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Abstract
This work aims to provide a comprehensive and unified numerical analysis for a
nonlinear system of parabolic variational inequalities (PVIs) subject to Dirichlet
boundary condition. This analysis enables us to establish the existence of an exact
solution to the considered model and to prove the convergence for the approximate
solution and its approximate gradient. Our results are applicable for several
conforming and nonconforming numerical schemes.
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1 Introduction
Nonlinear parabolic variational inequalities and PDEs are useful tools to model the cou-
pled biochemical interactions of microbial cells, which are crucial to numerous applica-
tions, especially in the medical field and food production [16, 19, 21]. We consider here a
nonlinear parabolic system consisting of PDEs and variational inequalities:

(
∂tĀ – div(DA∇Ā) – F(Ā, B̄)

)
(Ā – χ ) = 0 in � × (0, T), (1.1a)

∂tĀ – div(DA∇Ā) ≤ F(Ā, B̄) in � × (0, T), (1.1b)

Ā ≤ χ in � × (0, T), (1.1c)

∂tB̄ – div(DB∇B̄) = G(Ā, B̄) in � × (0, T), (1.1d)

(Ā, B̄) = (0, 0) on
(
∂� × (0, T)

)2, (1.1e)
(
Ā(xxx, 0), B̄(xxx, 0)

)
= (Aini, Bini) in

(
� × {0})2. (1.1f)

Numerical approximation in parabolic systems of inequalities and generalization of in-
equalities have received considerable attention in the research literature. Wheeler [23] ob-
tains the error estimate of second order in L∞(L2) for a linear approximation with respect
to space and time, with a strong regularity on the solutions, such as ∂tB̄ ∈ L2(0, T , L2(�)).
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Johnson [17] analyzes inequality (1.1a), in which F = 0 and DA is constant. The work in [4]
considers a model without the barrier and provides O(h) order of convergence in L∞(L2)-
norm. An L2-error estimate is provided in different studies, such as [5], by using a finite
difference in time. Vuik [22] deals with parabolic variational inequalities with a nonlin-
ear source term and derives the convergence rate of the finite element method in space
with respect to L∞-norm. He also shows that the general finite difference gives O(h) in
L∞(L2)-norm under a strong hypothesis on data. Saker et al. [20] discuss the discrete and
continuous forms of a Carlson-type inequality, and [18] introduces Minkowski’s inequality
by using AB-fractional integral operators.

However, there is a lack of full convergence analyses of numerical schemes for the model
(1.1a)–(1.1f) since the coupled nonlinearity of the system and the constraint (the inequal-
ity) in the model comprise the primary theoretical challenge. It appears that considerable
research is still required, beginning with convergence analysis and testing other varieties
of scheme outside conforming methods. Rather than undertaking individual research for
every numerical scheme, this work utilizes a gradient discretization method (GDM) to
provide a unified and full convergence analysis of numerical methods for (1.1a)–(1.1f) un-
der natural hypotheses on data. The GDM is a generic framework to unify the numerical
analysis for diffusion partial differential equations and their corresponding problems. Due
to the variety of choice of the discrete elements in the GDM, a series of conforming and
nonconforming numerical schemes can be included in the GDM, see [2, 3, 6, 9–13] for
more details.

The outline of this paper is as follows. Section 2 is devoted to writing the model (1.1a)–
(1.1f) in an equivalent weak sense. Section 3 defines the discrete space and functions fol-
lowed by the gradient scheme to our model in the weak sense. Section 4 provides the con-
vergence results, Theorem 4.5, which is proved by following the compactness technique
under classical hypothesis on continuous model data. Finally, as an example, we present
in Sect. 5 the nonconforming P1 finite element scheme that has not been applied to the
nonlinear model (1.1a)–(1.1f), yet.

2 Continuous setting
Hypothesis 2.1 We assume the following:

(1) � ⊂R
d(d ≥ 1) is a bounded connected open set, and T > 0,

(2) DA, DB : � →Md(R) are measurable functions (where Md(R) consists of d × d
matrices) and there exist d1, d2 > 0 such that for a.e. xxx ∈ �, DA(xxx) and DB(xxx) are
symmetric with eigenvalues in [d1, d2],

(3) the constraint function χ is in H1(�) ∩ C(�) such that χ ≥ 0 on the domain
boundary ∂�,

(4) F and G are smooth and Lipschitz functions on R
2 with Lipschitz constants M1 and

M2, respectively, and M = max(M1, M2),
(5) Aini ∈ W 2,∞(�) ∩K, where K := {ϕ ∈ H1

0 (�) : ϕ ≤ χ (t) in �} and Bini ∈ W 2,∞(�).

With the above Hypothesis 2.1, we consider the time-dependent closed convex set

K :=
{
ϕ ∈ L2(0, T ; H1

0 (�)
)

: ϕ(t) ∈K for a.e. t ∈ (0, T)
}

.

It is clear that the time-dependent K contains at least the constant in time function t 
→
χ– := min(0,χ ).
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Definition 2.2 (Weak formulation) Under Hypothesis 2.1, we say that (Ā, B̄) is a weak
solution of (1.1a)–(1.1f) if the following properties and relations hold:

(1) Ā ∈K∩ C0([0, T]; L2(�)), Ā(·, 0) = Aini, ∂tĀ ∈ L2(0, T ; L2(�)),
(2) B̄ ∈ C0([0, T]; L2(�)), B̄(·, 0) = Bini, ∂tB̄ ∈ L2(0, T ; H–1(�)),
(3) for all ϕ ∈K, and for all ψ ∈ L2(0, T ; H1

0 (�)),

ˆ T

0

ˆ
�

∂tĀ(xxx, t)
(
A(xxx, t) – ϕ(xxx, t)

)
dxxx dt

+
ˆ T

0

ˆ
�

DA∇Ā · ∇(Ā – ϕ)(xxx, t) dxxx dt

≤
ˆ T

0

ˆ
�

F(Ā, B̄)
(
Ā(xxx, t) – ϕ(xxx, t)

)
dxxx dt, and

(2.1a)

ˆ T

0

〈
∂tB̄(xxx, t),ψ(xxx, t)

〉
H–1,H1 dt +

ˆ T

0

ˆ
�

DB(xxx)∇B̄(xxx, t) · ∇ψ(xxx, t) dxxx dt

=
ˆ T

0

ˆ
�

G
(
Ā(xxx, t), B̄(xxx, t)

)
ψ(xxx, t) dxxx dt,

(2.1b)

where 〈·, ·〉H–1,H1 is the duality product between H–1(�) and H1(�).

3 Discrete setting
We begin with defining the discrete space and operators. These discrete elements are
slightly different from those defined in [2, 3], in particular, χD , ID , and JD are introduced
to deal with the nonconstant barrier χ and the initial solutions Aini and Bini.

Definition 3.1 (GD for time-dependent obstacle problem) Let � be an open domain of
R

d (d ≥ 1) and T > 0. A gradient discretization D is defined by D = (XD,0,�D ,∇D ,χD , ID ,
JD , (t(n))n=0,...,N ), where:

(1) The discrete set XD,0 is a finite-dimensional vector space over R, taking into
account the homogenous Dirichlet boundary condition (1.1e).

(2) The linear operator �D : XD,0 → L2(�) is the reconstruction of the approximate
function.

(3) The linear operator ∇D : XD,0 → L2(�)d is the reconstruction of the gradient of the
function, and must be chosen so that ‖∇D · ‖L2(�)d is a norm on XD,0.

(4) χD ∈ L2(�) is an approximation of the barrier χ .
(5) ID : W 2,∞(�) ∩K →KD := {ϕ ∈ XD,0 : �Dϕ ≤ χD , in �} is a linear and continuous

interpolation operator for the initial solution Aini.
(6) JD : W 2,∞(�) → XD,0 is a linear and continuous interpolation operator for the

solution Bini.
(7) t(0) = 0 < t(1) < · · · < t(N) = T .

Remark 3.2 For a general obstacle χ , most of numerical methods fail to approximate the
solution Ā by elements inside the set KD . For an example, in the P1 finite element method,
we consider only the values of Ā at the vertices of the mesh, which only guarantee that
these values satisfy the barrier condition (1.1c) only at these vertices, not necessarily at
any point in �. We define here the set KD based on the approximate barrier ψD to be
able to construct an interpolant that belongs to KD . However, there is no need to use an
approximate barrier, if the barrier χ is assumed to be constant.
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For any ϕ = (ϕ(n))n=0,...,N ∈ XN+1
D,0 , we define space–time functions as follows: the re-

constructed function �Dϕ : � × [0, T] → R and the reconstructed gradient ∇Dϕ : � ×
[0, T] →R

d are given by:

�Dϕ(·, 0) = �Dϕ(0) and ∀n = 0, . . . , N – 1,∀t ∈ (t(n), t(n+1)],∀xxx ∈ �,

�Dϕ(xxx, t) = �Dϕ(n+1)(xxx) and ∇Dϕ(xxx, t) = ∇Dϕ(n+1)(xxx).

Setting δt(n+ 1
2 ) = t(n+1) – t(n), for n = 0, . . . , N – 1, and δtD = maxn=0,...,N–1 δt(n+ 1

2 ), the discrete
derivative δDϕ ∈ L∞(0, T ; L2(�)) of ϕ ∈ XN+1

D,	2
is defined by

δDϕ(t) = δ
(n+ 1

2 )
D ϕ :=

�Dϕ(n+1) – �Dϕ(n)

δt(n+ 1
2 )

, ∀n = 0, . . . , N – 1 and t ∈ (t(n), t(n+1)].

In order to construct a good approximate scheme, we require four properties: coercivity,
consistency, limit-conformity, and compactness. The first three respectively connect to
the Poincaré inequality, the interpolation error, and the Stokes formula. The compactness
property enables us to deal with the nonlinearity caused by the reaction terms F and G.

Definition 3.3 (Coercivity) If D is a gradient discretization, set

CD = max
ϕ∈XD,0\{0}

‖�Dϕ‖L2(�)

‖∇Dϕ‖L2(�)d
.

A sequence (Dm)m∈N of gradient discretizations is coercive if (CDm )m∈N remains bounded.

Definition 3.4 (Consistency) If D is a gradient discretization, let SD : K → [0,∞) and
S̃D : H1

0 (�) → [0,∞) be defined by

∀w ∈K, SD(w) = min
ϕ∈KD

(‖�Dϕ – w‖L2(�) + ‖∇Dϕ – ∇w‖L2(�)d
)
, (3.1)

∀w ∈ H1
0 (�), S̃D(w) = min

ψ∈XD,0

(‖�Dψ – w‖L2(�) + ‖∇Dw – ∇ψ‖L2(�)d
)
. (3.2)

A sequence (Dm)m∈N of gradient discretizations is consistent if, as m → ∞,
• for all w ∈K, SDm (w) → 0,
• for all w ∈ H1

0 (�), S̃Dm (w) → 0,
• for all w ∈ W 2,∞(�) ∩K, �Dm IDm w → w strongly in L2(�),
• for all w ∈ W 2,∞(�), �Dm JDm w → w strongly in L2(�),
• (‖∇Dm IDm Aini‖L2(�)d )m∈N is bounded,
• δtDm → 0.

Definition 3.5 (Limit-conformity) If D is a gradient discretization, let WD : Hdiv(�) :=
{ψ ∈ L2(�)d : divψ ∈ L2(�)} → [0, +∞) be defined by

WD(ψ) = sup
ϕ∈XD,0\{0}

|´
�

(∇Dϕ · ψ + �Dϕ div(ψ)) dxxx|
‖∇Dϕ‖L2(�)d

. (3.3)

A sequence (Dm)m∈N of gradient discretizations is limit-conforming if for all ψ ∈ Hdiv(�),
WDm (ψ) → 0, as m → ∞.
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Definition 3.6 (Compactness) A sequence of gradient discretizations (Dm)m∈N is com-
pact if, for any sequence (ϕm)m∈N ∈ XDm ,0 such that (‖∇Dmϕm‖L2(�))m∈N is bounded, the
sequence (�Dmϕm)m∈N is relatively compact in L2(�).

Definition 3.7 (Gradient scheme problem) Find sequences A = ((A(n))n=0,...,N , B =
(B(n))n=0,...,N ) ⊂ KD × XD,0 such that (A(0), B(0)) = (IDAini, JDBini) ∈ KD × XD,0, for all
n = 0, . . . , N – 1, for all ϕ ∈KD , and for all ψ ∈ XD,0,

ˆ
�

δ
(n+ 1

2 )
D A(xxx)�D

(
A(n+1)(xxx) – ϕ(xxx)

)
dxxx

+
ˆ

�

DA(xxx)∇DA(n+1)(xxx) · ∇D
(
A(n+1)(xxx) – ϕ(xxx)

)
dxxx

≤
ˆ

�

F
(
�DA(n+1),�DB(n+1))�D

(
A(n+1)(xxx) – ϕ(xxx)

)
dxxx dt, and

(3.4a)

ˆ
�

δ
(n+ 1

2 )
D B(xxx)�Dψ(xxx) dxxx +

ˆ
�

DB(xxx)∇DB(n+1)(xxx) · ∇Dψ(xxx) dxxx

=
ˆ

�

G
(
�DA(n+1),�DB(n+1))�Dψ(xxx) dxxx dt.

(3.4b)

4 Main results
Let the time interval [0, T] be divided into 
κ intervals of length κ , where κ tends to zero as

κ → ∞. Let 1Ii be the characteristic function of Ii = [iκ , (i + 1)κ), i = 0, . . . ,
κ . We define
a set of piecewise-constant in time functions by

Lκ =

{

wκ (xxx, t) =

κ∑

i=1

1Ii (t)ϕi(xxx) : ϕ ∈ C2
0(�) and ϕ ≤ χ in � a.e.

}

. (4.1)

Lemma 4.1 For T > 0, let (D)m∈N be a sequence of gradient discretizations that is consis-
tent. Let w̄κ ∈ Lκ be a piecewise constant in time function, where Lκ is the set defined by
(4.1). Then there exists a sequence (wm)m∈N such that wm = (w(n)

m )n=0,...,Nm ∈ KNm+1
Dm

for all
m ∈N, and, as m → ∞,

�Dm wm → w̄κ strongly in L2(� × (0, T)
)
, (4.2a)

∇Dm wm → ∇w̄κ strongly in L2(� × (0, T)
)d. (4.2b)

Proof Write w̄κ (xxx, t) =
∑
κ

i=1 1Ii (t)φi(xxx), where φi ∈ C∞
0 (�) ∩ K. Let s ∈ (0, T) and choose

n := n(s) such that s ∈ (t(n(s)), t(n(s)+1)]. Let wm ∈ XDm ,0 be defined by wm =
∑
κ

i=1 1Ii (t(n(s)+1))PDmφi, where

PDm (φ) = argmin
ω∈KDm

(‖�Dmω – φ‖L2(�) + ‖∇Dmω – ∇φ‖L2(�)d
)
. (4.3)
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For i = 1, . . . ,
κ , we define ξ i
m : (0, T) → R by ξ i

m(s) = 1Ii (t(n(s)+1)) for s ∈ (0, T). Using the
relation ab – cd = (a – c)b + c(b – d), we obtain, for all s ∈ (0, T) and a.e. xxx ∈ �,

(�Dm wm – w̄κ )(xxx, s) =

κ∑

i=1

(
ξ i

m(s) – 1Ii (s)
)
�Dm PDmφi(xxx)

+

κ∑

i=1

1Ii (s)(�Dm PDmφi – φi)(xxx).

An application of the definition of SDm yields

‖�Dm wm – w̄κ‖L2(�×(0,T)) ≤

κ∑

i=1

∥∥ξ i
m(s) – 1Ii (s)

∥∥
L2(0,T)‖�Dm PDmφi‖L2(�)

+

κ∑

i=1

∥∥1Ii (s)
∥∥

L2(0,T)‖�Dm PDmφi – φi‖L2(�)

≤

κ∑

i=1

∥
∥ξ i

m(s) – 1Ii (s)
∥
∥

L2(0,T)

(
SDm (φi) + ‖φi‖L2(�)

)

+ C1


κ∑

i=1

SDm (φi),

(4.4)

where C1 =
∑
κ

i=1 ‖1Ii‖L2(0,T). Using consistency, one obtains SDm (φi) → 0 as m → ∞, for
any i = 0, . . . ,
κ , which implies that the second term on the right-hand side vanishes. In
the case in which both s, t(n(s)+1) ∈ Ii or both s, t(n(s)+1) /∈ Ii, the quantity ξ i

m(s) – 1Ii (s) equals
zero. In the case in which s ∈ Ii and t(n(s)+1) /∈ Ii or s /∈ Ii and t(n(s)+1) ∈ Ii, one can deduce,
writing Ii = [ai, bi] and because s is chosen such that |s – t(n(s)+1)| ≤ δtDm ,

∥
∥ξ i

m(s) – 1Ii (s)
∥
∥p

L2(0,T) ≤ measure
(
[ai – δtDm , ai + δtDm ] ∪ [bi – δtDm , bi + δtDm ]

)

≤ 4δtDm .

This shows that the first term on the right-hand side of (4.4) tends to zero when m →
∞. Hence, (4.2a) is concluded. The proof of (4.2b) is obtained by the same reasoning,
replacing w̄κ by ∇w̄κ and �Dm wm by ∇Dm wm. �

Lemma 4.2 (Energy estimates) Let Hypothesis 2.1 hold. If D is a gradient discretization
such that δD < 1

2M ,KD is a nonempty set, and (A, B) ∈KD×XD,0 is a solution of the approx-
imate scheme (3.4a)–(3.4b), then there exists a constant C2 ≥ 0 only depending on �, d1,
T , M, C0 := max(F(0), G(0)), ‖�DIDAini‖L2(�), ‖∇DID∇Aini‖L2(�)d , and ‖�DJDBini‖L2(�),
such that

‖δDA‖L2(�×(0,T)) + ‖∇DA‖L∞(0,T ;L2(�)d)

+ ‖�DB‖L∞(0,T ;L2(�)) + ‖∇DB‖L2(�×(0,T))d ≤ C2.
(4.5)
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Proof We start by taking ϕ := A(n) (it belongs to KD) and the function ψ := δt(n+ 1
2 )B(n+1) in

(3.4a)–(3.4b) to get

δt(n+ 1
2 )
ˆ

�

∣∣δ
(n+ 1

2 )
D A

∣∣2 dxxx +
ˆ

�

DA∇DA(n+1) · ∇D
(
A(n+1) – A(n))dxxx

≤ δt(n+ 1
2 )
ˆ

�

F
(
�DA(n+1),�DB(n+1))δ

(n+ 1
2 )

D A dxxx,
(4.6)

and

ˆ
�

(
�DB(n+1)(xxx) – �DB(n)(xxx)

)
�DB(n+1)(xxx) dxxx

+
ˆ t(n+1)

t(n)

ˆ
�

DB
∣∣∇DB(n+1)(xxx)

∣∣2 dxxx dt

= δt(n+ 1
2 )
ˆ

�

G
(
�DA(n+1)(xxx), B(n+1)(xxx)

)
�DB(n+1)(xxx) dxxx.

(4.7)

Applying the fact that (r – s) · r ≥ 1
2 |r|2 – 1

2 |s|2 to the second term on the left-hand side of
(4.6) and to the first term on the left-hand side of (4.7), it follows that

δt(n+ 1
2 )
ˆ

�

∣∣δ
(n+ 1

2 )
D A

∣∣2 dxxx +
d1

2

ˆ
�

(∣∣∇DA(n+1)∣∣2 –
∣∣∇DA(n)∣∣2)dxxx

≤ δt(n+ 1
2 )
ˆ

�

F
(
�DA(n+1),�DB(n+1))δ

(n+ 1
2 )

D A dxxx,

and

1
2

ˆ
�

[∣∣�DB(n+1)(xxx)
∣
∣2 –

∣
∣�DB(n)(xxx)

∣
∣2]dxxx + d1

ˆ t(n+1)

t(n)

ˆ
�

∣
∣∇DB(n+1)(xxx)

∣
∣2 dxxx dt

≤ δt(n+ 1
2 )
ˆ

�

G
(
�DU (n+1)(xxx), B(n+1)(xxx)

)
�DB(n+1)(xxx) dxxx.

Summing the above inequalities over n ∈ [0, m – 1], where m = 0, . . . , N gives

‖δDA‖2
L2(�×(0,t(m))) +

d1

2
(∥∥∇DA(m)∥∥2

L2(�)d –
∥∥∇DA(0)∥∥2

L2(�)d
)

≤
m–1∑

n=0

δt(n+ 1
2 )
ˆ

�

F
(
�DA(n+1),�DB(n+1))δ

(n+ 1
2 )

D A dxxx,
(4.8)

and

1
2
(∥∥�DB(m)∥∥2

L2(�) –
∥
∥�DB(0)∥∥2

L2(�)

)
+ d2

m–1∑

n=0

δt(n+ 1
2 )∥∥∇DB(n)∥∥2

L2(�)d

≤
m–1∑

n=0

δt(n+ 1
2 )
ˆ

�

G
(
�DA(n+1)(xxx), B(n+1)(xxx)

)
�DB(n+1)(xxx) dxxx.

(4.9)
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This, together with the Cauchy–Schwarz inequality, implies that

‖δDA‖2
L2(�×(0,t(m))) +

d1

2
(∥∥∇DA(m)∥∥2

L2(�)d –
∥∥∇DA(0)∥∥2

L2(�)d
)

≤
m∑

n=0

δt(n+ 1
2 )∥∥F

(
�DA(n+1),�DB(n+1))∥∥

L2(�×(0,T))

∥
∥δ

(n+ 1
2 )

D A
∥
∥

L2(�×(0,t))

and

1
2
(∥∥�DB(m)∥∥2

L2(�) –
∥∥�DB(0)∥∥2

L2(�)

)
+ d2

m–1∑

n=0

δt(n+ 1
2 )∥∥∇DB(n)∥∥

L2(�)d

≤
m∑

n=0

δt(n+ 1
2 )∥∥G

(
�DA(n+1),�B(n+1))∥∥

L2(�×(0,T))

∥∥�DB(n+1)∥∥
L2(�×(0,T)).

Using the Lipschitz condition, we arrive at

‖δDA‖2
L2(�×(0,t(m))) +

d1

2
(∥∥∇DA(m)∥∥2

L2(�)d –
∥
∥∇DA(0)∥∥2

L2(�)d
)

≤
m∑

n=0

δt(n+ 1
2 )∥∥δ

(n+ 1
2 )

D A
∥∥

L2(�×(0,t))

× (
M

∥∥�DA(n+1)∥∥
L2(�) + M

∥∥�DB(n+1)∥∥
L2(�) + C0

)
,

and

1
2
(∥∥�DB(m)∥∥2

L2(�) –
∥
∥�DB(0)∥∥2

L2(�)

)
+ d2

m–1∑

n=0

δt(n+ 1
2 )∥∥∇DB(n)∥∥

L2(�)d

≤
m∑

n=0

δt(n+ 1
2 )(M

∥
∥�DB(n+1)∥∥2

L2(�)

+ M
∥∥�DB(n+1)∥∥

L2(�)

∥∥�DB(n+1)∥∥
L2(�) + C0

∥∥�DB(n+1)∥∥
L2(�)

)
.

This, together with Young’s inequality, gives, whenever 1 –
∑3

i=1 εi > 0,

‖δDA‖2
L2(�×(0,t(m))) +

d1

2
(∥∥∇DA(m)∥∥2

L2(�)d –
∥∥∇DA(0)∥∥2

L2(�)d
)

≤
3∑

i=1

εi

2
∥∥δDA(n+ 1

2 )∥∥2
L2(�×(0,t))

+
m∑

n=0

δt(n+ 1
2 )

(
M
2ε1

∥∥�DA(n+1)∥∥2
L2(�) +

M
2ε2

∥∥�DB(n+1)∥∥2
L2(�) +

1
2ε3

C0

)
,

(4.10)

and

1
2
(∥∥�DB(m)∥∥2

L2(�)d –
∥∥�DB(0)∥∥2

L2(�)d
)

+ d2

m–1∑

n=0

δt(n+ 1
2 )∥∥∇DB(n)∥∥2

L2(�)d
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≤
m∑

n=0

δt(n+ 1
2 )

(
M

(
1 +

1
2ε4

)∥∥�DB(n+1)∥∥2
L2(�) (4.11)

+
ε4

2
∥
∥�DA(n+1)∥∥2

L2(�) +
ε5

2
C2

0

)
.

Thanks to Gronwall inequality [15, Lemma 5.1], inequality (4.11) can be rewritten as

1
2
∥∥�DB(m)∥∥2

L2(�)d + d2

m–1∑

n=0

δt(n+ 1
2 )∥∥∇DB(n)∥∥2

L2(�)d

≤ eC3

(
Tε5

2
C2

0 +
ε4

2

m–1∑

n=0

δt(n+ 1
2 )∥∥�DA(n+1)∥∥2

L2(�×(0,T)) +
1
2
∥
∥�DB(0)∥∥2

L2(�)

)

,

where C3 depends on T , M, and ε4. Combining this inequality with (4.10) yields

(

2 –
3∑

i=1

εi

2

)

‖δDA‖2
L2(�×(0,t(m))) +

(
d1

2
+

M
2ε1

–
ε4

2
eC3

)∥∥∇DA(m)∥∥2
L2(�)d

+
1
2
∥
∥�DB(m)(xxx)

∥
∥2

L2(�) + (d2 –
M
2ε2

∥
∥∇DB(xxx, t)

∥
∥2

L2(�×(0,t(m)))d

≤
(

T
2ε3

+
Tε5

2
eC3

)
C2

0 +
d1

2
∥∥∇DA(0)∥∥2

L2(�)d +
eC3

2
∥∥�DB(0)∥∥2

L2(�).

Taking the supremum over m ∈ [0, N] and using the real inequality supn(rn + sn) ≤
supn(rn) + sup n(sn), we obtain the desired estimates. �

In the following definition, we introduce a dual norm [8], which is defined on the space
�D(XD,0) ⊂ L2(�), to ensure the required compactness results.

Definition 4.3 If D is a gradient discretization, then the dual norm ‖ · ‖�,D on �D(XD,0)
is given by

∀U ∈ �D(XD,0),

‖U‖�,D = sup

{ˆ
�

U(xxx)�Dψ(xxx) dxxx : ψ ∈ XD,0,‖∇Dψ‖L2(�)d = 1
}

.
(4.12)

Lemma 4.4 Under Hypothesis 2.1, let D be a gradient discretization, which is coercive. If
B ∈ XD,0 satisfies (3.4b), then there exists a constant C4 depending only on C1, M, �, T ,
and ‖�DB(0)‖L2(�), such that

ˆ T

0

∥∥δDB(t)
∥∥2

�,D dt ≤ C4. (4.13)
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Proof Putting ψ = φ in (3.4b), together with the Cauchy–Schwarz inequality and the co-
ercivity property, implies

ˆ
�

δ
(n+ 1

2 )
D B(xxx)�Dφ(xxx) dxxx

≤ d2
∥
∥∇DB(n+1)∥∥

L2(�×(0,T))d‖∇Dφ‖L2(�×(0,T))d

+
(
M

∥
∥�DB(n+1)∥∥

L2(�×(0,T)) + M
∥
∥�DA(n+1)∥∥

L2(�×(0,T)) + C0
)‖�Dφ‖L2(�)

≤ ‖∇Dφ‖L2(�)d
[
d2

∥
∥∇DB(n+1)∥∥

L2(�×(0,T))d

+ CD
(
M

∥∥�DB(n+1)∥∥
L2(�×(0,T)) + M

∥∥�DA(n+1)∥∥
L2(�×(0,T)) + C0

)]
.

Taking the supremum over φ ∈ XD,0 with ‖∇Dφ‖L2(�)d = 1, multiplying by δt(n+1), sum-
ming over n ∈ [0, N – 1], and using (4.5) yield the desired estimate. �

Theorem 4.5 Under Hypothesis (2.1), let (Dm)m∈N be a sequence of gradient discretiza-
tions, that is coercive, limit-conforming, consistent, compact, and such that KDm is a
nonempty set for any m ∈ N. For m ∈ N, let (Am, Bm) ∈ KNm+1

Dm
× XNm+1

Dm ,0 be solutions to
the scheme (3.4a)–(3.4b) with D = Dm. Then there exists a solution (Ā, B̄) for the discrete
problem (2.1a)–(2.1b), and a subsequence of gradient discretizations, indexed by (Dm)m∈N,
such that, as m → ∞,

(1) �Dm Am → A and �Dm Bm → B strongly in L∞(0, T ; L2(�)),
(2) ∇Dm Am → ∇A and ∇Dm Bm → ∇B strongly in L2(� × (0, T))d ,
(3) δDm Am converges weakly to ∂tĀ in L2(� × (0, T)).

Proof The proof is divided into four stages and its idea is inspired by [1].
Step 1: Existence of approximate solutions. At (n+1), we see that (3.4a) and (3.4b) respec-

tively express a system of nonlinear elliptic variational inequality on A(n+1) and nonlinear
equations on B(n+1). For w = (w1, w2) ∈KD × XD,0, we see that (A, B) ∈KD × XD,0 satisfies

a
(
A(n+1), A(n+1) – ϕ

) ≤ L
(
A(n+1) – ϕ

)
, ∀ϕ ∈KD , and (4.14a)

ˆ
�

�D
B(n+1) – B(n)

δt(n+ 1
2 )

(x)�Dψ(xxx) +
ˆ

�

DB∇DB(n+1)(xxx) · ∇Dψ(xxx) dxxx

=
ˆ

�

G(�Dw1,�Dw2)�Dψ(xxx) dxxx, ∀ψ ∈ XD,0,
(4.14b)

where α := 1

δt(n+ 1
2 )

and the bilinear and linear forms are defined by

a(φ, z) = α

ˆ
�

�Dφ�Dz dxxx + DA

ˆ
�

∇Dφ · ∇Dz dxxx, ∀φ, z ∈KD and

L(z) =
ˆ

�

F(�Dw1,�Dw2)�Dz dxxx + α

ˆ
�

�DA(n)�Dz dxxx, ∀z ∈KD .

Stampacchia’s theorem implies that there exists Ā ∈ KD satisfying inequality (4.14a).
The second equation (4.14b) describes a linear square system. Taking ϕ = B(n+1) in
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(4.14b), using the similar reasoning as in the proof of Lemma 4.2, and setting G = 0
yield ‖∇DB(n+1)‖L2(�)d = 0. This shows that the matrix corresponding to the linear sys-
tem is invertible. Consider the continuous mapping T : KD × XD,0 → KD × XD,0, where
T(w) = (A, B) with (A, B) being the solution to (4.14a)–(4.14b). The existence of a solution
(A(n+1), B(n+1)) to the nonlinear system is a consequence of Brouwer’s fixed point theorem.

Step 2: Strong convergence of �Dm Am and �Dm Bm in L∞(0, T ; L2(�)) and the weak con-
vergence of δDm Am in L2(� × (0, T)). Applying estimate (4.5) to the sequence of solu-
tions ((Am)m∈N, (Bm)m∈N) of the scheme (3.4a)–(3.4b) shows that both ‖∇Dm Am‖L2(�×(0,T))d

and ‖∇Dm Bm‖L2(�×(0,T))d are bounded. Using [8, Lemma 4.8], there exists a sequence,
still denoted by (DT

m)m∈N, and Ā, B̄ ∈ L2(0, T ; H1
0 (�)) such that, as m → ∞, �Dm Am con-

verges weakly to Ā in L2(� × (0, T)), ∇Dm Am converges weakly to ∇Ā in L2(� × (0, T))d ,
�Dm Bm converges weakly to B̄ in L2(� × (0, T)), and ∇Dm Bm converges weakly to ∇B̄ in
L2(� × (0, T))d . Since Am ∈ KDm , passing to the limit in �Dm Am ≤ χ in � shows that
Ā ≤ χ in �. Thanks to [8, Theorem 4.31], estimate (4.5) shows that Ā ∈ C([0, T]; L2(�)),
�Dm Am converges strongly to Ā in L∞(0, T ; L2(�)), and δDm Am converges weakly to ∂tĀ
in L2(0, T ; L2(�)).

Let us show the strong convergence of �Dm Bm to B̄ in L∞(0, T ; L2(�)). Indeed, �Dm Bm

converges strongly to B̄ in L2(� × (0, T)), thanks to estimate (4.13), consistency, limit-
conformity, and compactness, as well as [8, Theorem 4.14]. We can apply the domi-
nated convergence theorem to show that G(�Dm Am,�Dm Bm) → G(Ā, B̄) in L2(�× (0, T)),
thanks to the assumptions on G given in Hypothesis 2.1.

Let t0 ∈ [0, T] and define the sequence tm ∈ [0, T] such that tm → t0, as m → ∞. Con-
sider k(m) ∈ [0, Nm – 1] such that km ∈ (t(s(m)), t(s(m)+1)]. Following the technique used in
Lemma 4.2, one can obtain

1
2

ˆ
�

(
�Dm B(xxx, tm)

)2 dxxx

≤ 1
2

ˆ
�

(
�Dm JDm Bini(xxx)

)2 dx –
ˆ t(s(m))

0

ˆ
�

DB
(∇Dm B(xxx, t)

)2 dxxx dt

≤
ˆ t(s(m))

0

ˆ
�

G
(
�Dm A(xxx, t),�Dm B(xxx, t)

)
�Dm B(xxx, t) dxxx dt.

(4.15)

Using the characteristic function, it is obvious that, as m → ∞,

�Dm Bm → B̄ strongly in L2(� × (0, T)
)

and

1[0,t(s(m))]∇B̄ → 1[0,t0]∇B̄ strongly in L2(� × (0, T)
)d.

These convergence results imply that

ˆ t0

0

ˆ
�

DB
(∇B̄(xxx, t)

)2 dxxx dt

=
ˆ t(s(m))

0

ˆ
�

1[0,s]DB
(∇B̄(xxx, t)

)2 dxxx dt

= lim
m→∞

ˆ T

0

ˆ
�

1[0,t(s(m))]DB∇B̄(xxx, t) · ∇Dm Bm(xxx, t) dxxx dt
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≤ lim inf
m→∞

(‖1[0,t(s(m))]∇B̄‖L2(�×(0,T))d · ‖1[0,t(s(m))]DB∇Dm Bm‖L2(�×(0,T))d
)

= ‖1[0,t0]∇B̄‖L2(�×(0,T))d · lim inf
m→∞ ‖1[0,t(s(m))]DB∇Dm Bm‖L2(�×(0,T))d .

Dividing this inequality by ‖1[0,t0]∇B̄‖L2(�×(0,T))d gives

ˆ t0

0

ˆ
�

DB
(∇B̄(xxx, t)

)2 dxxx dt ≤ lim inf
m→∞

ˆ t(s(m))

0

ˆ
�

DB
(∇Dm Bm(xxx, t)

)2 dxxx dt. (4.16)

Passing to the limit superior in (4.15), we arrive at

lim sup
m→∞

1
2

ˆ
�

(
�Dm Bm(xxx, tm)

)2 dxxx

≤ 1
2

ˆ
�

Bini(xxx)2 dxxx –
ˆ t0

0

ˆ
�

DB
(∇B̄(xxx, t)

)2 dxxx dt

+
ˆ t0

0

ˆ
�

G
(
Ā(xxx, t), B̄(xxx, t)

)
B̄(xxx, t) dxxx dt.

(4.17)

Letting ψ = B̄1[0,t0](t) in (3.4b) and integrating by parts, we obtain

1
2

ˆ
�

(
B̄(xxx, t0)

)2 dxxx +
ˆ t0

0

ˆ
�

DB
(∇B̄(xxx, t)

)2 dxxx dt

=
1
2

ˆ
�

Bini(xxx)2 dxxx +
ˆ t0

0

ˆ
�

G
(
Ā(xxx, t), B̄(xxx, t)

)
B̄(xxx, t) dxxx dt.

(4.18)

From (4.17) and (4.18), we obtain

lim sup
m→∞

ˆ
�

(
�Dm Bm(xxx, tm)

)2 dxxx ≤
ˆ

�

B̄(xxx, t0)2 dxxx. (4.19)

Estimates (4.5) and (4.13), together with [8, Theorem 4.19], imply the weak convergence of
(�Dm Bm)m∈N to B̄ in L2(�); it is indeed uniform in [0, T]. This yields the weak convergence
of �Dm Bm(·, sm) to B̄(·, t0) in L2(�). As a consequence of estimate (4.19), this convergence
of �Dm Bm(·, sm) holds in the strong sense in L2(�). With the continuity of B̄ : [0, T] →
L2(�), we can apply [8, Lemma C.13] to conclude the strong convergence of �Dm Bm in
L∞(0, T ; L2(�)).

Step 3: Convergence towards the solution of the continuous model. Recall that A(0)
m =

IDm Āini, therefore the consistency shows that �Dm A(0)
m converges strongly to Aini in L2(�),

as m → ∞. Hence, Ā ∈ C([0, T]; L2(�)) ∩ K and Ā satisfies all the conditions except for
the integral inequality imposed on the exact solution of problem (2.1a). Let us now show
that this integral relation holds. With Hypothesis 2.1, the dominated convergence theo-
rem leads to F(�Dm Am,�Dm Bm) → F(Ā, B̄) in L2(� × (0, T)). The L2-weak convergence
of ∇Dm Am yields

ˆ T

0

ˆ
�

DA∇Ā · ∇Ā dxxx dt ≤ lim inf
m→∞

ˆ T

0

ˆ
�

DA∇Dm Am · ∇Dm Am dxxx dt. (4.20)

Fix κ > 0 and let w̄κ ∈ Lκ , where Lκ is defined by (4.1). Thanks to Lemma 4.1, there exists
a sequence (wm)m∈N such that wm ∈ KNm+1

Dm
, and �Dm wm → w̄κ strongly in L2(� × (0, T))
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and ∇Dm wm → ∇w̄κ strongly in L2(� × (0, T))d . Setting ϕ := wm as a generic function in
(3.4a), inequality (4.20) implies that

ˆ T

0

ˆ
�

DA∇Ā · ∇Ā dxxx dt

≤ lim inf
m→∞

[ˆ T

0

ˆ
�

F(�Dm Am,�Dm Bm)�Dm (Am – wm) dxxx dt

+
ˆ T

0

ˆ
�

DA∇Dm Am · ∇Dm wm dxxx dt –
ˆ T

0

ˆ
�

δDm Am�Dm (Am – wm) dxxx dt
]

.

With the weak–strong convergences, we pass to the limit in this relation to obtain, for all
wκ ∈ Lκ and all κ > 0,

ˆ T

0

ˆ
�

∂tĀ(xxx, t)(u – wκ )(xxx, t) dxxx dt +
ˆ T

0

ˆ
�

DA∇Ā · ∇(Ā – wκ )(xxx, t) dxxx dt

≤
ˆ T

0

ˆ
�

F
(
Ā(xxx, t), B̄(xxx, t)

)
(Ā – wκ )(xxx, t) dxxx dt.

By the density of the set C∞
0 (�) ∩ K in K proved in [14], every ϕ ∈ K can be approxi-

mated by a piecewise constant function in time wκ ∈ Lκ such that wκ → ϕ strongly in
L2(0, T ; H1

0 (�)) as κ → 0 (note that wκ ≤ χ in � × (0, T)). Hence, (2.1a) is verified.
Let us verify the integral equality (2.1b). Let ψ be a generic function in the space

L2(0, T ; L2(�)) which satisfies ∂tψ ∈ L2(� × (0, T)) and ψ(T , ·) = 0. Using the technique
in [8, Lemma 4.10], we can construct wm = (w(n)

m )n=0,...,Nm ∈ XNm+1
Dm ,0 , such that �Dm wm → ψ

in L2(0, T ; L2(�)) and δDm wm → ∂tψ strongly in L2(� × (0, T)). Take ψ = δt(n+ 1
2 )

m w(n)
m as a

generic function in (3.4b) and sum over n ∈ [0, Nm – 1] to get

Nm–1∑

n=0

ˆ
�

[
�Dm B(n+1)

m (xxx) – �Dm B(n)(xxx)
]
�Dm w(n)

m (xxx) dx

+
ˆ T

0

ˆ
�

DB(xxx)∇Dm Bm(xxx, t) · ∇Dm wm(xxx, t) dxxx dt

=
ˆ T

0

ˆ
�

G
(
�Dm A(xxx, t),�Dm B(xxx, t)

)
�Dm wm(xxx, t) dx dt.

(4.21)

Applying [8, Eq. (D.15)] to the right-hand side yields, thanks to w(N) = 0,

–
ˆ T

0

ˆ
�

�Dm Bm(xxx, t)δDm wm(xxx, t) dxxx dt –
ˆ

�

�Dm B(0)
m (xxx)�Dm w(0)

m (xxx) dxxx

+
ˆ T

0

ˆ
�

DB(xxx)∇Dm Bm(xxx, t) · ∇Dm wm(xxx, t) dxxx dt

=
ˆ T

0

ˆ
�

G
(
�Dm A(xxx, t),�Dm B(xxx, t)

)
�Dm wm(xxx, t) dx dt.



Alnashri Journal of Inequalities and Applications         (2022) 2022:16 Page 14 of 18

Using the consistency, we see that �Dm B(0)
m = �Dm JDm Bini → Bini in L2(�). This, when

passing to the limit m → ∞, implies, for all ψ in L2(0, T ; H1(�)),

–
ˆ T

0

ˆ
�

∂tψ(xxx, t)B̄(xxx, t) dxxx dt +
ˆ T

0

ˆ
�

DB∇B̄ · ∇ψ(xxx, t) dxxx dt

=
ˆ T

0

ˆ
�

G(Ā, B̄)ψ(xxx, t) dxxx dt.

Since C∞([0, T]; H1(�)) is dense in L2(0, T ; H1(�)), integrating by parts shows that the
above equality can be expressed in the sense of distributions, which is equivalent to (2.1b).

Step 4: Proof of the strong convergence of ∇Dm Am and ∇Dm Bm. From the weak–strong
convergences, we have, for all w̄κ ∈ Lκ ,

lim sup
m→∞

ˆ T

0

ˆ
�

DA∇Dm Am · ∇Dm Am dxxx dt

≤
ˆ T

0

ˆ
�

F(Ā, B̄)(Ā – w̄κ ) dxxx dt

+
ˆ T

0

ˆ
�

DA∇Ā · ∇w̄κ dxxx dt –
ˆ T

0

ˆ
�

∂tĀ(Ā – w̄κ ) dxxx dt.

Thanks to the density results, for any ϕ ∈ K, we can find (w̄κ )κ>0 that converges to ϕ in
L2(0, T ; H1(�)), as κ → 0. Therefore, we infer, for all ϕ ∈K,

lim sup
m→∞

ˆ T

0

ˆ
�

DA∇Dm Am · ∇Dm Am dxxx dt

≤
ˆ T

0

ˆ
�

F(Ā, B̄)(Ā – ϕ) dxxx dt

+
ˆ T

0

ˆ
�

DA∇Ā · ∇ϕ dxxx dt –
ˆ T

0

ˆ
�

∂tĀ(Ā – ϕ) dxxx dt.

Taking ϕ = Ā, the above relation yields

lim sup
m→∞

ˆ T

0

ˆ
�

DA∇Dm Am · ∇Dm Am dxxx dt ≤
ˆ T

0

ˆ
�

DA∇Ā · ∇Ā dxxx dt.

Together with (4.20), we obtain

lim
m→∞

ˆ T

0

ˆ
�

DA∇Dm Am · ∇Dm Am dxxx dt =
ˆ T

0

ˆ
�

DA∇Ā · ∇Ā dxxx dt,

which implies

0 ≤ d1 lim sup
m→∞

ˆ T

0

ˆ
�

|∇Ā – ∇Dm Am|2 dxxx dt

≤ lim sup
m→∞

[ˆ T

0

ˆ
�

DA∇Ā · ∇Ā +
ˆ T

0

ˆ
�

DA∇Dm Am · ∇Dm Am dxxx dt

– 2
ˆ T

0

ˆ
�

DA∇Ā · ∇Dm Am dxxx dt
]

= 0,
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showing that ∇Dm Am → ∇Ā strongly in L2(� × (0, T))d . To show the strong convergence
of ∇Dm Bm, we begin by writing

ˆ T

0

ˆ
�

(∇Dm Bm(xxx, t) – ∇B̄(xxx, t)
) · (∇Dm Bm(xxx, t) – ∇B̄(xxx, t)

)
dxxx dt

=
ˆ T

0

ˆ
�

∇Dm Bm(xxx, t) · ∇Dm Bm(xxx, t) dxxx dt

–
ˆ T

0

ˆ
�

∇Dm Bm(xxx, t) · ∇B̄(xxx, t) dxxx dt

–
ˆ T

0

ˆ
�

∇B̄(xxx, t) · (∇Dm Bm(xxx, t) – ∇B̄(xxx, t)
)

dxxx dt.

(4.22)

Setting ψ := Bm in (3.4b) and ψ = B̄ in (2.1b), and taking DB(xxx) = Id, when passing to the
limit superior, yields

lim sup
m→∞

ˆ T

0

ˆ
�

∇Dm Bm(xxx, t) · ∇Dm Bm(xxx, t) dx dt

=
ˆ T

0

ˆ
�

G(Ā, B̄)B̄(xxx, t) dxxx dt –
ˆ T

0

ˆ
�

∂tB̄(xxx, t)B̄(xxx, t) dxxx dt

=
ˆ T

0

ˆ
�

∇B̄(xxx, t) · ∇B̄(xxx, t) dxxx dt.

Passing to the limit in (4.22) and using the above inequality, we reach the desired conver-
gence result. �

5 An example of schemes covered by the analysis
Many numerical schemes fit into the analysis provided in this work. We construct here the
nonconforming P1 finite element scheme for our model. Let T = (M,E) be the polytopal
mesh of � defined in [8, Definition 7.2], in which M and E consist of cells K and edges σ ,
respectively. The elements of gradient discretization D associated with the nonconform-
ing P1 finite element scheme are:

• XD,0 = {w = (wσ )σ∈E : wσ ∈R and wσ = 0 for all σ ∈ Eext}.
• For all w ∈ XD,0 and for all K ∈M, for a.e. xxx ∈ K ,

�Dw(xxx) =
∑

σ∈EK

wσ eσ
K (xxx),

where eσ
K is a basis function.

• For all w ∈ XD,0 and all K ∈M, for a.e. xxx ∈ K ,

(∇Dw)|K = ∇[
(�Dw)|K

]
=

∑

σ∈EK

wσ ∇eσ
K .

• The approximate obstacle χD is defined by

χD :=
 

σ

χ (xxx) dxxx.



Alnashri Journal of Inequalities and Applications         (2022) 2022:16 Page 16 of 18

• For all ω ∈ W 2,∞(�), we can construct the interpolants IDω = JDω = (zσ )σ∈E with
zσ = ω(xσ ).

Substituting these elements into scheme (3.4a)–(3.4b) yields the nonconforming P1 fi-
nite element scheme for problem (2.1a)–(2.1b) and its convergence is therefore obtained
from Theorem 4.5. Droniou et al. [7] show that D given here satisfies the three prop-
erties, namely coercivity, limit-conformity, and compactness. Let us discuss the consis-
tency property in the sense of Definition 3.4. It is shown in [7] that S̃Dm (ψ) → 0, for all
ψ ∈ H1

0 (�), which verifies the second item. Similarly, we can prove that SDm (ϕ) → 0 for all
ϕ ∈ C2(�) ∩K. For any ϕ, let ω = (ωσ )σ∈E ∈ XD,0 be the interpolant such that ωσ = ϕ(xσ ),
for all σ ∈ E . We clearly deduce �Dϕ ≤ χD in �. By the density results established in [14],
we see that the first item is fulfilled.

Let ϕm = (ωσ )σ∈Em ∈KDm and ψm = (wσ )σ∈Em ∈ XDm ,0 be the interpolants such that ϕm =
IDm Aini and ψm = JDm Bini. Now [8, (B.11) in Lemma B.7] with p = 2 shows that there exist
C5, C6 > 0 not depending on m such that

‖Āini – �DIDm Aini‖2
L2(�) ≤ C2

5h2
Mm‖∇Aini‖2

L2(�) and

‖B̄ini – �DJDm Bini‖2
L2(�) ≤ C2

6h2
Mm‖∇Bini‖2

L2(�).

Passing to the limit, we see the right-hand sides tend to 0 (thanks to the classical regu-
larity hypothesis on Aini and Bini), and therefore the third and fourth items of the consis-
tency property are verified. Finally, it is established in [8, proof of Theorem 12.12] that,
for ϕ ∈ W 1,p(�), we can construct a function ωm = (ωσ )σ∈Em ∈ KDm and find a C7 > 0 not
depending on m such that

‖∇Dmωm‖Lp(�)d ≤ C7‖∇ϕ‖Lp(�)d .

Applying this estimate (with p = 2) to ϕ = Aini and ωm = IDm Aini, we deduce that
‖∇Dm IDm Aini‖L2(�)d is bounded.

The nonconforming P1 finite element method for problem (1.1a)–(1.1f) is such that, for
all n = 0, . . . , N – 1, the following holds:

( |σ |
δt(n+ 1

2 )

(
A(n+1)

σ – A(n)
σ

)
+

∑

σ∈EK

|σ |A(n+1)
σ nK ,σ – |K |F(

A(n+1)
σ , B(n+1)

σ

))

× (
A(n+1)

σ – χσ

)
= 0, for all K ∈M and for all σ ∈ EK ,

|σ |
δt(n+ 1

2 )

(
A(n+1)

σ – A(n)
σ

)
+

∑

σ∈EK

|σ |A(n+1)
σ nK ,σ ≥ |σ |F(

A(n+1)
σ , B(n+1)

σ

)
for all σ ∈ E ,

A(n+1)
σ ≥ χσ for all σ ∈ E ,

|σ |
δt(n+ 1

2 )

(
B(n+1)

σ – B(n)
σ

)
+

∑

σ∈EK

|σ |B(n+1)
σ nK ,σ = |σ |G(

A(n+1)
σ , B(n+1)

σ

)
,

for all K ∈M and for all σ ∈ EK ,

A(n+1)
σ = B(n+1)

σ = 0 for all σ ∈ Eext,
(
A(0), B(0)) =

(
Aini(xσ , 0), Bini(xσ , 0)

)
for all σ ∈ E .
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6 Conclusion
We developed a gradient discretization for nonlinear system of parabolic variational in-
equalities. We established the existence of a continuous solution and convergence results
without nonphysical hypothesis on the model data. We designed a nonconforming P1
finite element method for the system of a parabolic obstacle problem and showed its con-
vergence.
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