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Abstract
The notions of a quasi-b-gauge space (U,Qs;�) and a left (right) Js;�-family of
generalized quasi-pseudo-b-distances generated by (U,Qs;�) are introduced.
Moreover, by using this left (right) Js;�-family, we define the left (right)
Js;�-sequential completeness, and we initiate the Nadler type contractions for
set-valued mappings T : U → ClJs;� (U) and the Banach type contractions for
single-valued mappings T : U → U, which are not necessarily continuous.
Furthermore, we develop novel periodic and fixed point results for these mappings in
the new setting, which generalize and improve the existing fixed point results in the
literature. Examples validating our obtained results are also given.
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1 Introduction
For U �= ∅, let 2U indicate the set of all nonempty subsets of the space U . If T : U → 2U is a
set-valued mapping, then Fix(T) = {u ∈ U : u ∈ T(u)} denotes the set of all fixed points
of T , and Per(T) = {u ∈ U : u ∈ T [k](u) for some k in N} denotes the set of all periodic
points of T , where T [k] = T ◦ T ◦ T ◦ · · · ◦ T (k-times). A dynamic process of the system
(U , T) starting at z0 ∈ U , is a sequence {zm : m ∈ {0} ∪N} described by zm ∈ T(zm–1) for all
m ∈N.

Recall that for a map T : U → U , a sequence (zm : m ∈ {0} ∪N) beginning at z0 ∈ U such
that zm = T [m](z0) for all m ∈ {0} ∪N is called a Picard iteration.

In 1966, Dugundji [1] initiated the idea of gauge spaces, which generalizes metric spaces
(or more generally, pseudo-metric spaces). Gauge spaces have the characteristic that even
the distance between two distinct points of the space may be zero. This simple character-
ization has been the center of interest for many researchers worldwide. In 1973, Reilly [2]
initiated quasi-gauge spaces. According to his definition, quasi-gauge spaces generalize
quasi-pseudo metric space by replacing a single quasi-pseudo metric space with the fam-
ily of such spaces on the set. In this way, he was also able to show that quasi-gauge spaces
generalize gauge spaces. In 2015, Ali et al. [3] introduced the concept of b-gauge spaces
and obtained some fixed point results. For further facts on gauge spaces, we recommend
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the readers to Agarwal et. al. [4], Frigon [5], Chis and Precup [6], Chifu and Petrusel [7],
Lazara and Petrusel [8], Cherichi et al. [9, 10] and Jleli et al. [11].

For a long time, it was unknown how to define the distances, which generalize metrics,
or pseudo metrics. These distances provide important and powerful tools in finding the
solutions to various crucial problems in fixed point theory. In this direction, the works
done by Kada et al. [12], Suzuki [13], and Lin and Du [14] in metric spaces are apprecia-
ble.

Wlodarczyk and Plebaniak [15] introduced the notion of left (right) J -families of
generalized quasi-pseudo distances in quasi-gauge spaces, which generalized the above-
mentioned distances and provided useful and important aid for solving numerous prob-
lems of nonlinear analysis. To know how these families work and help in proving different
results of fixed point theory, see [16–21].

The famous fixed point results due to Banach [22] called the Banach contraction prin-
ciple has attained its fame in the case of single-valued mappings and attracted various au-
thors for many years. The principle assures the uniqueness and existence of a fixed point
of certain self-maps on a complete metric space and gives a powerful tool to estimate the
fixed point. Nadler [23] extended the Banach contraction principle to the case of multival-
ued mappings using the idea of a Hausdorff metric. Their analogs in more general spaces
are important, fascinating and challenging for most researchers. For further results on the
subject, see [24–26].

This paper aims to introduce the notions of a quasi-b-gauge space (U , Qs;�) and left
(right) Js;�-families of generalized quasi-pseudo-b-distances generated by (U , Qs;�).
Moreover, by using these left (right) Js;�-families, we introduce the concept of left (right)
Js;�-sequential completeness. We also investigate the Nadler type contractions for set-
valued maps T : U → ClJs;� (U) and Banach type contractions for single-valued maps
T : U → U (that are not necessarily continuous). Furthermore, we present new periodic
and fixed point results for such mappings in the new setting, which generalize and com-
plement the existing fixed point results in he literature. Some examples are also provided
in support of the main results.

2 Preliminaries
The following concepts are useful in the entire paper. The famous Banach contraction
principle [22] states that:

Let (U , q) be a complete metric space. Suppose that T : U → U is a contraction mapping,
i.e., there exists μ ∈ [0, 1) such that

q(Te, Tf ) ≤ μq(e, f ) (2.1)

for all e, f ∈ U . Then
(i) T has a unique fixed point g in U ;

(ii) for each g0 ∈ U , the sequence {gm = T [m](g0) : m ∈N} converges to such a fixed
point.

Recall that the Hausdorff metric Hq on the class of all nonempty closed and bounded
subsets CB(U) in the metric space (U , q) is described for all A, B ∈ CB(U) in the following
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way

Hq(A, B) = max
{

sup
a∈A

q(a, B), sup
b∈B

q(b, A)
}

, (2.2)

where q(a, B) = infb∈B q(a, b), for a ∈ U .
The main result of Nadler [23] for set-valued mappings is:
Let (U , q) be a complete metric space and let T : U → CB(U) satisfy a (Hq,μ)-

contraction, i.e., there exists μ ∈ [0, 1) such that

Hq(T(e), T(f )
) ≤ μq(e, f ) (2.3)

for all e, f ∈ U . Then there is g ∈ U such that g ∈ T(g) (that is, Fix(T) �= ∅).
On the other hand, Bakhtin [27] introduced the notion of a b-metric space in 1989, and

Czerwik [28] presented it formally in 1993 in order to generalize the Banach contraction
principle.

Definition 2.1 ([27]) Let U be a nonempty set and s ≥ 1. A function q : U × U → [0,∞)
is a b-metric if it satisfies the following for all e, f , g ∈ U :

(a) q(e, f ) = 0 ⇔ e = f ;
(b) q(e, f ) = q(f , e);
(c) q(e, g) ≤ s{q(e, f ) + q(f , g)}.

The pair (U , q) is said to be a b-metric space.

Example 2.2 Suppose U = [0, 1]. Define q : U × U → [0,∞) for all e, f ∈ U as:

q(e, f ) = (e – f )2.

Then q is a b-metric on U , where s = 2.

We observe that q is not a metric on U , since the triangular inequality does not hold.
Also, we note from the definition of a b-metric space that when s = 1, both the concepts

of a metric space and a b-metric space coincide. Thus, the class of b-metric spaces is bigger
than the class of metric spaces.

The references [29–39] can be seen for other definitions and results in the setting of
b-metric spaces.

Definition 2.3 ([40]) Suppose U is a non-void set. The function q : U × U → [0,∞) is
called a quasi-pseudo metric if it fulfils the following for all e, f , g ∈ U :

(a) q(e, e) = 0;
(b) q(e, g) ≤ q(e, f ) + q(f , g).

The pair (U , q) is called a quasi-pseudo metric space.

Example 2.4 Let U = R and define q : U × U → [0,∞) by

q(e, f ) =

⎧⎨
⎩

|e – f | if e < f ,

0 if e ≥ f .

Then q is a quasi-pseudo metric on U and (U , q) is a quasi-pseudo metric space.
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Since the symmetric property does not hold (i.e., q(e, f ) �= d(f , e)), (U , q) is not a pseudo
metric space, and hence it is not a metric space.

3 Main results
In 2015, Ali et al. [3] has defined gauge spaces in the local of bs-pseudo metrics, called
b-gauge spaces. In order to introduce quasi-b-gauge spaces, we start the introduction of
the notion of a quasi-pseudo-b metric.

Definition 3.1 Let U be a nonempty set and s ≥ 1. The map q : U × U → [0,∞) is called
to be a quasi-pseudo-b metric if it satisfies the following for all e, f , g ∈ U :

(a) q(e, e) = 0;
(b) q(e, g) ≤ s{q(e, f ) + q(f , g)}.

The pair (U , q) is called a quasi-pseudo-b metric space. A Hausdorff quasi-pseudo-b met-
ric space (U , q) satisfies

e �= f ⇒ q(e, f ) > 0 ∨ q(f , e) > 0 (3.1)

for all e, f ∈ U .

Example 3.2 Let U = lp = {{xn}n≥1 ⊂R,
∑∞

n=1 |xn|p < ∞}, where 1 ≤ p < ∞. Define q : U ×
U → [0,∞) for all x, y ∈ U by

q(x, y) =

⎧⎨
⎩

0 if x ≤ y,

(
∑∞

n=1 |xn|p)
1
p if x > y.

(3.2)

Then q is a quasi-pseudo-b-metric on U with s = p ≥ 1. Since symmetry property does
not hold, q is not a pseudo-b-metric, and hence it is not a b-metric.

Example 3.3 Suppose U = [0, 6]. Define q : U × U → [0,∞) for all e, f ∈ U by

q(e, f ) =

⎧⎨
⎩

0 if e ≥ f ,

(e – f )2 if e < f .
(3.3)

Then q is a quasi-pseudo-b-metric on U . Indeed, q(e, e) = 0 for all e ∈ U . Further, q(e, g) ≤
2{q(e, f ) + q(f , g)} holds for all e, f , g ∈ U and for s = 2. Also, (U , q) is a Hausdorff quasi-
pseudo-b-metric space.

Definition 3.4 Each family Qs;� = {qβ : β ∈ �} of quasi-pseudo-b metrics qβ : U × U →
[0,∞) for β ∈ � is said to be a quasi-b-gauge on U .

Definition 3.5 The family Qs;� = {qβ : β ∈ �} is called to be separating if for every pair
(e, f ), where e �= f , there exists qβ ∈ Qs;� such that either qβ (e, f ) > 0 or qβ (f , e) > 0.

Definition 3.6 Let the family Qs;� = {qβ : β ∈ �} be a quasi-b-gauge on U . The topology
T (Qs;�) whose subbase is defined by the family B(Qs;�) = {B(e, εβ) : e ∈ U , εβ > 0,β ∈ �} of
all balls B(e, εβ ) = {f ∈ U : qβ (e, f ) < εβ} and is called the topology induced by Qs;� on U .



Zikria et al. Journal of Inequalities and Applications         (2022) 2022:13 Page 5 of 22

Definition 3.7 Suppose (U ,T ) is a topological space and Qs;� is a quasi-b-gauge on U
such that T = T (Qs;�). Then the topological space (U , Qs;�) is called to be a quasi-b-gauge
space. We note that (U , Qs;�) is the Hausdorff if Qs;� is separating.

Remark 3.8
(a) Each topological space and quasi-uniform space is a quasi-gauge space [2]. Also,

each quasi-gauge space is a quasi-b-gauge space (for s = 1). Therefore, in the
asymmetric structure, we can term a quasi-b-gauge space as the largest general
space.

(b) We observe that if s = 1, the above definitions turn down to agree with the
definitions in quasi-gauge spaces.

We now establish the notion of left (right) Js;�-families of generalized quasi-pseudo-b-
distances on U [left (right) Js;�-families are the generalizations of quasi-b-gauges].

Definition 3.9 Let (U , Qs;�) be a quasi-b-gauge space. The family Js;� = {Jβ : β ∈ �}
where Jβ : U ×U → [0,∞), β ∈ � is called the left (right) Js;�-family of generalized quasi-
pseudo-b-distances on U (for short, left (right) Js;�-family on U) if the following state-
ments hold for all β ∈ � and for all x, y, z ∈ U :

(J 1) Jβ (x, z) ≤ sβ{Jβ (x, y) + Jβ (y, z)};
(J 2) for sequences (um : m ∈N) and (vm : m ∈ N) in U fulfilling

lim
m→∞ sup

n>m
Jβ (um, un) = 0, (3.4)

(
lim

m→∞ sup
n>m

Jβ (un, um) = 0
)

, (3.5)

and

lim
m→∞ Jβ (vm, um) = 0, (3.6)
(

lim
m→∞ Jβ (um, vm) = 0

)
, (3.7)

the following hold:

lim
m→∞ qβ (vm, um) = 0, (3.8)

and

(
lim

m→∞ qβ (um, vm) = 0
)

). (3.9)

We denote

J
L
(U ,Qs;�) =

{
Js;� : Js;� = {Jβ : β ∈ �} is a left Js;�-family on U

}

and

J
R
(U ,Qs;�) =

{
Js;� : Js;� = {Jβ : β ∈ �}} is a right Js;�-family on U}.
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Now, we mention some trivial properties of left (right) Js;�-families.

Remark 3.10 Let (U , Qs;�) be a quasi-b-gauge space.
(a) Qs;� ∈ J

L
(U ,Qs;�) ∩ J

R
(U ,Qs;�).

(b) Let Js;� ∈ J
L
(U ,Qs;�) or Js;� ∈ J

R
(U ,Qs;�). If Jβ (v, v) = 0 for all β ∈ � and for all v ∈ U ,

then for each β ∈ �, Jβ is a quasi-pseudo-b metric.
(c) There is an example of Js;� ∈ J

L
(U ,Qs;�) and Js;� ∈ J

R
(U ,Qs;�), which shows that the

maps Jβ , β ∈ � are not quasi-pseudo-b metric (see Example 3.12 below).
(d) We note that if s = 1, the above definition reduces to the corresponding definition in

quasi-gauge spaces.

Proposition 3.11 Let (U , Qs;�) be the Hausdorff quasi-b-gauge space. Take the family
Js;� = {Jβ : β ∈ �} to be the left (right) Js;�-family of generalized quasi-pseudo-b-distances
on U . Then there is β ∈ � such that

e �= f ⇒ Jβ (e, f ) > 0 ∨ Jβ (f , e) > 0

for all e, f ∈ U .

Proof By incorporating the definition of the left (right) Js;�-family of generalized quasi-
pseudo-b-distances on U in the proof of Proposition 3.11 of [15], the proof of our result
can easily be obtained. �

Example 3.12 Let (U , Qs;�) be a quasi-b-gauge space, where U contains at least two dis-
tinct points and Qs;� = {qβ : β ∈ �} is the family of quasi-pseudo-b metrics qβ : U × U →
[0,∞), β ∈ �.

Let the set F ⊂ U contain at least two distinct, arbitrary and fixed points, and let dβ ∈
(0,∞), β ∈ � satisfy δβ (F) < dβ for all β ∈ �, where δβ (F) = sup{qβ (u, v) : u, v ∈ F} for all
β ∈ �. Let the family Js;� = {Jβ : β ∈ �} of maps Jβ : U × U → [0,∞), β ∈ � be defined
for all e, f ∈ U as:

Jβ (e, f ) =

⎧⎨
⎩

qβ (e, f ) if F ∩ {e, f } = {e, f },
dβ if F ∩ {e, f } �= {e, f }.

(3.10)

Then Jϕ;� ∈ J
L
(U ,Q) ∩ J

R
(U ,Q).

We notice that Jβ (e, g) ≤ dβ

δβ (F) {Jβ (e, f ) + Jβ (f , g)} for all β ∈ � and for all e, f , g ∈ U , where
dβ

δβ (F) = sβ > 1, β ∈ �. Thus, the condition (J1) holds. Indeed, the condition (J1) does not
hold only if there are some β ∈ � and e, f , g ∈ U such that Jβ (e, g) = dβ , Jβ (e, f ) = qβ (e, f ),
Jβ (f , g) = qβ (f , g) and sβ{qβ (e, f ) + qβ (f , g)} ≤ dβ . However, this implies that there exists
h ∈ {e, g} such that h /∈ F and, on the other hand, e, f , g ∈ F , which is impossible.

Now, suppose that the sequences {um} and {vm} in U are satisfying (3.4) and (3.6). Then
in particular (3.6) yields that there exists m1 = m1(β) ∈ N such that for all m ≥ m1, for all
β ∈ �, and for all 0 < ε < dβ , we have

Jβ (vm, um) < ε. (3.11)
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By (3.11) and (3.10), denoting m′ = min{m1(β) : β ∈ �}, we have for all m ≥ m′

F ∩ {vm, um} = {vm, um}. (3.12)

Let there exist m′ ∈N such that for all m ≥ m′, for all β ∈ �, and for all 0 < ε < dβ , we have

qβ (vm, um) = Jβ (vm, um) < ε. (3.13)

Hence, the sequences {um} and {vm} satisfy (3.8). Therefore, Js;� is a left Js;�-family.
Similarly, we show that if {um} and {vm} in U satisfy (3.5) and (3.7), then (3.9) holds, and

thus Js;� is a right Js;�-family.

Now, using the left (right) Js;�-family on U , we define the left (right) Js;�-completeness
in the quasi-b-gauge space (U , Qs;�).

Definition 3.13 Let (U , Qs;�) be a quasi-b-gauge space, and let Js;� = {Jβ : β ∈ �} be a left
(right) Js;�-family on U .

(A) A sequence {um}m∈N is said to be a left (right) Js;�-Cauchy sequence in U if for all
β ∈ �, we have

lim
m→∞ sup

n>m
Jβ (um, un) = 0

(
lim

m→∞ sup
n>m

Jβ (un, um) = 0
)

.

(B) A sequence {um}m∈N is said to be the left (right) Js;�-convergent to u ∈ U if
lim

L–Js;�
m→∞ um = u (limR–Js;�

m→∞ um = u), where
lim

L–Js;�
m→∞ um = u ⇔ ∀β∈�{limm→∞ Jβ (u, um) = 0}

(limR–Js;�
m→∞ um = u ⇔ ∀β∈�{limm→∞ Jβ (um, u) = 0}).

(C) If SL–Js;�
(um :m∈N) �= ∅ (SR–Js;�

(um :m∈N) �= ∅), where SL–Js;�
(um :m∈N) = {u ∈ U : lim

L–Js;�
m→∞ um = u}

(SR–Js;�
(um :m∈N) = {u ∈ U : lim

R–Js;�
m→∞ um = u}). Then the sequence {um}m∈N in U is the left

(right) Js;�-convergent in U .
(D) The space (U , Qs;�) is a left (right) Js;�-sequentially complete quasi-b-gauge space

if each left (right) Js;�-Cauchy sequence in U is left (right) Js;�-convergent in U .

Definition 3.14 Suppose (U , Qs;�) is a quasi-b-gauge space, and let T : U → 2U be a set
valued map. The map T [k] (for k ∈N) is called a left (right) Qs;�-quasi-closed map on U if
for each sequence {zm}m∈N within T [k](U), which is left (right) Qs;�-convergent in U , thus
SL–Qs;�

(zm :m∈N) �= ∅ (SR–Qs;�
(zm:m∈N) �= ∅), having {xm}m∈N and {ym}m∈N as its subsequences satisfying

ym ∈ T [k](xm) for all m ∈ N, has the property that there exists z ∈ SL–Qs;�
(zm :m∈N)(z ∈ SR–Qs;�

(zm :m∈N))
such that z = T [k](z) (z = T [k](z)).

Remark 3.15 Suppose (U , Qs;�) is a quasi-b-gauge space.
(a) If {um : m ∈N} is a left (right) Js;�-convergent sequence in U , then for every

subsequence {vm}m∈N, we have

SL–Js;�
(um :m∈N) ⊂ SL–Js;�

(vm :m∈N)
(
SR–Js;�

(um :m∈N) ⊂ SR–Js;�
(vm :m∈N)

)
.

(b) We observe that if s = 1 for all β ∈ �, the above definitions turn down to agree with
the definitions in quasi-gauge spaces.
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Definition 3.16 Let (U , Qs;�) be a quasi-b-gauge space. Let Js;� = {Jβ : β ∈ �} be a left
(right) Js;�-family on U . The map T : U → 2U is the left (right) Js;�-admissible at a point
z0 ∈ U if for any sequence {zm : m ∈ {0} ∪ N} satisfying zm+1 ∈ T(zm) for all m ∈ {0} ∪ N

and limm→∞ supn>m Jβ (zm, zn) = 0 (limm→∞ supn>m Jβ (zn, zm) = 0) for all β ∈ �, there exists
z ∈ U such that for all β ∈ �, limm→∞ Jβ (z, zm) = 0 (limm→∞ Jβ (zm, z) = 0).

The set-valued map T : U → 2U is the left (right) Js;�-admissible in U if T : U → 2U is
the left (right) Js;�-admissible at each point z0 ∈ U .

Remark 3.17 Suppose (U , Qs;�) is a quasi-b-gauge space, and let Js;� = {Jβ : β ∈ �} be a
left (right) Js;�-family on U .

(a) If (U , Q) is left (right) Js;�-sequentially complete, then T : U → 2U is the left (right)
Js;�-admissible on U .

(b) If s = 1, the above definitions reduce to the corresponding definition in quasi-gauge
spaces.

Definition 3.18 Let (U , Qs;�) be a quasi b-gauge space, and let Js;� = {Jβ : β ∈ �} be
the a left (right) Js;�-family on U . A set W ∈ 2U is the left (right) Js;�-closed in U if
W = clL–Js;�

U (W ) (W = clR–Js;�
U (W )), where clL–Js;�

U (W ) (clR–Js;�
U (W )), is the left (right)

Js;�-closure in U and is defined by clL–Js;�
U (W ) = {z ∈ U : lim

L–Js;�
m→∞ zm = z}

(clR–Js;�
U (W ) = {z ∈ U : lim

R–Js;�
m→∞ zm = z}).

Define ClL–Js;� (U) = {W ∈ 2U : W = clL–Js;�
U (W )} (ClR–Js;�(U) = {W ∈ 2U : W =

clR–Js;�
U (W )}). Thus, ClL–Js;� (U) (ClR–Js;� (U)) symbolizes the class of all non-empty left

(right) Js;�-closed subsets of U .

Remark 3.19 We note that if s = 1, the above definition reduces to the corresponding def-
inition in quasi-gauge spaces.

In a quasi-b-gauge space, we describe the left (right) Hausdorff type quasi-b-distances
and Nadler type left (right) contractions in the following way.

Definition 3.20 Let (U , Qs;�) be a quasi-b-gauge space, and let Js;� = {Jβ : β ∈ �} be a left
(right) Js;�-family on U . Let ζ ∈ {1, 2, 3} and suppose that for all β ∈ �, for all u ∈ U , and
for all V ∈ 2U ,

Jβ (u, V ) = inf
{

Jβ (u, w) : w ∈ V
}

∧ Jβ (V , u) = inf
{

Jβ (w, u) : w ∈ V
}

. (3.14)

(a) Define on ClL–Js;� (U) (ClR–Js;� (U)), the left (right) quasi-b-distance
DL–Js;�

ζ = {DL–Js;�
ζ ;β ,β ∈ �}(DR–Js;�

ζ = {DR–Js;�
ζ ;β ,β ∈ �}) of the Hausdorff type, where

DL–Js;�
ζ ;β : ClL–Js;� (U) × ClL–Js;� (U) → [0,∞]

(DR–Js;�
ζ ;β : ClR–Js;�(U) × ClR–Js;� (U) → [0,∞],β ∈ �) for all β ∈ � and for all

U , V ∈ ClJs;� (U) as:
(a.1)

DL–Js;�
1;β (U , V ) = max

{
sup
u∈U

Jβ (u, V ), sup
v∈V

Jβ (U , v)
}

,
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DL–Js;�
2;β (U , V ) = max

{
sup
u∈U

Jβ (u, V ), sup
v∈V

Jβ (v, U)
}

and

DL–Js;�
3;β (U , V ) = sup

u∈U
Jβ (u, V ), if Js;� ∈ J

L
(U ,Q);

(a.2)

DR–Js;�
1;β (U , V ) = max

{
sup
u∈U

Jβ (u, V ), sup
v∈V

Jβ
}

(U , v),

DR–Js;�
2;β (U , V ) = max

{
sup
u∈U

Jβ (u, V ), sup
v∈V

Jβ (v, U)
}

and

DR–Js;�
3;β (U , V ) = sup

u∈U
Jβ (u, V ), if Js;� ∈ J

R
(U ,Q).

(b) Let μ = {μβ}β∈� ∈ [0, 1)�. The set-valued map T : U → ClL–Js;� (U)
(T : U → ClR–Js;� (U)) is a left (right) (DL–Js;�

ζ ,μ)-contraction on U
((DR–Js;�

ζ ,μ)-contraction on U) if for all β ∈ � and for all x, y ∈ U :
(b.1) DL–Js;�

ζ ;β (T(x), T(y)) ≤ μβ Jβ (x, y), if Js;� ∈ J
L
(U ,Q);

(b.2) DR–Js;�
ζ ;β (T(x), T(y)) ≤ μβ Jβ (x, y), if Js;� ∈ J

R
(U ,Q).

Remark 3.21 Let (U , Qs;�) be a quasi-b-gauge space, and let Js;� = {Jβ : β ∈ �} of maps
Jβ : U × U → [0,∞), β ∈ � be a left (right) Js;�-family on U .

(a) In general, DL–Js;�
ζ ;β (DR–Js;�

ζ ;β ) are not symmetric, thus
DL–Js;�

ζ ;β (U , V ) = DL–Js;�
ζ ;β (V , U)(DR–Js;�

ζ ;β (U , V ) = DR–Js;�
ζ ;β (V , U)) does not necessarily

hold. Also, DL–Js;�
ζ ;β (U , U) = 0(DR–Js;�

ζ ;β (U , U) = 0) does not necessarily hold (See
Remark 3.27 (b) and (c) for details).

(b) Each (DL–Js;�
ζ ,μ)-contraction on U ((DR–Js;�

ζ ,μ)-contraction on U), ζ ∈ {1, 2, 3} is
(DL–Js;�

3 ,μ)-contraction on U ((DR–Js;�
3 ,μ)-contraction on U), but the converse is

not generally true.

Our main result for set-valued mappings is given below.

Theorem 3.22 Let (U , Qs;�) be a quasi-b-gauge space. Let Js;� = {Jβ : β ∈ �} be a left
(right) Js;�-family on U and let ζ ∈ {1, 2, 3}. Assume, moreover, that μ = {μβ}β∈� ∈ [0, 1),
and the set-valued map T : U → ClL–Js;� (U) (T : U → ClR–Js;�(U)) satisfies:

(i) T is a (DL–Js;�
ζ ,μ)-contraction on U ((DR–Js;�

ζ ,μ)-contraction on U);
(ii) for any u ∈ U and any γ = {γβ}β∈� ∈ (0,∞), there exists v ∈ T(u) such that for all

β ∈ �,

Jβ (u, v) < Jβ
(
u, T(u)

)
+ γβ , (3.15)

(
Jβ (v, u) < Jβ

(
T(u), u

)
+ γβ

)
. (3.16)

We have the following:
(I) If (U , T) at a point z0 ∈ U is the left (right) Js;�-admissible, then there exists a

sequence {zm : m ∈ {0} ∪N} starting at z0 ∈ U such that zm ∈ T(zm–1) for all m ∈N,
a point z ∈ U and r = {rβ}β∈� ∈ (0,∞) such that zm ∈ BL–Js;� (z0, r)
(zm ∈ BR–Js;� (z0, r)}) for all m ∈N and lim

L–Js;�
m→∞ zm = z (limR–Js;�

m→∞ zm = z).
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(II) If (U , T) at a point z0 ∈ U is the left (right) Js;�-admissible and if T [k], for some
k ∈N, is a left (right) Qs;�-quasi-closed map on U , then Fix(T [k]) is non-empty and
there exists a sequence {zm : m ∈ {0} ∪N} starting at z0 ∈ U such that zm ∈ T(zm–1)
for all m ∈ N, a point z ∈ Fix(T [k]) and r = {rβ}β∈� ∈ (0,∞) such that
zm ∈ BL–Js;� (z0, r) (zm ∈ BR–Js;� (z0, r)) for all m ∈N and lim

L–Js;�
m→∞ zm = z

(limR–Js;�
m→∞ zm = z).

Proof (I) Suppose that (U , T) is the left (right) Js;�-admissible at a point z0 ∈ U .
From using (3.14) and the fact that Jβ : U × U → [0,∞), β ∈ �, we choose

r = {rβ}β∈� ∈ (0,∞), (3.17)

s = {sβ}β∈� ∈ [1,∞) (3.18)

such that for all β ∈ �

Jβ
(
z0, T

(
z0)) <

(1 – μβ )rβ

sβ

. (3.19)

Put

γ
(0)
β =

(1 – μβ )rβ

sβ

– Jβ
(
z0, T

(
z0)) for all β ∈ �. (3.20)

From (3.17), (3.18), and (3.19), we have γ (0) = {γ (0)
β }β∈� ∈ (0,∞). Applying (3.15), we get

z1 ∈ T(z(0)) such that

Jβ
(
z0, z1) < Jβ

(
z0, T

(
z0)) + γ

(0)
β for all β ∈ �. (3.21)

We see from (3.20) and (3.21) that

Jβ
(
z0, z1) <

(1 – μβ )rβ

sβ

for all β ∈ �. (3.22)

Observe that (3.22) implies z1 ∈ BL–Js;� (z0, r).
Put now

γ
(1)
β = μβ

[
(1 – μβ )rβ

s2
β

– Jβ
(
z0, z1)

]
for all β ∈ �. (3.23)

From (3.22), we have γ (1) = {γ (1)
β }β∈� ∈ (0,∞), and we apply (3.15) to find z2 ∈ T(z(1)) such

that

Jβ
(
z1, z2) < Jβ

(
z1, T

(
z1)) + γ

(1)
β for all β ∈ �. (3.24)

Also, note that

Jβ
(
z1, z2) <

μβ (1 – μβ )rβ

s2
β

for all β ∈ �. (3.25)
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Indeed, from (3.24), (3.14), Definition 3.20, and (3.23), we get for all β ∈ �,

Jβ
(
z1, z2) < Jβ

(
z1, T

(
z1)) + γ

(1)
β

≤ sup
u∈T(z0)

Jβ
(
u, T

(
z1)) + γ

(1)
β

≤ DL–Js;�
ζ ;β

(
T

(
z0), T

(
z1)) + γ

(1)
β

≤ μβ Jβ
(
z0, z1) + γ

(1)
β =

μβ (1 – μβ )rβ

s2
β

, ζ ∈ {1, 2, 3}.

Thus, (3.25) holds. Further, by (J1) there exists s = {sβ}β∈� ∈ [1,∞). Using (3.22) and
(3.25), we have for all β ∈ �,

Jβ
(
z0, z2) ≤ sβ

{
Jβ

(
z0, z1) + Jβ

(
z1, z2)}

< sβ

{
(1 – μβ )rβ

sβ

+
μβ (1 – μβ )rβ

s2
β

}

≤ (1 – μβ )rβ

(
1 +

μβ

sβ

)
≤ (1 – μβ )rβ (1 + μβ )

≤ (1 – μβ )rβ

∞∑
k=0

μk
β = rβ .

Thus, z2 ∈ BL–Js;� (z0, r). Repeating the above process, using Definition 3.20 and property
(3.15), we find a sequence {zm}m∈N in U satisfying

zm+1 ∈ T
(
zm)

for all m ∈ {0} ∪N. (3.26)

Letting γ (m) = {γ (m)
β }β∈� for all m ∈ N, where

γ
(m)
β = μβ

[
μm–1

β (1 – μβ )rβ

sm+1
β

– Jβ
(
zm–1, zm)]

.

We also notice that {γ (m) ∈ (0,∞) : m ∈ N} and for all β ∈ � and for all m ∈ {0} ∪N, we
have

Jβ
(
zm, zm+1) < Jβ

(
zm, T

(
zm))

+ γ (m),

Jβ
(
zm, zm+1) <

μm
β (1 – μβ )rβ

sm+1
β

. (3.27)

For all β ∈ � and for all m ∈ {0} ∪N, we can write

Jβ
(
z0, zm+1) ≤ sβ Jβ

(
z0, z1) + s2

β Jβ
(
z1, z2) + s3

β Jβ
(
z2, z3)

+ · · · + sm
β Jβ

(
zm–1, zm)

+ sm
β Jβ

(
zm, zm+1)

< sβ

(1 – μβ )rβ

sβ

+ s2
β

μβ (1 – μβ )rβ

s2
β

+ s3
β

μ2
β (1 – μβ )rβ

s3
β
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+ · · · + sm
β

μm–1
β (1 – μβ )rβ

sm
β

+ sm
β

μm
β (1 – μβ )rβ

sm+1
β

= (1 – μβ )rβ

{
1 + μβ + μ2

β · · ·μm–1
β +

μm
β

sβ

}

≤ (1 – μβ )rβ

{
1 + μβ + μ2

β · · ·μm–1
β + μm

β

}

= (1 – μβ )rβ

m∑
k=0

μk
β .

< (1 – μβ )rβ

∞∑
k=0

μk
β = rβ .

Hence, this implies that zm ∈ BL–Js;� (z0, r) for all m ∈N.
Using (J 1) and (3.27), for all m, n ∈N such that n > m, we have

lim
m→∞ sup

n>m
Jβ

(
zm, zn) ≤ lim

m→∞ sup
n>m

{
sβ Jβ

(
zm, zm+1) + s2

β Jβ
(
zm+1, zm+2)

+ · · · + sn–m–1
β Jβ

(
zn–2, zn–1) + sn–m–1

β Jβ
(
zn–1, zn)}

≤ lim
m→∞ sup

n>m

{
sβ

μm
β (1 – μβ )rβ

sm+1
β

+ s2
β

μm+1
β (1 – μβ )rβ

sm+2
β

+ · · · + sn–m–1
β

μn–2
β (1 – μβ )rβ

sn–1
β

+ sn–m–1
β

μn–1
β (1 – μβ )rβ

sn–1+1
β

}

≤ lim
m→∞ sup

n>m
(1 – μβ )rβ

{
μm

β

sm
β

+
μm+1

β

sm
β

+ · · · +
μn–2

β

sm
β

+
μn–1

β

sm+1
β

}

≤ lim
m→∞ sup

n>m
(1 – μβ )rβ

{
μm

β + μm+1
β + · · · + μn–2

β + μn–1
β

}

= (1 – μβ )rβ lim
m→∞ sup

n>m

n–1∑
j=m

μ
j
β

≤ rβ lim
m→∞μm

β .

This implies

∀β∈�

{
lim

m→∞ sup
n>m

Jβ
(
zm, zn) = 0

}
for all β ∈ �. (3.28)

Given that (U , T) is thr left Js;�-admissible on U , hence using Definition 3.16, properties
(3.26) and (3.28), we find z ∈ U such that

lim
m→∞ Jβ

(
z, zm)

= 0 for all β ∈ �. (3.29)

Now, taking vm = z and um = zm for m ∈ N, we observe that condition (3.4) and (3.6) hold
for {um} and {vm} in U by (3.28) and (3.29). Consequently, we get (3.8) by (J 2) which gives

lim
m→∞ qβ

(
z, zm)

= lim
m→∞ qβ (vm, um) = 0 for all β ∈ �.

Thus, we have z ∈ SL–Qs;�
(zm :m∈N) = {x ∈ U : lim

L–Qs;�
m→∞ zm = x}.
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(II) Let (U , T) be the left Js;�-admissible at a point z0 ∈ U and T [k] be the left Qs;�-quasi-
closed on U , for some k ∈N.

Let z0 ∈ U be arbitrary. Since SL–Qs;�
(zm :m∈{0}∪N) �= ∅ and for m ∈ {0} ∪N, we have

z(m+1)k ∈ T [k](zmk).

By defining {zm = zm–1+k : m ∈N}, we can write

zm ⊂ T [k](U)

and

SL–Qs;�
(zm :m∈{0}∪N) = SL–Qs;�

(zm :m∈{0}∪N) �= ∅.

Also, its subsequences

{
ym = z(m+1)k : m ∈N

} ⊂ T [k](U)

and

{
xm = zmk : m ∈N

} ⊂ T [k](U)

satisfy

ym = T [k](xm) for all m ∈N

and are the left Qs;�-convergent to each point z ∈ SL–Qs;�
(zm :m∈{0}∪N). Now, since

SL–Qs;�
(zm :m∈N) ⊂ SL–Qs;�

(ym :m∈N) and SL–Qs;�
(zm :m∈N) ⊂ SL–Qs;�

(xm :m∈N),

using the assumption that T [k] for some k ∈ N is a left (right) Qs;�-quasi-closed map on
U , there exists z ∈ SL–Qs;�

(zm :m∈{0}∪N) = SL–Qs;�
(zm :m∈{0}∪N) such that z ∈ T [k](z). This completes the

proof. �

We now extend the above theorems to the Banach type single-valued left (right)-
contractions.

Definition 3.23 Let (U , Qs;�) be a quasi-b-gauge space, let Js;� = {Jβ : β ∈ �} is a left
(right) Js;�-family on U , and let ζ ∈ {1, 2}.

(c) The left (right) b-distance DL–Js;�
ζ = {DL–Js;�

ζ ;β ,β ∈ �}(DR–Js;�
ζ = {DR–Js;�

ζ ;β ,β ∈ �}) on
U , where DL–Js;�

ζ ;β : U × U → [0,∞), β ∈ �(DR–Js;�
ζ ;β : U × U → [0,∞),β ∈ �) are

defined for all β ∈ � and for all u, v ∈ U as follows:
(c.1)

DL–Js;�
1;β (u, v) = max

{
Jβ (u, v), Jβ (v, u)

}
,

DL–Js;�
2;β (u, v) = Jβ (u, v), if Js;� ∈ J

L
(U ,Qs;�);
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(c.2)

DR–Js;�
1;β (u, v) = max

{
Jβ (u, v), Jβ (v, u)

}
,

DR–Js;�
2;β (u, v) = Jβ (u, v), if Js;� ∈ J

R
(U ,Qs;�).

(d) Let μ = {μβ}β∈� ∈ [0, 1). A single-valued map T : U → U is (DL–Js;�
ζ ,μ)-contraction

on U ((DR–Js;�
ζ ,μ)-contraction on U) if for all β ∈ � and for all x, y ∈ U :

(d.1) DL–Js;�
ζ ;β (T(x), T(y)) ≤ μβ Jβ (x, y), if Js;� ∈ J

L
(U ,Qs;�);

(d.2) DR–Js;�
ζ ;β (T(x), T(y)) ≤ μβ Jβ (x, y), if Js;� ∈ J

R
(U ,Qs;�).

As a result of Definition 3.23 and Theorem 3.22, we now have the following theorem.

Theorem 3.24 Let (U , Qs;�) be a quasi-b-gauge space. Let Js;� = {Jβ : β ∈ �} be a left
(right) Js;�-family of generalized quasi-pseudo-b-distances on U , and let ζ ∈ {1, 2}. More-
over, assume that μ = {μβ}β∈� ∈ [0, 1) and T : U → U is a (DL–Js;�

ζ ,μ)-contraction on U
((DR–Js;�

ζ ,μ)-contraction on U).
(I) If (U , T) is the left (right) Js;�-admissible at a point z0 ∈ U , then there is a sequence

{zm : m ∈ {0} ∪N} starting at z0 ∈ U with {zm = T [m](z0) : m ∈ {0} ∪N}, a point
z ∈ U , and r = {rβ}β∈� ∈ (0,∞) such that zm ∈ BL–Js;� (z0, r)(zm ∈ BR–Js;� (z0, r)) for
all m ∈N and lim

L–Js;�
m→∞ zm = z (limR–Js;�

m→∞ zm = z).
(II) If (U , T) is the left (right) Js;�-admissible at a point z0 ∈ U and if T [k] for some

k ∈N is a left (right) Qs;�-quasi-closed map on U , then Fix(T [k]) is non-empty, and
there exists a sequence {zm : m ∈ 0 ∪N} starting at z0 ∈ U with
{zm = T [m](z0) : m ∈ {0} ∪N}, a point z ∈ Fix(T [k]), and r = {rβ}β∈� ∈ (0,∞) such
that zm ∈ BL–Js;� (z0, r)(zm ∈ BR–Js;� (z0, r)) for all m ∈N, lim

L–Js;�
m→∞ zm = z

(limR–Js;�
m→∞ zm = z), and we have

Jβ
(
z, T(z)

)
= Jβ

(
T(z), z

)
= 0, for all β ∈ � and for all z ∈ Fix

(
T [k]). (3.30)

(III) If (U , Qs;�) is a Hausdorff space, and if (U , T) at a point z0 ∈ U is lthe eft (right)
Js;�-admissible, and if T [k], for some k ∈ N, is a left (right) Qs;�-quasi-closed map
on U , then there exists a sequence {zm : m ∈ 0 ∪N} starting at z0 ∈ U with
{zm = T [m](z0) : m ∈ {0} ∪N}, a point z ∈ Fix(T [k]) = Fix(T) = {z} and
r = {rβ}β∈� ∈ (0,∞) such that zm ∈ BL–Js;� (z0, r)(zm ∈ BR–Js;� (z0, r)) for all m ∈N,
lim

L–Js;�
m→∞ zm = z (limR–Js;�

m→∞ zm = z), and we have

Jβ (z, z) = 0 for all β ∈ �. (3.31)

Proof We prove only (3.30) and (3.31).
On contrary, suppose that there exist β0 ∈ � and z ∈ Fix(T [k]) such that Jβ0 (z, T(z)) > 0.

Indeed, z = T [2k](z), T(z) = T [2k](T(z)) and for ζ ∈ {1, 2}, by Definition (3.23),

0 < Jβ0

(
z, T(z)

)
= Jβ0

(
T [2k](z), T [2k](T(z)

))

≤ DL–Js;�
ζ ;β0

(
T [2k](z), T [2k](T(z)

))
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≤ μβ0 Jβ0

(
T [2k–1](z), T [2k–1](T(z)

))

≤ μβ0 DL–Js;�
ζ ;β0

(
T [2k–1](z), T [2k–1](T(z)

))

≤ μ2
β0 Jβ0

(
T [2k–2](z), T [2k–2](T(z)

)) ≤ · · ·
≤ μ2k

β0 Jβ0

(
z, T(z)

)
< Jβ0

(
z, T(z)

)
,

which is a contradiction.
Now, suppose that there exist β0 ∈ � and z ∈ Fix(T [k]) such that Jβ0 (T(z), z) > 0. Then,

Definition 3.23 and the fact that z = T [k](z) = T [2k](z) imply that for ζ ∈ {1, 2},

0 < Jβ0

(
T(z), z

)
= Jβ0

(
T [k+1](z), T [2k](z)

)

≤ sβ0 Jβ0

(
T [k+1](z), T [k+2](z)

)
+ s2

β0 Jβ0

(
T [k+2](z), T [k+3](z)

)

+ · · · + sk–2
β0 Jβ0

(
T [2k–1](z), T [2k](z)

)

≤ sβ0 DL–Js;�
ζ ;β0

(
T [k+1](z), T [k+2](z)

)
+ s2

β0 DL–Js;�
ζ ;β0

(
T [k+2](z), T [k+3](z)

)

+ · · · + sk–2
β0 DL–Js;�

ζ ;β0

(
T [2k–1](z), T [2k](z)

)

≤ sβ0μ
k+1
β0 Jβ0

(
z, T(z)

)
+ s2

β0μ
k+2
β0 Jβ0

(
z, T(z)

)

+ · · · + sk–2
β0 μ2k–1

β0 Jβ0

(
z, T(z)

)
= 0,

which is impossible. Thus, property (3.30) holds.
Next, we show that property (3.31) holds.
If the space (U , Qs;�) is the Hausdorff one, then Proposition (3.11) and property (3.30)

suggest that T(z) = z for all z ∈ Fix(T [k]) and Jβ (z, z) ≤ sβ Jβ (z, T(z))+sβ Jβ (T(z), z) = 0, for all
β ∈ � and for all z ∈ Fix(T [k]). Thus, Fix(T [k]) = Fix(T) and for all z ∈ Fix(T [k]) = Fix(T),
we have Jβ (z, z) = 0.

To prove Fix(T) is a singleton, on the contrary, let y, z ∈ Fix(T) and y �= z. Then, Propo-
sition (3.11) implies there exists β0 ∈ � such that Jβ0 (y, z) > 0 ∨ Jβ0 (z, y) > 0. Obviously, for
ζ ∈ {1, 2}, we then have

[
Jβ0 (y, z) > 0 ∧ Jβ0 (y, z) = Jβ0

(
T(y), T(z)

) ≤ DL–Js;�
ζ ;β0

(
T(y), T(z)

)

≤ μβ0 Jβ0 (y, z) < Jβ0 (y, z)
] ∨ [

Jβ0 (z, y) > 0 ∧ Jβ0 (z, y)

= Jβ0

(
T(z), T(y)

) ≤ DL–Js;�
ζ ;β0

(
T(z), T(y)

)

≤ μβ0 Jβ0 (z, y) < Jβ0 (z, y)
]
,

which is impossible. Hence, we obtain Fix(T) = {z}. The theorem is proved. �

Remark 3.25 The proof of the right case in above theorems is based on an analogous tech-
nique.

Example 3.26 Let U = [0, 6], and let Qs;� = {q}, where q is a quasi-pseudo-b-metric on U
defined for all u, v ∈ U by

q(u, v) =

⎧⎨
⎩

0 if u ≥ v,

(u – v)2 if u < v.
(3.32)
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Let G = [0, 3) ∪ (3, 6] be a subset of U . Let Js;� = {J}, where J : U × U → [0,∞) is defined
for all u, v ∈ U by

J(u, v) =

⎧⎨
⎩

q(u, v) if G ∩ {u, v} = {u, v},
40 if G ∩ {u, v} �= {u, v}.

(3.33)

The set-valued map T is defined by

T(u) =

⎧
⎨
⎩

[4; 6] for u ∈ [0, 3) ∪ (3, 6],

[5, 6] for u = 3.
(3.34)

(I.1) Js;� is not symmetric. Indeed, J(4, 0) = 0 and J(0, 4) = 16.
(I.2) (U , Qs;�) is a quasi-b-gauge space, and Js;� ∈ J

L
(U ,Qs;�) ∩ J

R
(U ,Qs;�). See

Example 3.12.
(I.3) The property T : U → ClL–Qs;� (U) (T : U → ClR–Qs;� (U)) holds. This follows

from (3.32) and Definition 3.14 and 3.13(C).
(I.4) T : U → ClL–Qs;� (U) is a (DL–Js;�

1 ,μ = 1
10 )-contraction on U , i.e., for all u, v ∈ U

DL–Js;�
1 (T(u), T(v)) ≤ μJ(u, v), where

DL–Js;�
1 (U , V ) = max{supu∈U J(u, V ), supv∈V J(U , v)}, U , V ∈ 2U .
Denoting DL–Js;�

1 = D1, we prove this in the following subcases:
(I.4.1) If u, v ∈ [0, 3) ∪ (3, 6], this implies u, v ∈ G, T(u) = T(v) = [4, 6] = E ⊂ G, and by

(3.32) for all e ∈ E, we have inf{J(e, f ) : f ∈ E} = J(e, e) = q(e, e) = 0. Thus,
D1(T(u), T(v)) = 0 ≤ μJ(u, v).

(I.4.2) If u ∈ [0, 3) ∪ (3, 6] and v = 3, then u ∈ G, v /∈ G, J(u, v) = 40, T(u) = [4, 6] = E ⊂ G,
T(v) = [5, 6] = F ⊂ G and by (3.32), e ∈ E suggests

inf
{

J(e, f ) = q(e, f ) : f ∈ F
}

=

⎧
⎨
⎩

4 whenever e ∈ [4; 5],

0 whenever e ∈ [5; 6].

Whereas, f ∈ F inferred inf{J(e, f ) = q(e, f ) : e ∈ E} = 0. Thus,
D1(T(u), T(v)) = 4 = μJ(u, v).

(I.4.3) If u = 3 and v ∈ [0, 3) ∪ (3, 6], then u /∈ G, v ∈ G, J(u, v) = 40, T(u) = [5, 6] = E ⊂ G,
T(v) = [4, 6] = F ⊂ G. As a result, by (3.32), e ∈ E implies
inf{J(e, f ) = q(e, f ) : f ∈ F} = 0. Further, by (3.32) f ∈ F suggests
inf{J(e, f ) : e ∈ E} = 0. Thus, D1(T(u), T(v)) = 0 ≤ μJ(u, v).

(I.4.4) If u = v = 3, then J(u, v) = 36, T(u) = T(v) = [5, 6] = E ⊂ G and for all e ∈ E
inf{J(e, f ) = q(e, f ) : f ∈ E} = q(e, e) = 0. Therefore, D1(T(u), T(v)) = 0 < μJ(u, v).

(I.5) To prove that there exists v ∈ T(u) such that J(u, v) < J(u, T(u)) + γ , for all u ∈ U
and for all γ ∈ (0,∞), we observe the following subcases:

(I.5.1) If u ∈ [0, 3) ∪ (3, 4) and v = 4 ∈ T(u) = [4, 6], then J(u, v) = q(u, v) = (u – v)2,
J(u, T(u)) = (u – v)2 and J(u, v) < J(u, T(u)) + γ for all γ ∈ (0,∞).

(I.5.2) If u ∈ [4, 6] and v = 4 ∈ T(u) = [4, 6], then J(u, v) = q(u, v) = 0, J(u, T(u)) = 0 and
J(u, v) < J(u, T(u)) + γ for all γ ∈ (0,∞).

(I.5.3) If u = 3 and v ∈ T(u) = [5, 6], then J(u, v) = J(u, T(u)) = 40 and
J(u, v) < J(u, T(u)) + γ for all γ ∈ (0,∞).
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(I.6) Let (U , T) be left Js;�-admissible at U . We show that if z0 ∈ U , and
{zm : m ∈ {0} ∪N} fulfils the properties

zm+1 ∈ T
(
zm)

, for all m ∈ {0} ∪N (3.35)

and

lim
m→∞ sup

n>m
J
(
zm, zn) = 0, (3.36)

then

lim
m→∞ J

(
z, zm)

= 0 where z = 6. (3.37)

In fact, we observe

T [m](U) = [4; 6] ⊂ G for m ≥ 2. (3.38)

We can also write (3.36) in the form that there exists m0 ∈N such that for all
ε > 0 and for all n > m ≥ m0, we have J(zm, zn) < ε and so, in particular in view of
(3.38), (3.32), and (3.33), this implies that there exists m1 ≥ m0 such that for all
0 < ε and for all n > m ≥ m1, we have

J
(
zm, zn) = q

(
zm, zn) = 0 < ε. (3.39)

From (3.38), (3.39), (3.32), and (3.33), we conclude that zm ≥ zm+1 for all m ≥ m1,
and since 6 ≥ zm for all m and 6 ∈ G, we have limm→∞ q(z, zm) = 0 where z = 6
and this implies (3.37). Thus, (U , T) is the left Js;�-admissible at U .

(I.7) To prove (U , T) is a left Qs;�-quasi-closed map in U , suppose
(wm : m ∈N) ⊂ T(U) is a left Qs;�-converging sequence in U . Now, as
[4, 6] ⊂ ClL–Qs;� (U), there exists w ∈ T(U) = [4, 6] such that
limm→∞ q(w, wm) = 0.

Equivalently, there exist w ∈ T(U) = [4, 6] and m0 such that q(w, wm) < ε for all
ε > 0 and for all m ≥ m0, and thus, by (3.33) and (3.32), there exist
w ∈ T(U) = [4, 6] and m1 ≥ m0 such that q(w, wm) = 0 < ε, for all 0 < ε and
m ≥ m1, or analogously there exist w ∈ T(U) = [4, 6] and m1 such that w ≥ wm

for all m ≥ m1. Obviously, then [w, 6] ⊂ SL–Qs;�
(wm :m∈N). The consideration above

implies that if (xm : m ∈ N) and (ym : m ∈N) are fixed and arbitrary subsequences
of {wm : m ∈N} fulfilling ym ∈ T(xm) for all m ∈N, then there exists m1 such that
xm ∈ [4; 6] ∧ ym ∈ T(xm) ∧ z ≥ xm ∧ z ≥ ym ∧ z ∈ T(z) for all m ≥ m1 and for all
z ∈ [w, 6].

(I.8) From (I.1)–(I.7), we observe that all the hypotheses of Theorem 3.22 hold in the
left case.

Thus, we have Fix(T) = [4; 6] and declare that if z0 ∈ U , z1 ∈ T(z0), z2 ∈ T(z1)
and w ∈ [4; 6] are fixed and arbitrary and zm = w for all m ≥ 3, then the sequence
{zm : m ∈ {0} ∪N}, beginning at z0 and left Qs;�-converging to each point z,
satisfies z ∈ T(z).
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Remark 3.27 Let a quasi-b-gauge space (U , Qs;�) and a family Js;� = {J} be as defined in
Example 3.26.

(a) (3.32) implies that q is a quasi-pseudo-b-metric, where s = 2, and q is not a
quasi-pseudo-metric. This implies that (U , Qs;�) is a quasi-b-gauge space but not a
quasi-gauge space. Hence a quasi-b-gauge space becomes a more general space than
a quasi-gauge space.

(b) From cases I.4.2 and I.4.3, it follows that 4 = DL–Js;�
1 (E, F) �= DL–Js;�

1 (E, F) = 0 for
F = [5; 6] and E = [4; 6].

(c) We see that DL–Js;�
1 (E, E) �= 0 if E = {3}.

4 Consequences and an application
This section is concerned with some important consequences and an application of the
obtained results. The following corollaries are some fascinating consequences of the main
results.

Corollary 4.1 Let (U , Q) be a quasi-gauge space, let J = {Jβ : β ∈ �} be a L(R) J -family
on U , and let ζ ∈ {1, 2, 3}. Assume, moreover, that μ = {μβ}β∈� ∈ [0, 1), and the map T :
U → ClL–J (U) (T : U → ClR–J (U)) satisfies:

(i) T is (DL–J
ζ ,μ)-contraction on U ((DR–J

ζ ,μ)-contraction on U);
(ii) for any u ∈ U and any γ = {γβ}β∈� ∈ (0,∞), there exists v ∈ T(u) such that for all

β ∈ �

Jβ (u, v) < Jβ
(
u, T(u)

)
+ γβ ,

(
Jβ (v, u) < Jβ

(
T(u), u

)
+ γβ

)
.

We have the following:
(I) If (U , T) at a point z0 ∈ U is L(R) J -admissible, then there exists a sequence

{zm : m ∈ {0} ∪N} starting at z0 ∈ U such that zm ∈ T(zm–1) for all m ∈ N, a point
z ∈ U , and r = {rβ}β∈� ∈ (0,∞) such that zm ∈ BL–J (z0, r) (zm ∈ BR–J (z0, r)}) for all
m ∈ N and limL–J

m→∞ zm = z (limR–J
m→∞ zm = z).

(II) If (U , T) at a point z0 ∈ U is L(R) J -admissible, and if T [k] is L(R) Q-quasi-closed
map on U for some k ∈N, then Fix(T [k]) is non-empty and there exists a sequence
{zm : m ∈ {0} ∪N} starting at z0 ∈ U such that zm ∈ T(zm–1) for all m ∈ N, a point
z ∈ Fix(T [k]), and r = {rβ}β∈� ∈ (0,∞) such that zm ∈ BL–J (z0, r)(zm ∈ BR–J (z0, r))
for all m ∈ N and limL–J

m→∞ zm = z (limR–J
m→∞ zm = z).

Proof The proof follows easily by taking sβ = 1 for each β ∈ � in the proof of Theo-
rem 3.21. �

Corollary 4.2 Let (U , Q) is a quasi-gauge space, let J = {Jβ : β ∈ �} is a L(R) J -family
of generalized quasi-pseudo distances on U , and let ζ ∈ {1, 2}. Moreover, assume that μ =
{μβ}β∈� ∈ [0, 1) and T : U → U be (DL–J

ζ ,μ)-contraction on U ((DR–J
ζ ,μ)-contraction on

U). We have the following:
(I) If (U , T) at a point z0 ∈ U is L(R) J -admissible, then there exists a sequence

{zm : m ∈ {0} ∪N} starting at z0 ∈ U such that (zm = T [m](z0) : m ∈ {0} ∪N), a point
z ∈ U , and r = {rβ}β∈� ∈ (0,∞) such that zm ∈ BL–J (z0, r) (zm ∈ BR–J (z0, r)) for all
m ∈ N and limL–J

m→∞ zm = z (limR–J
m→∞ zm = z).
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(II) If (U , T) at a point z0 ∈ U is L(R) J -admissible, and if T [k] is L(R) Q-quasi-closed
map on U for some k ∈N, then Fix(T [k]) is non-empty and there exists a sequence
{zm : m ∈ 0 ∪N} starting at z0 ∈ U such that (zm = T [m](z0) : m ∈ {0} ∪N), a point
z ∈ Fix(T [k]), and r = {rβ}β∈� ∈ (0,∞) such that zm ∈ BL–J (z0, r)(zm ∈ BR–J (z0, r))
for all m ∈ N, limL–J

m→∞ zm = z (limR–J
m→∞ zm = z), and we have

Jβ
(
z, T(z)

)
= Jβ

(
T(z), z

)
= 0, (4.1)

for all β ∈ � and for all z ∈ Fix(T [k]).
(III) If (U , Q) is a Hausdorff space, if (U , T) at a point z0 ∈ U is L(R) J -admissible, and

if T [k] is L(R) Q-quasi-closed map on U for some k ∈N, then there exists a sequence
{zm : m ∈ 0 ∪N} starting at z0 ∈ U such that (zm = T [m](z0) : m ∈ {0} ∪N), a point
z ∈ Fix(T [k]) = Fix(T) = {z}, and r = {rβ}β∈� ∈ (0,∞) such that
zm ∈ BL–J (z0, r)(zm ∈ BR–J (z0, r)) for all m ∈N, limL–J

m→∞ zm = z (limR–J
m→∞ zm = z),

and we have

Jβ (z, z) = 0 for all β ∈ �. (4.2)

Proof The proof easily follows by taking sβ = 1 for each β ∈ � in the proof of Theo-
rem 3.23. �

Remark 4.3
(a) We note that Corollary 4.2 corresponds to Theorem 11.1 of Wlodarczyk and

Plebaniak [41]. Hence, our Theorem 3.24 is a generalization of their result.
(b) The proof of the fixed point theorem due to Banach [22] and Nadler [23] requires

the completeness of the spaces (U , q) and (CB(U), Hq), the continuity of q and Hq

and the continuity of the mapping T . Our main theorems corresponding to
Theorem 3.22 and Theorem 3.24 do not use these assumptions and leave the
assertion more general. Hence, our results are a new generalization of the fixed
point theorem due to Banach and Nadler.

Now, we present an application on the existence of a solution of an integral equation.
For this, consider the Volterra integral equation in the form

x(t) = f (t) + η

∫ t

0
K

(
t, s, x(s)

)
ds, t ∈ [0,∞), (4.3)

which is an integral equation located in the space C[0,∞), i.e., the space of all continuous
functions defined on the interval I = [0,∞), where f : I → R is a continuous function,
K : I × I ×R →R is a continuous and nondecreasing function, and η ∈ [0, 1).

Let U = (C[0,∞),R). Define the quasi-pseudo-b-metric for all x, y ∈ U by

qm(x, y) =

⎧⎨
⎩

‖(x – y)‖m if x �= y,

0 if x = y,
(4.4)

where ‖x‖m = maxr∈[0,m](x(r))2, for all x ∈ U , with m ∈N.
Clearly, Qs;N = {qm : m ∈ N} is a quasi-b-gauge on U , and thus (U , Qs;N) is a quasi-b-gauge

space, which is complete and the Hausdorff one. Here, in particular we take Qs;N = Js;N.
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Theorem 4.4 Suppose that the following statements hold:
(i) for each t, s ∈ [0, m] and x, y ∈ U , there exists a continuous mapping g : I × I → I

such that |K(t, s, x(s)) – K(t, s, y(s))| ≤ √
g(t, s)qm(x, y) for each m ∈ N;

(ii) supt≥0
∫ t

0

√
g(t, s) ds = b < 1;

(iii) T is Qs;N-quasi-closed map on U .
Then the integral equation (4.3) has at least one solution.

Proof Define T : C[0,∞) → C[0,∞) as follows

Tx(t) = f (t) + η

∫ t

0
K

(
t, s, x(s)

)
ds, t ∈ [0,∞). (4.5)

For any x, y ∈ U and t ∈ [0, m], consider

(
Tx(t) – Ty(t)

)2 =
(

f (t) + η

∫ t

0
K

(
t, s, x(s)

)
ds –

(
f (t) + η

∫ t

0
K

(
t, s, y(s)

)
ds

))2

=
(

η

∫ t

0
K

(
t, s, x(s)

)
ds – η

∫ t

0
K

(
t, s, y(s)

)
ds

)2

= η2
(∫ t

0

∣∣K(
t, s, x(s)

)
– K

(
t, s, y(s)

)∣∣ds
)2

≤ η2
(∫ t

0

√
g(t, s)qm(x, y) ds

)2

≤ η2
(∫ t

0

√
g(t, s) ds

)2

qm(x, y)

= η2b2qm(x, y)

= μqm(x, y), where μ = η2b2 < 1.

Hence, for each x, y ∈ U such that Tx �= Ty and m ∈N, we obtain

qm(Tx, Ty) ≤ μqm(x, y) where μ < 1. (4.6)

For Tx = Ty, we have qm(Tx, Ty) = 0, so (4.6) holds. Hence, by Theorem (3.24), the operator
T has a fixed point, that is, the integral equation (4.3) has at least one solution. �
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