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Abstract
Fickett proved the stability of isometries on bounded subsets ofRn for n≥ 2. Jung
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1 Introduction
In 1982 Fickett proved the following stability of isometries:

Fickett’s Theorem ([4]) For a fixed integer n ≥ 2, let D be a bounded subset of the Eu-
clidean space Rn and let ε > 0 be given. If a function f : D →R

n satisfies the inequality

∣
∣
∥
∥f (x) – f (y)

∥
∥ – ‖x – y‖∣∣ ≤ ε

for all x, y ∈ D, then there exists an isometry U : D →R
n such that

∥
∥f (x) – U(x)

∥
∥ ≤ 27ε1/2n

(1.1)

for each x ∈ D.

For any sufficiently small ε > 0, one can see that the upper bound of inequality (1.1) can
be very large in comparison to ε. This was the motivation for this paper and we will focus
on n = 2, 3 as this theorem can be very useful for solving physics problems.

Some mathematicians have tried to improve Fickett’s theorem in various ways. Alestalo
et al. [1] and Väisälä [13] significantly improved Fickett’s result by proving the Hyers–Ulam
stability of isometries defined on bounded subsets of Rn. Very recently, Jung [8] improved
the results of the previous two papers [1, 13] significantly in the case of n ≥ 3. In this paper,
we will improve Fickett’s results when n = 2. Moreover, by improving the results of Jung
[8] it will also be improved when n = 3. The reason for focusing on this problem in R

2 and
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R
3 is that it can be used to explain mathematically many practical engineering problems

that occur in 2-dimensional or 3-dimensional Euclidean spaces. For a mathematical tool,
we will use a very fundamental analytic method.

In this paper, we use the notationK to denote either R orC. Further, (E,‖·‖) and (F ,‖·‖)
denote the Hilbert spaces over K. If a function f : E → F satisfies the condition

∥
∥f (u) – f (v)

∥
∥ = ‖u – v‖ (1.2)

for all u, v ∈ E, then f is called an isometry.
By recalling the definition of Hyers and Ulam [7], for any fixed ε ≥ 0, a function f : E → F

is called an ε-isometry if f satisfies the inequality

∣
∣
∥
∥f (u) – f (v)

∥
∥ – ‖u – v‖∣∣ ≤ ε (1.3)

for all u, v ∈ E. If there exists a constant K > 0 such that for any ε > 0 and ε-isometry
f : E → F , there is an isometry U : E → F that satisfies ‖f (x) – U(x)‖ ≤ Kε for all x ∈ E,
then the functional equation (1.2) is said to have (or satisfy) the Hyers–Ulam stability. To
understand this topic more broadly, one can refer to [2, 3, 5–7, 9–12].

2 Useful lemmas
An orthogonal matrix Q is a real square matrix whose columns and rows are orthonormal
vectors. In other words, a real square matrix Q is orthogonal if its transpose is equal to its
inverse: Qtr = Q–1. As a linear transformation, an orthogonal matrix preserves the inner
product of vectors, and therefore acts as an isometry of Euclidean space.

Now, we introduce the familiar theorem called QR decomposition. We omit the proof
because it can be proved by using the Gram–Schmidt process.

Lemma 2.1 (QR decomposition) Every real square matrix A can be decomposed as
A = QR, where Q is an orthogonal matrix and R is an upper triangular matrix with non-
negative diagonal elements.

The following lemma will be used to almost halve n2 unknowns. We will prove it by
applying QR decomposition mentioned above. For the proof, one can refer to [8].

Lemma 2.2 Given an integer n > 0, let {e1, e2, . . . , en} be the standard basis for the n-
dimensional Euclidean space R

n, where each ei is written in a column vector, let D be a
subset of Rn that satisfies {e1, e2, . . . , en} ⊂ D, and let f : D → R

n be a function. Then, there
exist an orthogonal matrix Q and real numbers e′

ij for i, j ∈ {1, 2, . . . , n} with i ≥ j such that

Qtrf (ei) =
(

e′
i1, e′

i2, . . . , e′
ii, 0, . . . , 0

)tr

for every i ∈ {1, 2, . . . , n}. In particular, e′
ii ≥ 0 for all i ∈ {1, 2, . . . , n}.

3 Main theorems
From now on, we use the symbol ‖x‖ to denote the norm of x defined by ‖x‖ :=

√

x2
1 + x2

2

or ‖x‖ :=
√

x2
1 + x2

2 + x2
3 for each x = (x1, x2) ∈R

2 or x = (x1, x2, x3) ∈R
3, respectively.
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3.1 On bounded subsets of R2

To prove the next lemma we will use Lemma 2.2 to almost halve the number of unknowns
to consider.

In the following lemma, the parameters cij are assumed to be positive real numbers,
while they were assumed to be positive integers in [8].

Lemma 3.1 Let {e1, e2} be the standard basis for the 2-dimensional Euclidean space R
2,

let D be a subset of R2 that includes 0, e1, and e2, and let f : D → R
2 be a function that

satisfies f (0) = 0 and the inequality (1.3) for all x, y ∈ {0, e1, e2} and for some constant ε with
0 < ε ≤ 1

13 . In view of Lemma 2.2, it can be assumed that f (e1) = (e′
11, 0) and f (e2) = (e′

21, e′
22),

where e′
11 ≥ 0 and e′

22 ≥ 0. Then, there exist real numbers cij > 0, i, j ∈ {1, 2} with j ≤ i, such
that

⎧

⎨

⎩

–cijε ≤ e′
ij ≤ cijε (for i > j),

1 – ciiε ≤ e′
ii ≤ 1 + ε (for i = j).

(3.1)

In particular, c11 = 1.0000000, c21 ≈ 3.7403981, and c22 ≈ 1.5978326 may be selected.

Proof In view of (1.3) and f (0) = 0, we have

∣
∣
∥
∥f (e1)

∥
∥ – 1

∣
∣ ≤ ε,

∣
∣
∥
∥f (e2)

∥
∥ – 1

∣
∣ ≤ ε,

∣
∣
∥
∥f (e1) – f (e2)

∥
∥ –

√
2
∣
∣ ≤ ε

for any ε with 0 < ε ≤ 1
13 . Hence, it follows from these inequalities that

1 – ε ≤ e′
11 ≤ 1 + ε, (3.2)

(1 – ε)2 ≤ e′2
21 + e′2

22 ≤ (1 + ε)2, (3.3)

(
√

2 – ε)2 ≤ (

e′
11 – e′

21
)2 + e′2

22 ≤ (
√

2 + ε)2. (3.4)

It follows from (3.4) that

(
√

2 – ε)2 – e′2
11 –

(

e′2
21 + e′2

22
) ≤ –2e′

11e′
21 ≤ (

√
2 + ε)2 – e′2

11 –
(

e′2
21 + e′2

22
)

.

We recall that 0 < ε ≤ 1
13 . By (3.2) and (3.3), we obtain

–
26 + 13

√
2

12
ε ≤ –(4 + 2

√
2)ε + ε2

2(1 – ε)
≤ e′

21 ≤ (4 + 2
√

2)ε + ε2

2(1 – ε)
≤ 53 + 26

√
2

24
ε.

Now, we select the smallest possible positive real number c21 that satisfies

–c21ε ≤ –
26 + 13

√
2

12
ε ≤ e′

21 ≤ 53 + 26
√

2
24

ε ≤ c21ε.

Hence, we may choose

c21 =
53 + 26

√
2

24
≈ 3.7403981 (3.5)

as the smallest possible positive number that satisfies the last inequality.
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Furthermore, using our assumption that 0 < ε ≤ 1
13 , it follows from (3.1) with i = 2 and

j = 1, (3.3), and (3.5) that

1 – 2ε –
3585 + 2756

√
2

576
ε2 = 1 – 2ε +

(

1 – c2
21

)

ε2 ≤ e′2
22 ≤ (1 + ε)2.

By solving the following inequality, where c22 is unknown,

(1 – c22ε)2 ≤ 1 – 2ε –
3585 + 2756

√
2

576
ε2,

we obtain

1
ε

(

1 –

√

1 – 2ε –
3585 + 2756

√
2

576
ε2

)

≤ c22 ≤ 1
ε

(

1 +

√

1 – 2ε –
3585 + 2756

√
2

576
ε2

)

.

(3.6)

Thus, putting ε = 1
13 in the lower bound for c22 in (3.6), we may select

c22 = 13 –

√

78,783 – 2756
√

2
576

≈ 1.5978326 (3.7)

as the smallest possible positive constant that satisfies the inequality (3.6). �

In the following theorem, we set e1 = (1, 0) and e2 = (0, 1) such that {e1, e2} is the standard
basis for the 2-dimensional Euclidean space R

2. We denote by Bd(0) the closed ball of
radius d and centered at the origin of R2, i.e., Bd(0) = {x ∈R

2 : ‖x‖ ≤ d}.

Theorem 3.2 Let D be a subset of the Euclidean space R2 such that {0, e1, e2} ⊂ D ⊂ Bd(0)
for some d ≥ 1 and let f : D → R

2 be a function that satisfies f (0) = 0 and the inequality
(1.3) for all x, y ∈ D and for some constant ε with 0 < ε ≤ 1

13 . Then, there exists an isometry
U : D →R

2 such that

∥
∥f (x) – U(x)

∥
∥ ≤ (8d + 4)ε (3.8)

for all x ∈ D.

Proof Due to Lemma 2.2, we may assume that f (e1) = (e′
11, 0) and f (e2) = (e′

21, e′
22) with

e′
11 ≥ 0 and e′

22 ≥ 0. For every point x = (x1, x2) ∈ D, let f (x) = x′ = (x′
1, x′

2). Then, by (1.3),
we have

∣
∣

√

x′2
1 + x′2

2 –
√

x2
1 + x2

2
∣
∣ ≤ ε, (3.9)

∣
∣

√
(

x′
1 – e′

11
)2 + x′2

2 –
√

(x1 – 1)2 + x2
2
∣
∣ ≤ ε, (3.10)

∣
∣

√
(

x′
1 – e′

21
)2 +

(

x′
2 – e′

22
)2 –

√

x2
1 + (x2 – 1)2

∣
∣ ≤ ε. (3.11)
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According to (3.9), we obtain

∣
∣
(

x′2
1 + x′2

2
)

–
(

x2
1 + x2

2
)∣
∣

=
∣
∣

√

x′2
1 + x′2

2 –
√

x2
1 + x2

2
∣
∣
∣
∣

√

x′2
1 + x′2

2 +
√

x2
1 + x2

2
∣
∣

≤ ε(d + ε + d) ≤
(

2d +
1

13

)

ε,

(3.12)

since
√

x′2
1 + x′2

2 = ‖f (x)‖ ≤ ‖x‖+ε ≤ d +ε,
√

x2
1 + x2

2 ≤ d and 0 < ε ≤ 1
13 . Similarly, by (3.10),

we obtain

∣
∣
((

x′
1 – e′

11
)2 + x′2

2
)

–
(

(x1 – 1)2 + x2
2
)∣
∣ ≤

(

2d +
27
13

)

ε, (3.13)

since
√

(x′
1 – e′

11)2 + x′2
2 = ‖f (x) – f (e1)‖ ≤ ‖x – e1‖ + ε ≤ d + 1 + ε,

√

(x1 – 1)2 + x2
2 = ‖x –

e1‖ ≤ d + 1 and 0 < ε ≤ 1
13 . Analogously, in view of (3.11), we have

∣
∣
((

x′
1 – e′

21
)2 +

(

x′
2 – e′

22
)2) –

(

x2
1 + (x2 – 1)2)∣∣ ≤

(

2d +
27
13

)

ε, (3.14)

since
√

(x′
1 – e′

21)2 + (x′
2 – e′

22)2 = ‖f (x) – f (e2)‖ ≤ ‖x – e2‖ + ε ≤ d + 1 + ε and 0 < ε ≤ 1
13 .

It now follows from (3.13) that

∣
∣
(

x′2
1 + x′2

2
)

–
(

x2
1 + x2

2
)

– 2e′
11x′

1 + 2x1 + e′2
11 – 1

∣
∣ ≤

(

2d +
27
13

)

ε.

Using (3.12), we obtain

–
(

4d +
28
13

)

ε ≤ –2e′
11x′

1 + 2x1 + e′2
11 – 1 ≤

(

4d +
28
13

)

ε. (3.15)

Similarly, using (3.14), we obtain

∣
∣
(

x′2
1 + x′2

2
)

–
(

x2
1 + x2

2
)

– 2e′
21x′

1 – 2e′
22x′

2 + 2x2 + e′2
21 + e′2

22 – 1
∣
∣ ≤

(

2d +
27
13

)

ε.

Using (3.12) again, we obtain

–
(

4d +
28
13

)

ε ≤ –2e′
21x′

1 – 2e′
22x′

2 + 2x2 + e′2
21 + e′2

22 – 1 ≤
(

4d +
28
13

)

ε. (3.16)

Moreover, put x = e1 and y = 0 in (1.3) and use (3.1) to obtain

∣
∣e′

11 – 1
∣
∣ ≤ ε and

∣
∣e′2

11 – 1
∣
∣ =

∣
∣e′

11 – 1
∣
∣
∣
∣e′

11 + 1
∣
∣ ≤ 27

13
ε.

Hence, it follows from (3.15) that

∣
∣x1 – x′

1
∣
∣ ≤

(

3d +
57
26

)

ε, (3.17)



Jung et al. Journal of Inequalities and Applications         (2022) 2022:17 Page 6 of 13

since max{|x′
1|, |x′

2|} ≤ ‖f (x)‖ ≤ ‖x‖ + ε ≤ d + 1
13 and

–2e′
11x′

1 + 2x1 + e′2
11 – 1 = 2

(

1 – e′
11

)

x′
1 + 2

(

x1 – x′
1
)

+ e′2
11 – 1.

On the other hand, it follows from (3.1) that

∣
∣2e′

21x′
1
∣
∣ ≤ 2c21

∣
∣x′

1
∣
∣ε ≤ 2c21

(

d +
1

13

)

ε.

Due to (3.1), we obtain

–ε ≤ 1 – e′
22 ≤ c22ε.

By (3.16) together with (3.3), we obtain

–
(

(2 + c21)d +
55 + 2c21

26

)

ε ≤ x2 – e′
22x′

2 ≤
(

(2 + c21)d +
27 + c21

13

)

ε,

or since x2 – e′
22x′

2 = (x2 – x′
2) + (1 – e′

22)x′
2,

–
(

(2 + c21 + c22)d +
55 + 2c21 + 2c22

26

)

ε

≤ x2 – x′
2 ≤

(

(2 + c21 + c22)d +
27 + c21 + c22

13

)

ε.

Therefore, we have

∣
∣x2 – x′

2
∣
∣ ≤

(

(2 + c21 + c22)d +
55 + 2c21 + 2c22

26

)

ε. (3.18)

Finally, we define an isometry U : D → R
2 by U(x) = x = (x1, x2). It then follows from

(3.17), (3.18) and Lemma 3.1 that

∥
∥f (x) – U(x)

∥
∥ =

∥
∥f (x) – x

∥
∥ =

∥
∥
(

x′
1 – x1, x′

2 – x2
)∥
∥

=
√

(

x′
1 – x1

)2 +
(

x′
2 – x2

)2

≤ (8d + 4)ε,

which completes our proof. �

By cij in Lemma 3.1, (3.17) and (3.18), we can express the upper bound of inequality (3.8)
more precisely using rational numbers as:

∥
∥f (x) – U(x)

∥
∥ =

√
62.8496299d2 + 50.2268490d + 11.1869791ε

≤ √
62.8496299d2 + 51.0138281d + 10.4000000ε

≤ (7.9277759d + 3.2249031)ε.
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3.2 On bounded subsets of R3

Lemma 3.1 can now be extended without difficulty to the case of the 3-dimensional Eu-
clidean space. It is evident that there exist positive real numbers cij, i, j ∈ {1, 2, 3} with j ≤ i
that satisfy the conditions in (3.1) whenever the function f satisfies f (0) = 0 and the in-
equality (1.3) for all x, y ∈ {0, e1, e2, e3}.

In the following lemma, the parameters cij are assumed to be positive real numbers,
while they were assumed to be positive integers in [8].

Lemma 3.3 Let {e1, e2, e3} be the standard basis for the 3-dimensional Euclidean space R3,
let D be a subset of R3 that satisfies {0, e1, e2, e3} ⊂ D, and let f : D →R

3 be a function that
satisfies f (0) = 0 and the inequality (1.3) for all x, y ∈ {0, e1, e2, e3} and for some constant ε

with 0 < ε ≤ 1
13 . By Lemma 2.2, it can be assumed that f (e1) = (e′

11, 0, 0), f (e2) = (e′
21, e′

22, 0),
and f (e3) = (e′

31, e′
32, e′

33), where e′
11 ≥ 0, e′

22 ≥ 0, and e′
33 ≥ 0. Then, there exist positive real

numbers cij, i, j ∈ {1, 2, 3} with j ≤ i that satisfy the inequalities in (3.1). In particular, c11 =
1.0000000, c21 ≈ 3.7403981, c22 ≈ 1.5978326, c31 ≈ 3.7403981, c32 ≈ 5.1635231, and c33 ≈
2.8340052 may be selected.

Proof In view of (1.3) and f (0) = 0, we have

∣
∣
∥
∥f (e1)

∥
∥ – 1

∣
∣ ≤ ε,

∣
∣
∥
∥f (e2)

∥
∥ – 1

∣
∣ ≤ ε,

∣
∣
∥
∥f (e3)

∥
∥ – 1

∣
∣ ≤ ε,

∣
∣
∥
∥f (e1) – f (e2)

∥
∥ –

√
2
∣
∣ ≤ ε,

∣
∣
∥
∥f (e2) – f (e3)

∥
∥ –

√
2
∣
∣ ≤ ε,

∣
∣
∥
∥f (e3) – f (e1)

∥
∥ –

√
2
∣
∣ ≤ ε

for any ε with 0 < ε ≤ 1
13 . Therefore, from the inequalities above, we obtain the following

inequalities along with (3.2), (3.3) and (3.4):

(1 – ε)2 ≤ e′2
31 + e′2

32 + e′2
33 ≤ (1 + ε)2, (3.19)

(
√

2 – ε)2 ≤ (

e′
21 – e′

31
)2 +

(

e′
22 – e′

32
)2 + e′2

33 ≤ (
√

2 + ε)2, (3.20)

(
√

2 – ε)2 ≤ (

e′
31 – e′

11
)2 + e′2

32 + e′2
33 ≤ (

√
2 + ε)2. (3.21)

Moreover, using (3.21), we have

(
√

2 – ε)2 – e′2
11 –

(

e′2
31 + e′2

32 + e′2
33

) ≤ –2e′
11e′

31 ≤ (
√

2 + ε)2 – e′2
11 –

(

e′2
31 + e′2

32 + e′2
33

)

.

In view of (3.2) and (3.19), we obtain

–(4 + 2
√

2)ε + ε2

2(1 – ε)
≤ e′

31 ≤ (4 + 2
√

2)ε + ε2

2(1 – ε)

and we solve the following inequalities

–c31ε ≤ –(4 + 2
√

2)ε + ε2

2(1 – ε)
and

(4 + 2
√

2)ε + ε2

2(1 – ε)
≤ c31ε
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and we find

c31 =
53 + 26

√
2

24
≈ 3.7403981 (3.22)

as the smallest possible positive real number that satisfies the preceding inequalities.
By (3.20), we obtain

2 – 2
√

2ε + ε2 –
(

e′2
21 + e′2

22
)

–
(

e′2
31 + e′2

32 + e′2
33

)

≤ –2e′
21e′

31 – 2e′
22e′

32 ≤ 2 + 2
√

2ε + ε2 –
(

e′2
21 + e′2

22
)

–
(

e′2
31 + e′2

32 + e′2
33

)

.

Moreover, we use (3.3) and (3.19) to obtain

–(4 + 2
√

2)ε + ε2 – 2e′
21e′

31 ≤ 2e′
22e′

32 ≤ (4 + 2
√

2)ε + ε2 – 2e′
21e′

31,

or one time using (3.1) with i = 2 and j = 1 and the next time using (3.1) with i = 3 and
j = 1,

–(4 + 2
√

2)ε + ε2 – 2c21c31ε
2 ≤ 2e′

22e′
32 ≤ (4 + 2

√
2)ε + ε2 + 2c21c31ε

2.

Due to (3.1) with i = j = 2, we have

–(4 + 2
√

2)ε + ε2 – 2c21c31ε
2

2(1 – c22ε)
≤ e′

32 ≤ (4 + 2
√

2)ε + ε2 + 2c21c31ε
2

2(1 – c22ε)

and we solve the following inequalities

–c32ε ≤ –(4 + 2
√

2)ε + ε2 – 2c21c31ε
2

2(1 – c22ε)
and

(4 + 2
√

2)ε + ε2 + 2c21c31ε
2

2(1 – c22ε)
≤ c32ε.

We use (3.5), (3.7), and (3.22) and put ε = 1
13 in the second inequality to obtain

c32 =
4 + 2

√
2 + 1

13 (1 + 2 × 3.74039812)
2(1 – 1

13 × 1.5978326)
≈ 5.1635231 (3.23)

as the smallest possible positive number that satisfies the last inequalities.
Finally, by (3.1) with i = 3 and j = 1, (3.1) with i = 3 and j = 2, and by (3.19), we have

1 – 2ε –
(

c2
31 + c2

32 – 1
)

ε2 ≤ e′2
33 ≤ (1 + ε)2.

Moreover, we solve the following inequality

(1 – c33ε)2 ≤ 1 – 2ε –
(

c2
31 + c2

32 – 1
)

ε2,

whose solution is given as

1
ε

(

1 –
√

1 – 2ε –
(

c2
31 + c2

32 – 1
)

ε2
) ≤ c33 ≤ 1

ε

(

1 +
√

1 – 2ε –
(

c2
31 + c2

32 – 1
)

ε2
)

.
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In addition, we use (3.22) and (3.23) and put ε = 1
13 in the lower bound for c33 to obtain

c33 = 13 –
√

144 – c2
31 – c2

32 ≈ 2.8340052 (3.24)

as small a positive real number as possible that satisfies the last inequalities. �

In the following theorem, we set e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1) such that
{e1, e2, e3} is the standard basis for the 3-dimensional Euclidean space R

3. We denote by
Bd(0) the closed ball of radius d and centered at the origin of R3, i.e., Bd(0) = {x ∈ R

3 :
‖x‖ ≤ d}.

Theorem 3.4 Let D be a subset of the 3-dimensional Euclidean space R
3 such that

{0, e1, e2, e3} ⊂ D ⊂ Bd(0) for some d ≥ 1 and let f : D → R
3 be a function that satisfies

f (0) = 0 and the inequality (1.3) for all x, y ∈ D and for some constant ε with 0 < ε ≤ 1
13 .

Then, there exists an isometry U : D →R
3 such that

∥
∥f (x) – U(x)

∥
∥ ≤ (16d + 5)ε (3.25)

for all x ∈ D.

Proof Considering Lemma 2.2, we can assume that f (e1) = (e′
11, 0, 0), f (e2) = (e′

21, e′
22, 0),

and f (e3) = (e′
31, e′

32, e′
33), where e′

11 ≥ 0, e′
22 ≥ 0, and e′

33 ≥ 0.
For any point x = (x1, x2, x3) of D, let f (x) = x′ = (x′

1, x′
2, x′

3). It then follows from (1.3) that

∣
∣

√

x′2
1 + x′2

2 + x′2
3 –

√

x2
1 + x2

2 + x2
3
∣
∣ ≤ ε, (3.26)

∣
∣

√
(

x′
1 – e′

11
)2 + x′2

2 + x′2
3 –

√

(x1 – 1)2 + x2
2 + x2

3
∣
∣ ≤ ε, (3.27)

∣
∣

√
(

x′
1 – e′

21
)2 +

(

x′
2 – e′

22
)2 + x′2

3 –
√

x2
1 + (x2 – 1)2 + x2

3
∣
∣ ≤ ε, (3.28)

∣
∣

√
(

x′
1 – e′

31
)2 +

(

x′
2 – e′

32
)2 +

(

x′
3 – e′

33
)2 –

√

x2
1 + x2

2 + (x3 – 1)2
∣
∣ ≤ ε. (3.29)

It follows from (3.26) that

∣
∣
(

x′2
1 + x′2

2 + x′2
3
)

–
(

x2
1 + x2

2 + x2
3
)∣
∣

=
∣
∣

√

x′2
1 + x′2

2 + x′2
3 –

√

x2
1 + x2

2 + x2
3
∣
∣
∣
∣

√

x′2
1 + x′2

2 + x′2
3 +

√

x2
1 + x2

2 + x2
3
∣
∣

≤ ε(d + ε + d) ≤
(

2d +
1

13

)

ε,

(3.30)

since
√

x′2
1 + x′2

2 + x′2
3 = ‖f (x)‖ ≤ ‖x‖+ε ≤ d +ε,

√

x2
1 + x2

2 + x2
3 ≤ d and 0 < ε ≤ 1

13 . Similarly,
it follows from (3.27) that

∣
∣
((

x′
1 – e′

11
)2 + x′2

2 + x′2
3
)

–
(

(x1 – 1)2 + x2
2 + x2

3
)∣
∣ ≤

(

2d +
27
13

)

ε, (3.31)
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since
√

(x′
1 – e′

11)2 + x′2
2 + x′2

3 = ‖f (x)– f (e1)‖ ≤ ‖x–e1‖+ε ≤ d +1+ε,
√

(x1 – 1)2 + x2
2 + x2

3 =
‖x – e1‖ ≤ d + 1 and 0 < ε ≤ 1

13 . Analogously, by (3.28) and (3.29), we obtain

∣
∣
((

x′
1 – e′

21
)2 +

(

x′
2 – e′

22
)2 + x′2

3
)

–
(

x2
1 + (x2 – 1)2 + x2

3
)∣
∣ ≤

(

2d +
27
13

)

ε (3.32)

and

∣
∣
((

x′
1 – e′

31
)2 +

(

x′
2 – e′

32
)2 +

(

x′
3 – e′

33
)2) –

(

x2
1 + x2

2 + (x3 – 1)2)∣∣ ≤
(

2d +
27
13

)

ε, (3.33)

since
√

x2
1 + (x2 – 1)2 + x2

3 ≤ d + 1,
√

x2
1 + x2

2 + (x3 – 1)2 ≤ d + 1, and 0 < ε ≤ 1
13 .

It follows from (3.31) that

∣
∣
(

x′2
1 + x′2

2 + x′2
3
)

–
(

x2
1 + x2

2 + x2
3
)

– 2e′
11x′

1 + 2x1 + e′2
11 – 1

∣
∣ ≤

(

2d +
27
13

)

ε.

By using (3.30), we obtain

–
(

4d +
28
13

)

ε ≤ –2e′
11x′

1 + 2x1 + e′2
11 – 1 ≤

(

4d +
28
13

)

ε. (3.34)

Similarly, it follows from (3.32) that

∣
∣
(

x′2
1 + x′2

2 + x′2
3
)

–
(

x2
1 + x2

2 + x2
3
)

– 2e′
21x′

1 – 2e′
22x′

2 + 2x2 + e′2
21 + e′2

22 – 1
∣
∣ ≤

(

2d +
27
13

)

ε.

Using (3.30), we obtain

–
(

4d +
28
13

)

ε ≤ –2e′
21x′

1 – 2e′
22x′

2 + 2x2 + e′2
21 + e′2

22 – 1 ≤
(

4d +
28
13

)

ε. (3.35)

Analogously, we use (3.30) and (3.33) to obtain

–
(

4d +
28
13

)

ε ≤ –2e′
31x′

1 – 2e′
32x′

2 – 2e′
33x′

3 + 2x3 + e′2
31 + e′2

32 + e′2
33 – 1

≤
(

4d +
28
13

)

ε.
(3.36)

Moreover, putting x = e1 and y = 0 in (1.3) and using (3.1), we have

∣
∣e′

11 – 1
∣
∣ ≤ ε and

∣
∣e′2

11 – 1
∣
∣ =

∣
∣e′

11 – 1
∣
∣
∣
∣e′

11 + 1
∣
∣ ≤ 27

13
ε.

Therefore, it follows from (3.34) that

∣
∣x1 – x′

1
∣
∣ ≤

(

3d +
57
26

)

ε, (3.37)

since max{|x′
1|, |x′

2|, |x′
3|} ≤ ‖f (x)‖ ≤ ‖x‖ + ε ≤ d + 1

13 and

–2e′
11x′

1 + 2x1 + e′2
11 – 1 = 2

(

1 – e′
11

)

x′
1 + 2

(

x1 – x′
1
)

+ e′2
11 – 1.
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On the other hand, it follows from (3.1) that

∣
∣2e′

21x′
1
∣
∣ ≤ 2c21

∣
∣x′

1
∣
∣ε ≤ 2c21

(

d +
1

13

)

ε.

By (3.1), we obtain

–ε ≤ 1 – e′
22 ≤ c22ε.

Furthermore, using (3.35) together with (3.3), we have

–
(

(2 + c21)d +
55 + 2c21

26

)

ε ≤ x2 – e′
22x′

2 ≤
(

(2 + c21)d +
27 + c21

13

)

ε

or

–
(

(2 + c21 + c22)d +
55 + 2c21 + 2c22

26

)

ε

≤ x2 – x′
2 ≤

(

(2 + c21 + c22)d +
27 + c21 + c22

13

)

ε,

since

x2 – e′
22x′

2 =
(

x2 – x′
2
)

+
(

1 – e′
22

)

x′
2.

Thus, we see that

∣
∣x2 – x′

2
∣
∣ ≤

(

(2 + c21 + c22)d +
55 + 2c21 + 2c22

26

)

ε. (3.38)

Analogously, by using (3.1), we obtain

∣
∣2e′

31x′
1
∣
∣ ≤ 2c31

(

d +
1

13

)

ε and
∣
∣2e′

32x′
2
∣
∣ ≤ 2c32

(

d +
1

13

)

ε.

Moreover, due to (3.36), we obtain

–
(

4d +
28
13

)

ε + 2e′
31x′

1 + 2e′
32x′

2 –
(

e′2
31 + e′2

32 + e′2
33

)

+ 1

≤ 2
(

x3 – e′
33x′

3
) ≤

(

4d +
28
13

)

ε + 2e′
31x′

1 + 2e′
32x′

2 –
(

e′2
31 + e′2

32 + e′2
33

)

+ 1.

In view of (3.19), we have

–
(

(4 + 2c31 + 2c32)d +
55 + 2c31 + 2c32

13

)

ε

≤ 2
(

x3 – e′
33x′

3
) ≤

(

(4 + 2c31 + 2c32)d +
54 + 2c31 + 2c32

13

)

ε.
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By (3.1), we see that 1 – c33ε ≤ e′
33 ≤ 1 + ε and hence,

∣
∣x3 – x′

3
∣
∣ ≤

(

(2 + c31 + c32 + c33)d +
55 + 2c31 + 2c32 + 2c33

26

)

ε. (3.39)

Finally, we may define an isometry U : D → R
3 by U(x) = x = (x1, x2, x3). Then, we use

(3.37), (3.38), (3.39), and Lemma 3.3 to obtain

∥
∥f (x) – U(x)

∥
∥ =

∥
∥f (x) – x

∥
∥ =

∥
∥
(

x′
1 – x1, x′

2 – x2, x′
3 – x3

)∥
∥

=
√

(

x′
1 – x1

)2 +
(

x′
2 – x2

)2 +
(

x′
3 – x3

)2

≤ √
252d2 + 134d + 21ε

≤ (16d + 5)ε,

which completes our proof. �

By cij in Lemma 3.3, (3.37), (3.38), and (3.39), we can express the upper bound of in-
equality (3.25) more precisely using rational numbers as:

∥
∥f (x) – U(x)

∥
∥ =

√
251.5802517d2 + 133.1572732d + 20.2971267ε

≤ √
251.5802517d2 + 134.9643999d + 18.4900000ε

≤ (15.8612816d + 4.3000000)ε.

On the other hand, it follows from [8] that

∥
∥f (x) – U(x)

∥
∥ =

√
451d2 + 1026d + 587ε

≤ √
451d2 + 1029.0519930d + 587ε

≤ (21.2367606d + 24.2280829)ε.

Therefore, one can see that the result of this paper is better than that of the previous paper
[8].

4 Discussion
This paper deals with Fickett’s theorem, which can also be called the stability problem of
isometries, with a focus on the bounded subsets of R2 or R3.

Fickett provided the authors with a decisive motivation to study this subject. The upper
bound introduced in Fickett’s theorem for the difference between ε-isometry and exact
isometry is unfortunately very large compared to ε for any sufficiently small ε. This is a
big drawback of Fickett’s theorem. Thus, the work of further improving Fickett’s theorem
has to be attractive.

Moreover, the present paper not only proved the local stability of isometries for the case
n = 2, which was not dealt with in the recent paper [8], but also improved the result of [8]
when n = 3.

Finally, it is unclear whether the upper bound for the difference between ε-isometry and
exact isometry is independent of the ‘radius’ d of the domain D. It seems unlikely, but it
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would be very surprising if it could be proved that the upper bound is independent of the
radius of the domain.
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