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1 Introduction

We consider the following form for the unconstrained optimization problem:
min{f (x)|x € R"}, (1.1)

where f : R” — R is a continuously differentiable function and its gradient is denoted by
g(x) = Vf(x). To solve (1.1) using the CG method, we use the following iterative method

starting from the initial point xy € R”. Then

X1 =Xk +opdy, k=0,1,2,..., (1.2)
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where o > 0 is the step size obtained by some line search. The search direction dj is
defined by

—8kr k = 01
do= % (1.3)
—gk + Brdi-1, k=1,

where gi = g(x) and Bk is known as the conjugate gradient method. To obtain the step-
length ok, we have the following two line searches:
1. Exactline search

fxk + ody) = minf (x + ady), o >0. (1.4)

However, (1.4) is computationally expensive if the function has many local minima.
2. Inexact line search
To overcome the cost of using exact line search and obtain steps that are neither
too long nor too short, we usually use inexact line search, in particular weak
Wolfe—Powell (WWP) line search [1, 2] given as follows:

Sk + agedye) < f (i) + Sougy dis (1.5)

gk + oxdp) die > o gl dy. (1.6)
Another, strong, version of Wolfe—Powell (SWP) line search is given by (1.5) and
gk + adi) " di| < o |gl dr|, (1.7)

where 0<§ <o <1.
The descent condition (downbhill condition) plays an important role in the CG method,
where the equation of the descent condition is given as follows:

gl di <0. (1.8)
Albaali [3] extended (1.8) to the following form:
ngdkg—c||gk||2, k>0andc>0, (1.9)

called the sufficient descent condition.

The steepest descent method is the simplest of the gradient methods for optimization
functions in # variables. From a current trial point x;, for a function f(x), one expects to
find a vector close to a minimum by moving away from x; along the direction which causes
f(x) to decrease rapidly, i.e., f(x1) > f(x2) > f(x3) > - - - . This direction of steepest descent is
given by the negative gradient, —gi. Using contour lines, the minimum point of a function
is obtained with two variables. For example, Fig. 1 shows contour lines for Booth function
in two dimensions.

As we see in Fig. 2, the gradient f”(x) is orthogonal with the contour lines, and for every
x, the gradient point in the direction of the steepest increases f(x). In Fig. 2, the gradient,
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Figure 1 Contour lines for Booth function

Figure 2 The graph of Booth function with contour lines and its gradients

contours, and Booth function are plotted, which clearly portrays the function’s minimum

using the function or contour line graph. Despite the steepest descent method robustness,

it is not efficient due to CPU time for large-dimensional functions. Thus, using the CG

method will avoid the orthogonality between the Vf and the search direction. Figure 3

shows the angle between the Vf and dj using the CG method.
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Figure 3 The angle between the negative gradient and the search direction

The most famous classical formulas of CG methods are Hestenses—Stiefel (HS) [3], Polak—
Ribiere—Polyak (PRP) [4], Liu and Storey (LS) [5], Fletcher—Reeves (FR) [6], Fletcher (CD)
[7], Dai and Yuan (DY) [8], given as follows:

BIS e Ykt PRP _ 8 Vi1 LS = — e Yk
di vk llgx-111? di g1
llglI? cD ll g lI* oy gkl
BR = , BP = — , BPY = ,
T gl o dl g o al g

where yi_1 = gx — gk-1.

These methods are similar if we use exact line search and a function satisfying quadratic
line search condition since g{ dy_; = 0, which implies g/ dy = —|g||* using (1.3). In addi-
tion, if the function is quadratic, then ng g1 =0.

The global convergence properties were studied by Zoutendijk [9] and Al-Baali [10].
The global convergence of the PRP method for a convex objective function under exact
line search was proved by Polak and Ribere in [4]. Later, Powell [11] gave a counterexample
showing a nonconvex function, in which PRP and HS can cycle infinitely without getting a
solution. Powell emphasized the importance to achieve the global convergence of PRP and
HS method, which should not be negative. Moreover, Gilbert and Nocedal [12] proved that
nonnegative PRP, i.e., with B¢ = max{;*",0}, is globally convergent under complicated
line searches.

Since the function is quadratic, i.e., the step size is obtained by exact line search (1.4), the
CG method satisfies the conjugacy condition, i.e., d Hd].T =0, Vi #j. Using the mean value
theorem and exact line search with equation (1.3), we can obtain ,3,]({5. From the quasi-
Newton method, BFGS method, the limited memory (LBFGS) method, and equation (1.3),
Dai and Liao [13] proposed the following conjugacy condition:

dlyi1 = —tgl si_1, (1.10)

where s;_1 = xx —xx_1, and £ > 0. In the case of ¢ = 0, equation (1.10) becomes the classical
conjugacy condition. By using (1.3) and (1.10), [13] proposed the following CG formula:

T T
pPL = SeXel Sl (1.11)
dk_lykfl dk_lym
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However, ,B,PL faces the same problem as ,3,pr and ,3,?5, ie., ﬁ,PL is not nonnegative in

general. Thus, [13] replaced equation (1.11) by

T
8 Sk-1

BPY = max{BS,0} — ¢ .
k { k } d/(T_lyk—l

(1.12)

Moreover, Hager and Zhang [14, 15] presented a modified CG parameter that satisfies
the descent property for any inexact line search with ng di < —(7/8)lgk||*. This new version
of the CG method is globally convergent whenever the line search satisfies the (WP) line
search requirement. This formula is given as follows:

HZ N
i~ = max{ By, i}, (1.13)
N_ 1 _ el \T _ 1 .
where 8" = o (yk — 2dk il )" & Mk =~ [z mnmnig &d 7> 0 is a constant.

Note that if £ = 2%’(—;':, then By = BPY.
In 2006, Wei et al. [16] gave a new positive CG method, which is quite similar to the

original PRP method, which has global convergence under exact and inexact line search,

that is,
T(y _ _lgll
wyr _ Sk (& HgmHgk‘l)
L -
llgk-1112

where yi_1 = gk — gk-1. From the WYL method, many modifications appeared, such as the
following [17]:

2 llg I
DPRP ”gk” - Hgk]jln |g/<gk—l|
k = T 5 m = 1 [11]
m|g]< dk—1| + ||g/<—1||
and
llgell T
llgkll> - i 8k-1
OHS = g1 ,  wherem > 1.

 mlgldia| +dl oy

Alhawarat et al. [18] constructed the following CG method with a new restart criterion as

follows:
llgk 1> —1ex-lgf gr1 2 T
,BAZPRP _ Tee il o lgrll® > e |gi k-1l
7 =
0, otherwise,
where uy = lsicl Sk = Xk — Xk-1, Yk = gk — 8k-1, and || - || denotes the Euclidean norm.

Iyl
Besides, Kaelo et al. [19] proposed the following CG formula:

llgrc > g7 g1

BIKT _ max{d] | ye_1.-g7 dk-1)’
llgsII®

max{d{,ly/<—lv_gz,1dk—l}

if0 < gl g1 < lgll®

, otherwise.
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2 Motivation and the new restarted formula

BR“PRP in terms of function evaluation, gradient evaluation,

To improve the efficiency of
number of iterations, and CPU time, we construct two new CG methods based on B£“*RF,

,B,PPRP, and ﬂ}BHS as follows:

gk > —prclel k-1l . 2 T
k if |lgell® > texlgi gk-1l,

Al mlgldi_y|+lgeo1 11’
R B (2.1)
— g ———— otherwise
Mkd}?_lyk—l, )
where
llsi-1ll
k= . (2.2)
k-1l

The second modification is given as follows:

llgi 12~ 1klgd g1 . T
—— i | gkl > kgl gkl

A2 _ ) mlgl dia 1vdi v 2.3)
g — kL otherwise '
dz_lyk—l ’ ’
Algorithm 2.1

Start
Set a starting point x,

and the initial search direction
d, =-g,.Letk=1.

If a stopping criteria is satisfied

Y Calculate d, based on (1.3) with (2.1),
calculate ¢, using (1.5) and (1.7),
calculate x, using (1.2).

Set k:=k+1.

A

Y

Y

END

3 The global convergence properties
Assumption 1
. f(x) is bounded from below on the level set 2 = {x € R" : f(x) < f(x1)}, where x; is
the starting point.
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II. In some neighborhood N of €, f is continuous and differentiable, and its gradient is
Lipchitz continuous. That is, for any x,y € N, there exists a constant L > 0 such that

le@) - g < Lix-yl.

The following is considered one of the most important lemmas used to prove the global
convergence properties. For more details, the reader can refer to [9].

Lemma 3.1 Suppose Assumption 1 holds. Considering the CG method of the form (1.3),
where the search direction satisfies the sufficient descent condition and oy exists by standard
WWP line search, we have

(ngdk)2
Z 1 < (3.1)

where (3.1) is known as the Zoutendijk condition. Inequality (3.1) also holds for the exact
line search, the Armijo-Goldstein line search, and the SWP line search.

Substituting (1.9) into (3.1) yields

N llgell*
Z flk 7 <00 (3.2)
— dxl

Gilbert and Nocedal [11] presented an important theorem to find the global convergence
of nonnegative PRP and nonnegative methods summarized by Theorem 3.3. Furthermore,
they presented a nice property, called Property*, as follows:

Property* Consider a method of the form (1.1) and (1.2), and suppose 0 < y < [|gk|| < 7.
We say that the method possesses Property* if there exist constant » > 1 and A > 0 such
that for all k > 1, we get |Bi| < b, and if ||xx — x4_1|| < A, then

1Bl < 2b

The following theorem plays a crucial role in the CG method given in [11].

Theorem 3.1 Counsidering any CG method of the form (1.2) and (1.3), suppose the following
conditions hold:
L Br>0.
II. The sufficient descent condition is satisfied.
1I. The Zoutendijk condition holds.
IV. Property*is true.
V. Assumption 1 is satisfied.
Then, the iterates are globally convergent, i.e., limy_, « ||gx|| =0

3.1 The global convergence properties of ;"
Theorem 3.2 Suppose that Assumption 1 holds. Then, by considering the CG method of
the form (1.2), (1.3), and (2.1), where oy is computed by (1.5) and (1.6) and the sufficient
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descent condition holds, we multiply (1.2) by g, which yields

llgkll* = perlgf gl 7

gy = —lgkll* + g drs] + g % A1
<l dl‘fﬂz” el
<—llgkll* + % |gi di1 |
< gl + %'g{ di|

1
< ||gk||2<—1 + —).
m

Theorem 3.3 Suppose that Assumption 1 holds. Consider the CG method of the form (1.2),
(1.3), and (2.3), where ay is computed by (1.5) and (1.6), then ﬁ,‘fl satisfies Property*.

Proof Let A = 577 and

}/2
L+1)Ayb

B - llgkll® = nilgf gl - llgill® + g gi-1] - llge I (gl + llgx-11l) < 2_)72 b1

migldial + lgeall> — gl T llgk-11I? >

To show that g < ﬁ, we have the following two cases:
Case 1: u;>1

llgell* = rexlgi gl - llge !l - g gl

p -
mlgl dia| + g ll? ~ llge-111?
llgk-1112 y2

Case 2: ug <1
To satisfy Property* for ! with uy < 1, we need the following inequality:

Iwiell + llviell = Lliw + viell, (3.3)
where wy = g — % k-1, and vg = % &k — 8k-1, which yields

gl — piclgd gi-rl
mlgl di1] + llgeo |2

2 1,,.T
Al gk lI” = 7 1k k-1l
i) = <

B llgi-111?

_ lgillige = 78l

llgk-1112
Using (3.3), we obtain
Lgicr| <Llg- rg < L+ Dllgk - gl
- =Gk — =gk 1+ — gk — Gk + —gill,
8k Lgkl = L8k Lgkl Lgk Gk-1| = Gk — 8k-1
18| < (L +1)llgellllgr = grl SL(L+1)M/,
llgk-11? y?

Page 8 of 21
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Thus, in all cases

’/3?1‘ - Liy - L(L+1)Ay - i
oy T y? ~2b
The proof is completed. d

Theorem 3.4 Suppose that Assumption 1 holds. Consider the CG method of the form (1.2),
(1.3), and (2.3), where ay is computed by (1.5) and (1.6), then limy_, « || gk|| = 0.

Proof We will apply Theorem 3.1. Note that the following properties hold for B¢
L gi>o.
ii. B! satisfies Property® using Theorem 3.3.
iii. Bg! satisfies the descent property using Theorem 3.2.
iv. Assumption 1 holds.
Thus, all properties in Theorem 3.1 are satisfied, which leads to limy_, « [|gk|| = 0. O

3.2 The global convergence properties of 2
Theorem 3.5 Suppose Assumption 1 holds. Consider the CG method of the form (1.2),
(1.3), and (2.3), where oy is computed by (1.5) and (1.6), and where the sufficient descent

condition holds for ,3,‘(42. Since dkalyk_l > 0, we obtain

gl = 1eclgl gl 1

i = —llgill* + -
& ¢ mlgl di1| + dkT_lyk-lgk !
lgel> |,
< —llgll* + —=——|gi dr_
Sl g ]
lgel®> |,
<-lgl* + —=——|g{ di-
m|g{dk71|| i

1
<llgll?( -1+ =).
_Ing||< +m)

Theorem 3.6 Suppose that Assumption 1 holds. Consider the CG method of the form (1.2),
(1.3), and (2.3), where oy is computed by (1.5) and (1.6), then the iterates ﬁ,‘(“z satisfy Prop-
erty*.

_ (-o)ey?
Proof Let A = W and

o~ Gl —iidgegan]l Mgl — il gl

Cmgldalvdl iy T dlya

_ Ngell® — palgi gial _ lgel® + lgr gl
(1-o)cllgel? ~ (1-0)clg?

_ lgeliClgell + llgea D _ 27
(1-o)cllge-1l>  — (1 -o)ey?

=b>1.

To show that g < ﬁ, we have the following two cases:

Page 9 of 21
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Case i >1

lgicll* — iclgd gl _ gkl - |gF gk-1l
mlgl di1| + dye1 ~ d Y
< gk Illlgk — Gx—1l < Liy .
(I-o)clgal* ~ (1 —o)cy?

A2
,31( =

Case i <1
To satisfy Property* for ' with 1 < 1, we need property (3.3) which gives

lgicl? - 1eclgl gl
migldr| +dl v

82| <

_ | Del® - 7lgi gl
B dkT—lyk—l

_ | Mgl gk = 71l
~ 1 (1 -o)eligial?

Using (3.3), we obtain

1 1 1
k= 78| = Ligk— 781+ 78~ 81| = L+1)lgr — gkl
|13]§12| < L+ 1) lgllllgr — g1l - (L+1)ry

(I-o)llge1l>  ~ (1-o)ey?
Thus, in all cases

LAy C+Dry 1

A2] <L < .
|ﬁk | T (Q-0)y? T (-0)y?~ 2b =

Theorem 3.7 Suppose that Assumption 1 holds. Consider the CG method of the form (1.2),
(1.3), and (2.3), i.e., ﬁ;fz, where oy is computed by (1.5) and (1.6), then limy_, o ||gx|| = 0.

Proof We will apply Theorem 3.1. Note that the following properties hold for B¢
i ,3,‘?2 > 0.
ii. {? satisfies Property® by using Theorem 3.6.
iii. B2 satisfies the descent property by using Theorem 3.5.
iv. Assumption 1 holds.
Thus all properties in Theorem 3.1 are satisfied, which leads to limg_, o ||gk|| = O.
If the condition ||gk[I? > 1t|gF gk-1] does not hold for B! and B¢, then the CG method

T

. . — Sk—
will be restarted using BP ™" = —ux dng ; L, 0O
k-1Vk-1

The following two theorems show that the CG method with 8P~ has the descent and

convergence properties.

Theorem 3.8 Let sequences {x} and {di} be obtained using Eqs. (1.2) and (1.3), which is
computed by SWP line search in Egs. (1.5) and (1.7), then the descent condition holds for
{di} with ,B,’?‘H.
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Proof By multiplying Eq. (1.3) with g/, and substituting 8P, we obtain

T

8 Sk-1
T

dj k-1

gl di,|I*
RS < gl
dkyk—l

g =—llgll* - ¢ gl dia

= ~llgell® ~ toe
Letting ¢ = 1, we then obtain

& di < —cllgll®,
which completes the proof. d

Theorem 3.9 Assume that Assumption 1 holds. Consider the conjugate gradient method
in (1.2) and (1.3) with ﬂ,’?‘H a descent direction and ay obtained by the strong Wolfe line
search. Then, liminf;_,  ||gk|l = 0.

Proof We will prove this theorem by contradiction. Suppose Theorem 3.4 is not true.

Then, a constant ¢ > 0 exists such that
lgcll =&, Vk>1. (34)
By squaring both sides of (1.2), we obtain

I dicll® = llgell® - 28xgd di-1 + BEldi |1
< llgell® + 21 Brl|gf di-1| + BE Nk I1?

2 lgx sl 1 ((0)giadi-1)* s I1?

< Eapa— L e I deq] +
< llgkll I (1—5)|g](T_1dk_1|(0)|gk_l k 1| 12 ((I—U)g{_ldk_l)z
2 {lgellli sl 1 (0)*lsk-1]?
< 2,z _
Sled ) T ey
lldk I - lgell> 2 llgkllllsxll 1 o?|sial?
4 = s T T 0t T e 4
llgx I lgell* L (1—o0o)llgll L2 (1-0)|gll
<1 +§ g Il Il sl o+i o2 Isk-1 |12
gl LA -o)lgllt L2 (1-0)?]lgkll*
1 2 lIsk |l 1 o2 Isk-1 |12

< + - o+ ——"7——.
lgell? L (1-o)lgel®  L* (1-0)|gl*

Let

llgell? = min{llgel®, llgel®, Igell*}, g €N,

then

lldx1* 1 2 A 1 o2
= 1+— o+ 5 )
lgrll* — Ngkll? L(1-0) A*(1-0)
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Also, let
2 (1 2 A 1 o2
=1+ -———0+=—— ),
L(1-0) A2(1-0)2
then

k

2
I Ry 1

f— Tl
lgell* — llgll? — |lgill
i=1

lgell* _ et

el = kR’

Therefore,

i lgell* _
el O

k=0

4 Numerical results and discussions
To analyze the efficiency of the new CG method, several test functions are selected from
CUTE [20], as shown in the Appendix. These functions can be obtained from the following
website:
http://ccpforge.cse.rl.ac.uk/gt/project/cutest/wiki/

In the Appendix, the following notations are defined as follows:

e No. iter means the number of iterations.

e No. fun. Eva means the number of function evaluations.

e No. Grad. Eva means the number of gradient evaluations.

eO
o
2°
g
e e e? ed et
t

—— AD
A1

=== AZPRP

Figure 4 Performance profile based on the number of iteration
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P(t)

—— A\D
- Al
=== AZPRP

Figure 5 Performance profile based on the CPU time

el et

eO_

‘Ff———————————

e e e?

— A\D

- Al

«== AZPRP

Figure 6 Performance profile based on the functions evaluation time

el et

The comparison was made with respect to CPU time, the number of function evalu-
ations, the number of iterations, and the number of gradient evaluations. The SWP line
search is employed with the following parameters of § = 0.01 and ¢ = 0.1. The modified

CG-Descent 6.8 with zero memory is employed to obtain the result for B¢, . The code

can be downloaded from the Hager webpage:

http://users.clas.ufl.edu/hager/papers/Software/

Page 13 of 21


http://users.clas.ufl.edu/hager/papers/Software/

Salleh et al. Journal of Inequalities and Applications (2022) 2022:14 Page 14 of 21

eO

e e! e? e® et

A1
=== AZPRP

Figure 7 Performance profile based on the gradient evaluations

A minimum time of 0.02 seconds is used for all algorithms. The host computer is an Intel®
Dual-Core CPU with 2 GB of DDR2 RAM. The results are shown in Figs. 4, 5, 6, and 7, in
which a performance measure introduced by Dolan and Moré [21] was employed.

It is clear that based on the left-hand side of Figs. 4, 5, 6, and 7, the CG method Al is
above the other curves. Therefore, it is the most efficient method among related AZPRP
methods. However, CG method A2 is not as efficient as Al. Still, it is more efficient than
AZPRP with respect to CPU time, the number of function evaluations, gradient evalua-
tions, and the number of iterations. In addition, as an application of the CG method in
image restoration, the reader can refer to the following references [22-24].

5 Conclusion

In this paper, we proposed two efficient conjugate gradient methods related to the AZPRP
method. The two methods satisfied global convergence properties and the descent prop-
erty when SWP line searches were employed. Furthermore, our numerical results showed
that the new methods are more efficient than the AZPRP method with respect to the num-
ber of iterations, gradient evaluations, function evaluations, and CPU time.
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