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Abstract
Let �(x) denote the classical Euler gamma function. We set ψn(x) = (–1)n–1ψ (n)(x)
(n ∈N), where ψ (n)(x) denotes the nth derivative of the psi function ψ (x) =�′(x)/�(x).
For λ, α, β ∈R andm,n ∈N, we establish necessary and sufficient conditions for the
functions

L(x;λ,α,β) =ψm+n(x) – λψm(x + α)ψn(x + β)

and –L(x;λ,α,β) to be completely monotonic on (–min(α,β , 0),∞).
As a result, we generalize and refine some inequalities involving the polygamma

functions and also give some inequalities in terms of the ratio of gamma functions.
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1 Introduction
We know that Euler’s gamma function is defined by �(x) =

∫ ∞
0 tx–1e–t dt for x > 0. The psi

or digamma function is its logarithmic derivative

ψ(x) =
d

dx
ln�(x) =

�′(x)
�(x)

, (1.1)

whose derivatives ψ ′(x) and ψ ′′(x) are called the trigamma and tetragamma functions,
respectively. The polygamma functions are higher-order derivative

ψ (n)(x) = (–1)n–1
∫ ∞

0
e–xt tn

1 – e–t dt = (–1)n–1n!
∞∑

k=0

1
(x + k)n+1 , (1.2)

where n ∈ N. The Gamma function’s history and its development are given in [1].
After Euler discovered the gamma function, some scholars studied the fundamental

properties of gamma, digamma, and polygamma functions, see [2–5]. These functions are
important in the fields of engineering, physics, inequality theory, or statistics, and many
inequalities involving these functions have been obtained through monotonicity or con-
vexity properties, see [6–16].
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A function f is said to be completely monotonic on an interval I if f has derivatives
of all orders on I and (–1)nf (n)(x) ≥ 0, x ∈ I , n ≥ 0 (see [17]). A function f is said to be
strictly completely monotonic if (–1)nf (n)(x) > 0. The Bernstein–Widder Theorem [17,
Theorem 12b, p. 161] states that f is completely monotonic on (0,∞) if and only if

f (x) =
∫ ∞

0
e–xt dα(t),

where α(t) is nondecreasing such that the integral converges for x > 0. Completely mono-
tonic functions have attracted the attention of many researchers in various fields (see
[8, 18–24]).

The following asymptotic formulas are often encountered in many papers (see [5]).

ψ (n)(x + 1) = ψ (n)(x) + (–1)n n!
xn+1 , (x > 0; n = 0, 1, . . .), (1.3)

ln�(x) =
(

x –
1
2

)

ln x – x +
1
2

ln(2π ) +
1

12x
+ · · · , (x → ∞), (1.4)

ψ(x) ∼ ln x –
1

2x
–

1
12x2 +

1
120x4 – · · · , (x → ∞), (1.5)

(–1)n–1ψn(x) ∼
(

(n – 1)!
xn +

n!
2xn+1 +

(n + 1)!
12xn+2 – · · ·

)

, (x → ∞, n = 1, 2, . . .). (1.6)

For the sake of convenience, we set ψn(x) = (–1)n–1ψ (n)(x) for n ∈N.
From (1.2) and the Bernstein–Widder Theorem, we know that ψn(x) is strictly com-

pletely monotonic on (0,∞). From (1.3) and (1.6), we have

lim
x→0+

xn+1ψn(x) = n!, (1.7)

lim
x→∞ xnψn(x) = (n – 1)!, (1.8)

which easily yields that limx→0+ ψn(x) = ∞ and limx→∞ ψn(x) = 0.
In order to prove [25, Theorem 4.8], Alzer provided

ψ2
1 (x) – ψ2(x) > 0, x > 0, (1.9)

which was verified in a distinct way in [26, Lemma 1.1]. Furthermore, it is worthwhile
to notice that [27, Lemma 1.2] is a generalization of the inequality (1.9) and is used to
establish many interesting results (see [26, 27]). From [27, Theorem 2.2], it follows that

ψ2
1

(

x +
1
2

)

– ψ2(x) < 0, x > 0. (1.10)

In light of (1.9) and (1.10), a novel question was raised in [27], which asks whether it is
possible that there exist constants α and β such that

ψ2
1 (x + α) – ψ2(x) > 0, (1.11)

and

ψ2
1 (x + β) – ψ2(x) < 0, x > 0. (1.12)
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Recently, Qi and Guo showed in [28, Theorem 1] that for α ∈R, the function

f (x;α) = ψ2
1 (x + α) – ψ2(x) (1.13)

is completely monotonic on (– min(0,α),∞) if and only if α ≤ 0, and so is the function
–f (x;α) if

α ≥ sup
x∈(0,∞)

x
ρ–1(e2x(2(x + 1)2 – 1))

,

where ρ(x) = x coth x for x > 0 and ρ–1(x) is the inverse function of ρ(x).
In addition, it was shown in [28, Theorem 3] that the function

fλ(x) = ψ2
1 (x) – λψ2(x) (1.14)

is completely monotonic on (0,∞) if and only if λ ≤ 1.
Besides the preceding conclusions invoked, we can refer to more references on results

extending (1.9) or (1.14) (see [19, 20, 24, 29–35]).
In view of (1.13), we define the function L(x;λ,α,β) for λ,α,β ∈ R, η = min(α,β , 0) and

m, n ∈N as follows:

L(x;λ,α,β) = ψm+n(x) – λψm(x + α)ψn(x + β) (1.15)

with respect to x ∈ (–η,∞).
Then it is a question to put forward: Do sufficient and necessary conditions exist such

that L(x;λ,α,β) is completely monotonic?
The aim of this paper is to solve this question and then apply it to obtain more inequal-

ities involving ratios, differences of digamma and polygamma functions.
A detailed plan of this paper is as follows: In Sect. 2, we give detailed proof of our main

results. In Sect. 3, some more inequalities for ratios of gamma functions are obtained with
the aid of Theorem 3.1.

2 A lemma
In order to prove our main results, we need the following:

Lemma 1 For α, β ∈R and t > 0, let the function φ(x) be defined on (0, 1) by

φ(x) =
t(1 – e–t)
1 – e–tx

x(1 – x)
1 – e–t(1–x) e–αtxe–βt(1–x). (2.1)

Then the following statements are true:
(1) For β – α ≥ 1

2 , the function φ(x) is increasing from (0, 1) onto (e–βt , e–αt);
(2) For β – α ≤ – 1

2 , the function φ(x) is decreasing from (0, 1) onto (e–αt , e–βt);
(3) For –1/2 < α – β < 0, there exists t0 ≥ 0 such that when 0 < t < t0, the function φ(x) is

increasing from (0, 1) onto (e–βt , e–αt);
(4) For 0 < α – β < 1/2, there exists t0 ≥ 0 such that when 0 < t < t0, the function φ(x) is

decreasing from (0, 1) onto (e–αt , e–βt);
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(5) For |α –β| < 1
2 , there exists t0 ≥ 0 such that when t > t0, the function φ(x) has a unique

maximum point x0(t) on (0, 1), that is, φ(x) is increasing on (0, x0(t)) and decreasing on
(x0(t), 1). In particular, if α = β , then x0(t) = 1/2.

Proof Differentiating υ(x) = lnφ(x) yields

υ ′(x) = t
(
ω(tx) – ω

(
t(1 – x)

)
+ β – α

)
, (2.2)

where

ω(x) =
1
x

–
1

ex – 1
, x > 0.

It is not difficult to show that ω(x) is decreasing from (0,∞) onto (0, 1
2 ) by noting that

ω′(x) =
[( x

2 )2 – (sinh( x
2 ))2]

(x sinh( x
2 ))2 < 0. (2.3)

Apparently, we have

υ ′′(x) = t2(ω′(tx) + ω′(t(1 – x)
))

< 0,

so that

υ ′(1) = t
(
–
(
ω(0) – ω(t)

)
+ β – α

)
< υ ′(x) < t

(
ω(0) – ω(t) + β – α

)
= υ ′(0). (2.4)

For β – α ≥ 1
2 , from ω′(x) < 0 and 0 < ω(x) < 1/2, we see that υ ′(1) > 0, that is, υ(x) is

increasing on (0, 1), which immediately yields

e–βt < φ(x) < e–αt . (2.5)

For β – α ≤ – 1
2 , a similar argument yields υ ′(0) < 0, and therefore υ(x) is decreasing on

(0, 1), which leads to the inversed inequality of (2.5).
If 0 < |α – β| < 1

2 , then there exists t0 > 0 satisfying ω(0) – ω(t0) = |β – α|.
Case 1. 0 < α – β < 1/2. Since ω(x) is decreasing on (0,∞), we obtain

υ ′(0) < 0, for 0 < t < t0, (2.6)

and

υ ′(0) > 0, for t > t0. (2.7)

Hence (2.4) and (2.6) imply that υ ′(x) < 0 for 0 < t < t0 on (0, 1), namely, φ(x) is decreasing
from (0, 1) onto (e–αt , e–βt).

Case 2. –1/2 < α – β < 0. By the same argument, assertion (4) can be proved.
Simultaneously, we observe that υ ′(1) < 0 for t > t0. This in combination with (2.7) and

υ ′′(x) < 0 suggests that υ ′(x) is strictly decreasing and therefore has a unique zero point
x0(t), that is, υ(x) is increasing on (0, x0(t)) and decreasing on (x0(t), 1). Moreover, for α =
β , it follows from (2.2) that υ ′(x) has a unique zero point at x = 1

2 . This completes the
proof. �
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3 Main results
For x, y ∈R, let

D1 =
{

(x, y)|x ≤ 0, y ≤ 0
}

and D2 =
{

(x, y)|x > 0, y > 0
}

,

D3 =
{

(x, y)|x ≥ M, y ≥ M
} ∪

{

(x, y)
∣
∣
∣|x – y| ≥ 1

2
, x ≥ 0, y ≥ 0

}

,

where

M = max
x>0

{

G(x) =
ln x(1 – e–x) – 2 ln(1 – e–x/2) – ln 4

x

}

<
1
2

. (3.1)

We point here that M in (3.1) is well defined since limx→0 G(x) = 0 and limx→∞ G(x) =
0. In fact, G(x) reaches the maximum at x0 = 10.042944 . . . , that is, M = maxx>0 G(x) =
0.09297 . . . .

Theorem 3.1 For λ,α,β ∈R, η = min(α,β , 0) and m, n ∈N, let the function L(x;λ,α,β) be
defined by (1.15). Then we have

(1) For (α,β) ∈ D1, –L(x;λ,α,β) is completely monotonic on (–η,∞) if and only if λ ≥
(m+n–1)!

(m–1)!(n–1)! , and so is the function L(x;λ,α,β) if and only if λ ≤ 0;
(2) For (α,β) ∈ D2, L(x;λ,α,β) is completely monotonic on (0,∞) if and only if λ ≤

inft>0 1/W (t). In particular, if (α,β) ∈ D3, then inft>0 1/W (t) = (m+n–1)!
(m–1)!(n–1)! , where

W (t) =
∫ 1

0

t(1 – e–t)
1 – e–tx

xm(1 – x)n

1 – e–t(1–x) e–αtxe–βt(1–x) dx, t > 0. (3.2)

Proof Using the well-known formula (1.2) and applying the convolution theorem for the
Laplace transform, we have

L(x;λ,α,β) =
∫ ∞

0
e–xtP(t) dt,

where

P(t) =
∫ t

0

(
tm+n–1

1 – e–t – λ
sm

1 – e–s
(t – s)n

1 – e–(t–s) e–αse–β(t–s)
)

ds.

Changing of variable s = tx yields

P(t) =
tm+nλ

1 – e–t

(
1
λ

– W (t)
)

. (3.3)

Using the integral representation

∫ 1

0
xm(1 – x)n dx =

n!m!
(n + m + 1)!

, (3.4)

for λ = (m+n–1)!
(m–1)!(n–1)! , the expression (3.3) can be written as

P(t) =
λtm+n

1 – e–t

∫ 1

0
xm–1(1 – x)n–1U(x) dx,
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where

U(x) = 1 –
t(1 – e–t)
1 – e–tx

x(1 – x)
1 – e–t(1–x) e–αtxe–βt(1–x). (3.5)

Case 1. (α,β) ∈ D1. First of all, we shall show that

1 <
t(1 – e–t)
1 – e–tx

x(1 – x)
1 – e–t(1–x) , for t > 0 and 0 < x < 1,

which is equivalent to

V (t) =
(
1 – e–tx)(1 – e–t(1–x)) – x(1 – x)t

(
1 – e–t) < 0.

A simple computation gives etV ′(t) = V1(t) and

V ′
1(t) = x(1 – x)

∞∑

k=1

tk

k!
(
xk + (1 – x)k – 1

)
< 0,

which together with V1(0) = 0 yields that V1(t) < 0 for t > 0 and 0 < x < 1. Furthermore,
combining this with V (0) = 0 and etV ′(t) = V1(t), we have V (t) < 0. Hence for (α,β) ∈ D1,
we see that

1 <
t(1 – e–t)
1 – e–tx

x(1 – x)
1 – e–t(1–x) e–αtxe–βt(1–x), for t > 0 and 0 < x < 1, (3.6)

that is U(x) > 0 for t > 0 and 0 < x < 1.
From (3.2), (3.4) and (3.6), we conclude that W (t) > (m–1)!(n–1)!

(m+n–1)! for t > 0. For (α,β) ∈ D1,
we also observe that limt→0 W (t) = (m–1)!(n–1)!

(m+n–1)! , and limt→∞ W (t) = +∞. Hence we have the
sharp inequality

0 <
1

W (t)
<

(m + n – 1)!
(m – 1)!(n – 1)!

, for all t > 0. (3.7)

Finally, according to (3.3), (3.7) and the Bernstein–Widder Theorem, we complete the
proof of assertion (1).

Case 2. (α,β) ∈ D2. Since limt→0 W (t) = (m–1)!(n–1)!
(m+n–1)! and limt→∞ W (t) = 0, then λ ≤

inft>0 1/W (t) is well defined. Once more using the Bernstein–Widder Theorem and
(3.3), we know that L(x;λ,α,β) is completely monotonic on (0,∞) if and only if λ ≤
inft>0 1/W (t).

In particular, we consider the case (α,β) ∈ D3. If we prove

1 ≥ t(1 – e–t)
1 – e–tx

x(1 – x)
1 – e–t(1–x) e–αtxe–βt(1–x), t > 0, 0 < x < 1, (3.8)

we get inft>0 1/W (t) = (m+n–1)!
(m–1)!(n–1)! according to (3.2), (3.4) and limt→0 W (t) = (m–1)!(n–1)!

(m+n–1)! .
For α = β ≥ M, U(x) is reduced to

U1(x) = 1 –
t(1 – e–t)
1 – e–tx

x(1 – x)
1 – e–t(1–x) e–αt . (3.9)
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In virtue of Lemma 1, we know that U1(x) is decreasing on (0, 1/2) and increasing on
(1/2, 1), that is, U1(x) ≥ U1( 1

2 ). Since α ≥ M is equivalent to U1( 1
2 ) ≥ 0, we have U1(x) ≥ 0

for t > 0 and 0 < x < 1.
If β ≥ M and α ≥ β , then we write

U(x) = 1 –
t(1 – e–t)
1 – e–tx

x(1 – x)
1 – e–t(1–x) e–βte(β–α)tx.

Together with U1(x) ≥ 0, it leads to (3.8). Similarly, we can prove that (3.8) is still valid for
the case α ≥ M and β ≥ α.

If β – α ≥ 1
2 and α ≥ 0 or β – α ≤ – 1

2 andβ ≥ 0, in view of Lemma 1, we can prove (3.8).
The proof is completed. �

Remark 1 Obviously, Theorem 3.1 is a generalization of [28, Theorem 3] for higher deriva-
tives of ψ(x).

Corollary 1 For α ∈R, m, n ∈N and λ = (m+n–1)!
(m–1)!(n–1)! , the functions

f1(x) = λψn(x + α)ψm(x + α) – ψm+n(x),

f2(x) = λψn(x)ψm(x + α) – ψm+n(x)

are completely monotonic on (–α,∞) if and only if α ≤ 0.

Proof The sufficient conditions of the assertion is proved in the proof of Theorem 3.1.
Next we shall prove the necessary conditions.
Suppose that α > 0. Since f1(x) and f2(x) are completely monotonic on (0,∞), we have

f1(x), f2(x) ≥ 0. On the other hand, it is easy to check that

lim
x→0+

f1(x) = λψm(α)ψn(α) – lim
x→0+

ψm+n(x) = –∞,

lim
x→0+

f2(x)
ψn(x)

= λψn(α) – lim
x→0+

ψm+n(x)
ψm(x)

= –∞,

which yields contradictions.
The proof is completed. �

Remark 2 The function f1(x) can be written equivalently as h1(t) = f1(t – α) (t > 0). By
hypothesis, we get

α ≤ t – ψ–1
m+n

[
λψn(t)ψm(t)

]
(3.10)

which yields α ≤ 0 as t → 0. Furthermore, Corollary 1 clearly strengthens [28, Theorem 1].

Remark 3 In [27, Theorem 2.2], Batir proved the inequality

(
ψn(x + 1/2)

(n – 1)!

) m
n

<
ψm(x)

(m – 1)!
<

(
ψn(x)

(n – 1)!

) m
n

(3.11)
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for m ∈ N, n = 1, 2, . . . , m – 1 and x > 0. By Theorem 3.1, inequality (3.11) can be refined
partially. Taking the logarithm in (3.11) yields

1
n

ln

(
ψn(x + 1/2)

(n – 1)!

)

<
1
m

ln

(
ψm(x)

(m – 1)!

)

<
1
n

ln

(
ψn(x)

(n – 1)!

)

. (3.12)

Corollary 2 For m and n ∈N, we have the following inequalities

(
ψn(x + 1/2)

(n – 1)!

) m+n
n

<
ψm(x)

(m – 1)!
ψn(x + 1/2)

(n – 1)!
<

ψm+n(x)
(m + n – 1)!

<
ψm(x)

(m – 1)!
ψn(x)

(n – 1)!
<

(
ψn(x)

(n – 1)!

) m+n
n

, (m > n),

(3.13)

(
ψn(x + M)

(n – 1)!

) m+n
n

<
ψm(x + M)

(m – 1)!
ψn(x + M)

(n – 1)!
<

ψm+n(x)
(m + n – 1)!

<
(

ψn(x)
(n – 1)!

) m+n
n

<
ψm(x)

(m – 1)!
ψn(x)

(n – 1)!
, (m < n)

(3.14)

for x > 0, where M is defined by (3.1).

Proof On the one hand, if m > n, a simple calculation shows that the right-hand side of
(3.12) is equivalent to

ψm(x)
(m – 1)!

ψn(x)
(n – 1)!

<
(

ψn(x)
(n – 1)!

) m+n
n

. (3.15)

Similarly, the left-hand side of (3.12) is equivalent to

(
ψn(x + 1/2)

(n – 1)!

) m+n
n

<
ψm(x)

(m – 1)!
ψn(x + 1/2)

(n – 1)!
. (3.16)

By (3.15), (3.16) and Theorem 3.1, we see that (3.13) is proved.
On the other hand, if m < n, inequality (3.15) is reversed by a similar calculation. From

the reversed inequality of (3.15), it follows that

(
ψn(x + M)

(n – 1)!

) m+n
n

<
ψm(x + M)

(m – 1)!
ψn(x + M)

(n – 1)!
. (3.17)

Taking into account the right-hand side of (3.12), the reversed inequality of (3.15), (3.17),
and Theorem 3.1, we prove (3.14).

Consequently, the proof of the two inequalities is complete. �

4 Application
In [36], Elezović et al. derived that

ψ1(x) < e–ψ(x) (4.1)

by the fact that the function eψ(x+t) – x is decreasing on (0,∞) for all t > 0. In addition, [26,
Lemma 1.2] provides a different proof of (4.1). Some extensions of (4.1) for higher-order
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derivatives of ψ(x) can be found in [25, 27]. For example, it is given in [27, Theorem 2.1]
that the inequality (4.1) was generalized to

e–nψ(x+β) <
ψn(x)

(n – 1)!
< e–nψ(x+α) (4.2)

for x > 0 and n ∈ N, where β = 1/2 and α = 0. In particular, inequality (4.2) was proved
again by using monotonicity of functions involving the polygamma functions (see [37,
Corollary 1]).

We introduce the divided differences of psi and polygamma functions (see [38]). For
n ∈N, s, t ∈R, r = min{s, t} and x ∈ (–r,∞), we define

φn(x) =

⎧
⎨

⎩

ψn–1(x+s)–ψn–1(x+t)
t–s , t 
= s;

ψn(x + t), t = s.
(4.3)

For the sake of consistency, we set ψ0(x) = –ψ(x).
Using Theorem 3.1 and inequality (4.2), we establish the following result.

Corollary 3 For β ∈ R and n ∈ N, let the function f3(x) = (n – 1)!e–nψ(x+β) – ψn(x) be de-
fined on (max(–β , 0),∞). Then the function f3(x) is decreasing on (–β ,∞) if β ≤ 0; and is
increasing on (0,∞) if β ≥ 1

2 .

Proof A simple computation gives

f ′
3(x) = ψn+1(x) – n(n – 1)!ψ1(x + β)e–nψ(x+β).

For β ≤ 0, from the right-hand side of (4.2), we get

f ′
3(x) < ψn+1(x) – nψ1(x + β)ψn(x + β),

and therefore, in the view of Theorem 3.1, we have f ′
3(x) < 0. By the same spirit, the left-

hand side of (4.2) and Theorem 3.1 imply the case β ≥ 1
2 .

This completes the proof. �

Remark 4 For λ 
= 0, s, t ∈R and r = min{s, t}, define the function  for x ∈ (–r,∞)

(x;λ, s, t) =

⎧
⎨

⎩

[ �(x+t)
�(x+s) ]

1
λ(t–s) , t 
= s;

e
1
λ
ψ(x+s), t = s.

(4.4)

It was shown in [36] that the function (x; 1, s, t) is convex on (–r,∞) for |t – s| < 1 and
concave on the same interval for |t – s| > 1. Since

 ′′(x;λ, s, t) =
1
λ2 (x;λ, s, t)

(
φ2

1 (x) – λφ2(x)
)
,

we deduce from [39, Theorem 3.1]:
(1) For 0 < |t – s| < 1, the function (x;λ, s, t) is convex on (–r,∞) if and only if λ 
= 0 ≤ 1

and concave on the same interval if and only if λ ≥ 1
|t–s| ;
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(2) For |t – s| > 1, the function (x;λ, s, t) is convex on (–r,∞) if and only if λ 
= 0 ≤ 1
|t–s|

and concave on the same interval if and only if λ ≥ 1;
(3) For |t – s| = 1, the function (x;λ, s, t) is convex on (–r,∞) if and only if λ 
= 0 ≤ 1

and concave on the same interval if and only if λ ≥ 1;
(4) For s = t, the function (x;λ, s, t) is convex on (–r,∞) if and only if λ 
= 0 ≤ 1.

In addition, it was proved in [36] that

(x; 1, s, t)φ1(x) < 1 (4.5)

holds for x > –r if |t – s| < 1 and its reversed inequality is valid on (–r,∞) if |t – s| > 1.
Obviously, (4.5) is a generalization of (4.1).

In the following, we will prove the monotonicity of the function z(x;λ, s, t) = (x;λ, s, t) ×
φn(x) and therefore extend (4.5) or the right-hand side of (4.2).

Theorem 4.1 For λ 
= 0, s, t ∈ R, r = min(s, t) and n ∈ N, the function z(x;λ, s, t) has the
following monotonic properties:

(1) For 0 < |t – s| < 1, the function z(x;λ, s, t) is increasing on (–r,∞) if and only if 1/λ ≥ n
and decreasing on the same interval if and only if 1/λ ≤ n|t – s|;

(2) For |t –s| > 1, the function z(x;λ, s, t) is increasing on (–r,∞) if and only if 1/λ ≥ n|t –s|
and decreasing on the same interval if and only if 1/λ ≤ n;

(3) For |t – s| = 1, the function z(x;λ, s, t) is increasing on (–r,∞) if and only if 1/λ ≥ n
and decreasing on the same interval if and only if 1/λ ≤ n;

(4) For s = t, the function z(x;λ, s, t) is increasing on (–r,∞) if and only if 1/λ ≥ n and
decreasing on the same interval if and only if 1/λ ≤ 0.

Proof Differentiating z(x;λ, s, t) yields

z′(x;λ, s, t) = (x;λ, s, t)
(

1
λ

φ1(x)φn(x) – φn+1(x)
)

.

This in combination with Theorem [39, Theorem 3.1] easily establishes the Theorem. �

Using Theorem 4.1, we have the following:

Corollary 4 For s, t ∈R, r = min{s, t} and n ∈N, we have the inequality



(

x;
1
n

, s, t
)

φn(x) < (n – 1)! (4.6)

for x > –r if |t – s| < 1 and its reversed inequality is valid on (–r,∞) if |t – s| > 1.

Proof Obviously, we only assume s 
= t. In view of Theorem 4.1, we only need to check

lim
x→∞

(

x;
1
n

, s, t
)

φn(x) = (n – 1)!. (4.7)

Applying the asymptotic formula (1.5), we obtain

lim
x→∞

enψ(x)

xn = 1.
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Therefore, this together with [24, Lemma 4] establishes

lim
x→∞ enψ(x+c)φn(x) = (n – 1)!, for all c ∈R. (4.8)

According to [13, Corollary 1.4], the inequality

eψ(x+r) <
[

�(x + t)
�(x + s)

]1/(t–s)

< eψ(x+ s+t
2 ) (4.9)

holds for x > –r, so that this combined with (4.8) yields (4.7).
Hence we complete the proof of this Theorem. �

Theorem 4.2 For s, t ∈R, r = min{s, t} and c ∈ (–r,∞), we have the double inequality

eGs,t (Xs,t )

eHs,t (Xs,t ) <
eGs,t (x)

eHs,t (x) <
√

2πeeAc,s,t–(s+t)/2

�(c + s+t
2 )

for x > Xs,t if |t – s| < 1 and its reversed inequality is valid on (Xs,t ,∞) if |t – s| > 1, where
Xs,t is the only zero of 1 + ln(x; 1, s, t) on (–r,∞),

Gs,t(x) =

⎧
⎨

⎩

1
t–s

∫ x
c ln[ �(u+t)

�(u+s) ] du, t 
= s,
∫ x

c ψ(u + s) du, t = s;
(4.10)

Ac,s,t =

⎧
⎨

⎩

∫ ∞
c

1
t–s ln[ �(u+t)

�(u+s) ] – ψ(u + s+t
2 ) du, t 
= s,

0, t = s;

and

Hs,t(x) = (x; 1, s, t) ln(x; 1, s, t) – x.

Proof Let gs,t(x) = eGs,t (x), hs,t(x) = ln(x; 1, s, t) and fs,t(x) = gs,t(x)ex–hs,t (x)ehs,t (x) . Since
g ′

s,t(x) = gs,t(x)hs,t(x) and h′
s,t(x) = φ1(x), we obtain

f ′
s,t(x) = gs,t(x)ex–hs,t (x)ehs,t (x)(

1 – φ1(x)ehs,t (x))(1 + hs,t(x)
)
. (4.11)

Using the asymptotic formula (see [4])

�(x + t)
�(x + s)

= xt–s
(

1 –
(s – t)(s + t – 1)

2x
+ O

(
1
x2

))

, x → ∞, (4.12)

we get limx→∞ hs,t(x) = ∞, and therefore by h′
s,t(x) > 0 and limx→–r hs,t(x) = –∞, we con-

clude that 1 + hs,t(x) has a unique zero on (–r,∞).
Hence thanks to h′

s,t(x) > 0, Corollary 4 and (4.11), we have the following statements:
(i) For |t – s| < 1, fs,t(x) is increasing on (Xs,t ,∞) and decreasing on (–r, Xs,t),
(ii) For |t – s| > 1, fs,t(x) is decreasing on (Xs,t ,∞) and increasing on (–r, Xs,t).
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On the one hand, we check that

lim
x→∞

∫ x

c
ψ

(

u +
s + t

2

)

du + x – hs,t(x)ehs,t (x)

=
1
2

+
1
2

ln(2π ) –
s + t

2
– ln�

(

c +
s + t

2

)

. (4.13)

Case 1. s 
= t. Now we derive the asymptotic formula of hs,t(x)ehs,t (x). Taking the logarithm
in (4.12), we get

hs,t(x) =
[ln�(x + t) – ln�(x + s)]

t – s

= ln x +
1

t – s
ln

(

1 –
(s – t)(s + t – 1)

2x
+ O

(
1
x2

))

, x → ∞.
(4.14)

Together with

ln(1 + x) = x –
x2

2
+ O

(
x3), x → 0,

we can rewrite (4.14) as

hs,t(x) =
[ln�(x + t) – ln�(x + s)]

t – s

= ln x +
t + s – 1

2x
+ O

(
1
x2

)

, x → ∞, (4.15)

which implies that

hs,t(x)ehs,t (x) = x
(

ln x +
t + s – 1

2x
+ O

(
1
x2

))

e
t+s–1

2x +O( 1
x2 ), x → ∞. (4.16)

Therefore, by the aid of

ex = 1 + x + O
(
x2), x → 0,

we obtain

hs,t(x)ehs,t (x) = x ln x +
t + s – 1

2
ln x +

t + s – 1
2

+
(t + s – 1)2

4x

+ O
(

ln x
x

)

+ O
(

1
x2

)

, x → ∞.
(4.17)

Combining (1.4) with (4.17), we deduce that

ln�

(

x +
s + t

2

)

+ x – hs,t(x)ehs,t (x)

= x ln

(

1 +
s + t
2x

)

+
t + s – 1

2
ln

(

1 +
s + t
2x

)

+
1
2

– (t + s) +
1
2

ln(2π ) +
1

12
1

x + s+t
2

(4.18)
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–
(t + s – 1)2

4x
+ O

(
ln x
x

)

+ O
(

1
x2

)

, x → ∞,

which implies (4.13).
Case 2. s = t. Using (1.4) and the asymptotic formula (see [4])

ψ

(

x +
s + t

2

)

= ln x +
s + t – 1

2x
+ O

(
1
x2

)

, x → ∞, (4.19)

we can easily prove (4.13).
On the other hand, we show that

lim
x→∞

(

Gs,t(x) –
∫ x

c
ψ

(

u +
s + t

2

)

du
)

=

⎧
⎨

⎩

Ac,s,t , t 
= s,

0, t = s;
(4.20)

where

∫ ∞

c

1
t – s

ln

[
�(u + t)
�(u + s)

]

– ψ

(

u +
s + t

2

)

du = Ac,s,t .

Note that the case t = s is obvious. Then using (4.15) and (4.19), we get

1
t – s

ln

[
�(x + t)
�(x + s)

]

– ψ

(

x +
s + t

2

)

= O
(

1
x2

)

, x → ∞,

which implies the exitance of constants C and X > 0 such that

∣
∣
∣
∣

1
t – s

ln

[
�(x + t)
�(x + s)

]

– ψ

(

x +
s + t

2

)∣
∣
∣
∣ ≤ C

∣
∣
∣
∣

1
x2

∣
∣
∣
∣

for all x > X. It follows that

lim
x→∞

∫ ∞

x

1
t – s

ln

[
�(u + t)
�(u + s)

]

– ψ

(

u +
s + t

2

)

du = 0,

so that Ac,s,t is well defined. Hence, (4.20) is proved.
Finally, taking into consideration (4.13) and (4.20), we have

lim
x→∞

(
Gs,t(x) + x – hs,t(x)ehs,t (x))

=

⎧
⎨

⎩

1
2 + 1

2 ln(2π ) – s+t
2 – ln�(c + s+t

2 ) + Ac,s,t , t 
= s;
1
2 + 1

2 ln(2π ) – s – ln�(c + s), t = s.
(4.21)

Applying the monotonicity of fs,t(x) and (4.21), we complete the proof of this Theo-
rem. �

Remark 5 Let 0.785003 ≤ s < t. Using the inequality (see [13, Corollary 1.4])

ψ(x + s) <
1

t – s
[
ln�(x + t) – ln�(x + s)

]
< ψ

(

x +
s + t

2

)

, x > –s,
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we have 1 + hs,t(0) > 1 + ψ(s) ≥ 0, so that by h′
s,t(x) > 0, Corollary 4 and (4.11) again, we

conclude that fs,t(x) is increasing on (0,∞) if |t – s| < 1 and decreasing on the same interval
if |t – s| > 1. Similarly, we have the inequality

[
�(x + t)
�(x + s)

] 1
t–s

ln

[
�(x + t)
�(x + s)

] 1
t–s

<
[

�(t)
�(s)

] 1
t–s

ln

[
�(t)
�(s)

] 1
t–s

+ x

+
1

t – s

∫ x

0
ln

[
�(u + t)
�(u + s)

]

du

for x > 0 if |t – s| < 1 and its reversed inequality is valid on (0,∞) if |t – s| > 1.

5 Discussion
Observing that Corollary 4 generalizes the right-hand side of (4.2), we conjecture that the
left-hand side of (4.2) might be generalized to

(n – 1)! < 

(

x +
1
2

;
1
n

, s, t
)

φn(x)

for x > –r if |t – s| < 1 and that its reversed inequality might be valid on (–r,∞) if |t – s| > 1,
where s, t ∈ R and r = min{s, t}.

We turn to pay attention to the class of strongly completely monotonic functions, which
are introduced in [40]. A function f : (0,∞) →R is called strongly completely monotonic
if it satisfies the more restrictive condition that (–1)nxn+1f (n)(x) is nonnegative and de-
creasing on (0,∞) for all n ∈ N. Note that [40, Theorem 1] gives a characterization of
strongly completely monotonic functions.

It was shown in [20] that the function ψ2
1 (x) – ψ2(x) is strongly completely monotonic

on (0,∞). Inspired by this, we will determine necessary and sufficient conditions for λ

such that the function �(x;λ, s, t) is strongly completely monotonic on (–r,∞) for all fixed
s, t ∈R and r = min{s, t} in the future work.
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