

2k

(
exp

( s∑
i=1

aliϕ(t)liξ1

)
– exp

( s–1∑
i=1

aliϕ(t)liξ1

))
dt
t

∣∣∣∣∣‖�‖L1(Sn–1)

≤ Cϕ
(
2k+1)ls |alsξ1| ≤ Cϕ

(
2k)ls |alsξ1|, for 1 ≤ s ≤ �. (3.67)

Arguments similar to (3.56) show that

∣∣|̂νk,s|(ξ ) – |̂νk,s–1|(ξ )
∣∣ =

∣∣ ̂|σh,�,k,θ ,s–�|(ξ ) – ̂|σh,�,k,θ ,s–�–1|(ξ )
∣∣

≤ C min
{

1,ϕ
(
2k)ls–�

∣∣Ls–�(ξ )
∣∣} for � + 1 ≤ s ≤ 2�. (3.68)

In view of (3.56),

∣∣ν̂k,s(ξ ) – ν̂k,s–1(ξ )
∣∣ =

∣∣ ̂σh,�,k,θ ,s–�(ξ ) – ̂σh,�,k,θ ,s–�–1(ξ )
∣∣

≤ C min
{

1,ϕ
(
2k)ls–�

∣∣Ls–�(ξ )
∣∣} for � + 1 ≤ s ≤ 2�. (3.69)

We now define linear transformations Is : Rn →R
n for 1 ≤ s ≤ 2� by

Is(ξ ) =

⎧⎨
⎩

alsξ1 if 1 ≤ s ≤ �;

Ls–�(ξ ) if � + 1 ≤ s ≤ 2�.
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We also set

γs =

⎧⎨
⎩

ls if 1 ≤ s ≤ �;

ls–� if � + 1 ≤ s ≤ 2�

and

βs =

⎧⎨
⎩

1
sls if 1 ≤ s ≤ �;

1
2(s–�)ls–�δ

if � + 1 ≤ s ≤ 2�.

It follows from (3.63)–(3.69) that

max
{∣∣ν̂k,s(ξ ) – ν̂k,s–1(ξ )

∣∣, ∣∣|̂νk,s|(ξ ) – |̂νk,s–1|(ξ )
∣∣} ≤ C

∣∣2kγs Is(ξ )
∣∣, 1 ≤ s ≤ 2�; (3.70)

max
{∣∣ν̂k,s(ξ )

∣∣, ∣∣|̂νk,s|(ξ )
∣∣} ≤ CA min

{
1,

∣∣2kγs Is(ξ )
∣∣–βs}, 1 ≤ s ≤ 2�. (3.71)

It is not difficult to see that

sup
k∈Z

∣∣|νk,0| ∗ f (x)
∣∣ ≤ C|f |(x). (3.72)

From (3.60) we see that

T∗
h,�,P,ϕ f ≤ sup

k∈Z

∣∣|νk,2�| ∗ f
∣∣ + sup

k∈Z

∣∣∣∣∣
∞∑
i=k

νi,2� ∗ f

∣∣∣∣∣. (3.73)

Using Lemmas 2.4 and 2.5 in [31], we obtain that, for any 1 ≤ s ≤ 2� and 1 < p, q, r < ∞,

∥∥∥∥
(∑

i∈Z

(∑
k∈Z

|νk,s ∗ gk,i|2
)q/2)1/q∥∥∥∥

Lp(Rn)
≤ C

∥∥∥∥
(∑

i∈Z

(∑
k∈Z

|gk,i|2
)q/2)1/q∥∥∥∥

Lp(Rn)
; (3.74)

∥∥∥∥
(∑

i∈Z

∥∥∥∥
(∑

k∈Z

∣∣|νk,s| ∗ gi,ζ ,k
∣∣2

)1/2∥∥∥∥
q

Lr (Rn)

)1/q∥∥∥∥
Lp(Rn)

≤ C
∥∥∥∥
(∑

i∈Z

∥∥∥∥
(∑

k∈Z
|gi,ζ ,k|2

)1/2∥∥∥∥
q

Lr (Rn)

)1/q∥∥∥∥
Lp(Rn)

. (3.75)

By (3.63), (3.70)–(3.72), (3.74), (3.75) and invoking Lemma 3.7, we have that, for α ∈
(0, 1), 1 < p, q < ∞, and 1 ≤ s ≤ 2�,

∥∥∥∥
(∑

l∈Z
2lqα

(∫
Rn

sup
k∈Z

∣∣|νk,s| ∗ |�2–lζ f |∣∣dζ

)q)1/q∥∥∥∥
Lp(Rn)

≤ C‖f ‖Ḟp,q
α (Rn), (3.76)

∥∥∥∥∥
(∑

l∈Z
2lqα

(∫
Rn

sup
k∈Z

∣∣∣∣∣
∞∑
i=k

νi,2� ∗ �2–lζ f

∣∣∣∣∣dζ

)q)1/q∥∥∥∥∥
Lp(Rn)

≤ C‖f ‖Ḟp,q
α (Rn). (3.77)

Then (3.62) follows from (3.73), (3.76), and (3.77). Furthermore, the boundedness for
T∗

h,�,P,ϕ on Fp,q
α (Rn) follows from the boundedness for T∗

h,�,P,ϕ on Ḟp,q
α (Rn), (2.4), (2.5), and

Theorem 1.2. By (3.61), (3.62) and the arguments similar to those used in deriving the
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continuity part of [31, Theorem 1.1], we can get the continuity part in Theorem 1.3. This
completes the proof of Theorem 1.3. �
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