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Abstract
We introduce a variable annuity (VA) contract with a surrender option and lookback
benefit, that is, the benefit of the VA contract is linked to the maximum process of the
policyholder’s account value. In contrast to the constant guarantee model provided
in Bernard et al. (Insur. Math. Econ. 55:116–128, 2014), it is optimal for the policyholder
of the VA contract with lookback benefit to surrender the VA contract when the
policyholder’s account value is below or equal to the optimal surrender boundary.
Thus, from the perspective of the insurer to construct a portfolio of VA contracts,
utilizing the VA contracts with lookback benefit along with VA contracts with constant
guarantee provides the diversification of early surrenders. The valuation of this
contract can be described as a two-dimensional parabolic variational inequality. By
converting this into the one-dimensional problem, we obtain the integral equations
for the value function and the free boundary. The recursive integration method is
applied to obtain the numerical solutions. We also provide comparative statics of the
optimal surrender boundaries with respect to various parameters.

Keywords: Variable annuities; Optimal surrender; Lookback benefit; Free boundary
problem; Integral equation

1 Introduction
Traditional annuity contracts offer a fixed amount of post-retirement income. In contrast,
by investing the insurance premium in the equity market, variable annuity (VA) contracts
provide random payoff, which depends on the financial market environment. At the same
time, VA contracts offer various types of minimum guarantees for the case of poor perfor-
mance of the equity market. Thus, a policyholder of the VA contract may enjoy the upside
opportunity in the equity market while having certain protection against the downside
risk.

The protection against the downside risk in a VA contract is not given for free. A stream
of the fee is collected periodically from the policyholder’s account, and these fees are uti-
lized by the insurer to construct a hedge portfolio for the guaranteed payoff of the contract.
A VA contract usually incorporates a surrender option, which allows the policyholder to
terminate the VA contract before maturity, receiving a pre-specified surrender benefit. In-
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deed, the optimal surrender strategy should be carefully considered to calculate the fair fee
rate correctly. In line with this, we investigate the optimal surrender strategy and the value
of a VA contract, in which the payoff of the VA contract is associated with the maximum
value process of the policyholder’s account value.

There have been several studies on the optimal surrender strategies for VA contracts
recently, such as Bernard et al. [1], Shen et al. [2], Kang and Ziveyi [3], and Jeon and Kwak
[4, 5]. In the baseline model of Bernard et al. [1], the payoff at the maturity is the maxi-
mum of the policyholder’s accumulated account value and a constant minimum guaran-
tee. If the policyholder surrenders the contract before maturity, the surrender benefit is
the accumulated account value with some penalty proportional to the account value. In
Shen et al. [2], the modeling of the surrender benefit is different from Bernard et al. [1].
When the policyholder surrenders the VA contract before the maturity in Shen et al. [2],
the policyholder receives the underlying account value at the maturity as well as the em-
bedded option payoff at the surrender time with a penalty in the payoff of the embedded
option. Kang and Ziveyi [3] extend the baseline model of Bernard et al. [1] to the model
with stochastic volatility and stochastic interest rate. They derive a 4-dimensional free-
boundary partial differential equation (PDE) and solve it using the method of lines (MOL)
approach. As an extension of Shen et al. [2], Jeon and Kwak [4] study the optimal surrender
strategies and valuations of variable annuities in which the embedded guarantees can be
path-dependent.

Recently, Jeon and Kwak [5] investigated the VA contract with surrender guarantee. In
contrast to Bernard et al. [1], the surrender benefit in their study is linked to the maximum
value between the policyholder’s account value and the guaranteed minimum accumu-
lated benefit. Moreover, they show that the results in Jeon and Kwak [5] can be reduced
to those in Bernard et al. [1] under certain parameter conditions. The model in this paper
can be considered as an extension of Jeon and Kwak [5] because the accumulated account
value in the surrender benefit is replaced by a constant multiple of the maximum process
of the policyholder’s account value.

Our model can be defined as an optimal stopping problem or a free boundary prob-
lem that takes into account the maximum process of the policyholder’s account process in
the payoff function. The solution of this optimal stopping problem satisfies 2-dimensional
parabolic variational inequality.1 In the option pricing theory, there are many free bound-
ary problems considering the maximum process of the underlying asset, such as the Rus-
sian option in Peskir [8] or the American floating strike lookback option in Dai and Kwok
[9]. These problems can be reduced to a 1-dimensional problem through proper spatial
transforms. However, our model is challenging to solve because we cannot apply usual
transforms in Peskir [8] and Dai and Kwok [9] to our problem directly due to the constant
minimum guarantee.

Our contribution is to suggest an idea to convert our problem into a 1-dimensional prob-
lem. Specifically, we transform our problem in two steps. First, we change our original 2-
dimensional problem (Variational Inequality 1) to the other 2-dimensional problem (Vari-
ational Inequality 2) by introducing a new state variable that incorporates the maximum
process of the underlying asset and the constant minimum guarantee simultaneously. Sec-
ond, we can reduce the transformed 2-dimensional problem (Variational Inequality 2) into

1We refer to Jolaoso et al. [6] and Liu et al. [7] as recent studies on variational inequalities.
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the 1-dimensional problem (Variational Inequality 3). Moreover, on the basis of the Mellin
transform techniques, we derive the integral equations for the value function and the free
boundary of the reduced 1-dimensional problem. To the best of our knowledge, no re-
search of the two-dimensional variational inequality we are dealing has been carried out.

The 1-dimensional variational inequality we obtained as a result of two-step transforma-
tion is associated with an optimal stopping problem that is equivalent to an early exercise
of some type of American option.2 Thus, we can apply well-developed techniques to our
optimal stopping problem. In particular, we apply the integral representation of an Amer-
ican option value (see Carr et al. [11], Detemple [12], Kim [13]) and derive the value of the
VA contract in analytic form. To obtain a specific solution, we apply the recursive inte-
gration method proposed by Huang et al. [14], solving the integral equation numerically.
Jeon and Kwak [4, 5] show the efficiency and accuracy of RIM by comparing benchmark
values.

The remainder of the paper is organized as follows. We introduce the model in Sect. 2;
the method and solution are provided in Sect. 3. In Sect. 4, we present the properties of the
optimal surrender strategy with numerical examples. Section 5 is the concluding remark
of the paper.

2 Model formulation
VA contract We assume that the policyholder pays a single premium F0 to initiate the
contract at time 0. Then the policyholder’s premium is invested in a fund or an index St

that satisfies the following stochastic differential equation (SDE) under the risk-neutral
measure Q:

dSt = rSt dt + σSt dWt ,

where r > 0 and σ > 0 are the constant risk-free interest rate and the constant volatility
of St , respectively. Also, Wt is a standard Brownian motion on filtered probability space
(�,F,Q), where F = (Ft)t≥0 is the natural filtration generated by (Wt)t≥0.

The policyholder has to continuously pay a certain amount of insurance fee at the cost of
the insurance company managing the underlying account. We assume that the insurance
company withdraws a percentage c from the policyholder’s account. Then, at any time t,
we have the following relationship between the policyholder’s account Ft and underlying
fund St

Ft

F0
= e–ct St

S0
,

and thus the dynamics of Ft is given by

dFt = (r – c)Ft dt + σFt dWt

under Q measure.

2The valuation of a defined benefit retirement pension plan that allows early retirement considered in Bian et al. [10] is
also an example that falls into this category.
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Figure 1 Simulated path ofmt and Ft . Parameter values are given by r = 0.05, c = 0.03, σ = 0.2, F0 = 100,
G = 100, α = 0.9 and T = 15

For the policyholder’s account value Ft , we define the maximum process mt of Ft as

mt = max
0≤γ≤t

Fγ .

Now, we consider a VA contract with lookback benefit. More precisely, at the maturity
of contract T , the policyholder will receive max(αmT , G), where mT = max0≤γ≤T Fγ is the
maximum of the account value during [0, T], and G is a constant guarantee at time T .
Here, α is a positive constant with 0 < α ≤ 1. For α near 1, this type of VA contract may be
attractive to policyholders who want more benefit, as shown in Fig. 1, although it may be
more expensive.

Surrender option As in the previous studies on the optimal surrender of variable annu-
ities (e.g., Bernard et al. [1], Shen et al. [2], Kang and Ziveyi [3], Jeon and Kwak [4, 5]),
the policyholder is able to surrender the VA contract at any time t before the maturity T .
Then, the surrender benefit of the VA contract is equal to

(1 – pt) max(αmt , G),

where pt is the penalty percentage charged when surrendering the contract at time t. As
in Bernard et al. [1], we assume that

pt = 1 – e–κ(T–t)

for 0 ≤ κ < r so that the surrender benefit is given by

e–κ(T–t) max(αmt , G).

Remark 2.1 If κ ≥ r, the early surrender penalty is too severe, so that early surrender is
always sub-optimal, and it is optimal to wait until maturity. Thus, we assume that 0 ≤ κ < r
throughout the paper.
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Table 1 Comparison of VA benefits between three models

Model Surrender at time t At maturity T

Bernard et al. [1] e–κ (T–t)Ft max(FT ,G)
Jeon and Kwak [5] e–κ (T–t) max(Ft ,G) max(FT ,G)
Our model e–κ (T–t) max(αMt ,G) max(αMT ,G)

As mentioned in the introduction, the VA benefit of our model is different from that of
Bernard et al. [1] or Jeon and Kwak [5]. We summarize this difference in Table 1.

Then, the concern is finding the optimal time for the policyholder to surrender the VA
contract, and it is an optimal stopping problem.

Let V (t, f , m) be the value of our VA contract at time t before surrender with Ft = f and
mt = m. Then, in the absence of arbitrage opportunities, the value function V (t, f , m) is a
solution of the following optimal stopping problem

V (t, f , m) = sup
t≤θ≤T

e–r(θ–t)E
[
e–κ(T–θ ) max(αmθ , G) | Ft = f , mt = m

]
, (1)

where θ is the stopping time of the filtration F, and the conditional expectation E[· | Ft]
is calculated under the risk-neutral measure Q.

3 Solution of free boundary problems
By relying on a standard approach of optimal stopping problem (see Peskir [8]) in (1), we
derive the following Variational Inequality 1 (VI 1):

Variational Inequality 1

⎧
⎪⎪⎨

⎪⎪⎩

LV (t, f , m) ≤ 0, if V (t, f , m) = e–κ(T–t) max(αm, G),

LV (t, f , m) = 0, if V (t, f , m) > e–κ(T–t) max(αm, G),

V (T , f , m) = max(αm, G) and ∂V
∂m (t, m, m) = 0,

on region R≡ {(t, f , m) | 0 ≤ t ≤ T , 0 < f ≤ m, 0 < m < ∞} and the operator L is

L≡ ∂

∂t
+

θ2

2
f 2 ∂2

∂f 2 + (r – c)f
∂

∂f
– r.

Let C and S denote the continuation region and the surrender region of VI 1, respec-
tively. In terms of value function V (t, f , m), C and S are defined by

C =
{

(t, f , m) ∈R | V (t, f , m) > e–κ(T–t) max(αm, G)
}

,

S =
{

(t, f , m) ∈R | V (t, f , m) = e–κ(T–t) max(αm, G)
}

.

The boundary that separates C from S is referred to as the optimal surrender boundary or
free boundary and is given by

B(t, m) = sup
{

f ∈ R+ | (t, f , m) ∈ S
}

.

To solve VI 1, we consider the following Variational Inequality 2 (VI 2):
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Variational Inequality 2

⎧
⎪⎪⎨

⎪⎪⎩

LV 	(t, f , M) ≤ 0, if V 	(t, f , M) = e–κ(T–t)αM,

LV 	(t, f , M) = 0, if V 	(t, f , M) > e–κ(T–t)αM,

V 	(T , f , M) = αM and ∂V 	

∂M (t, M, M) = 0,

on region R	 ≡ {(t, f , M) | 0 ≤ t ≤ T , 0 < f ≤ M, 0 < M < ∞}.

Proposition 3.1 On region R = {(t, f , m) | 0 ≤ t ≤ T , 0 < f ≤ m, 0 < m < ∞}, V (t, f , m) =
V 	(t, f , M) with M = max(m, G

α
) is a unique solution of VI 1.

Proof We will use the idea similar to Theorem 4.1 in Buchen and Konstandatos [15]. Note
that

max(αm, G) = max

(
α max

(
m,

G
α

)
, G

)
.

Then, since M is independent of t, f , and V 	(t, f , M) is the solution of VI 2, we can easily
obtain that

⎧
⎪⎪⎨

⎪⎪⎩

LV 	(t, f , max(m, G
α

)) ≤ 0, if V 	(t, f , max(m, G
α

)) = e–κ(T–t) max(α max(m, G
α

), G),

LV 	(t, f , max(m, G
α

)) = 0, if V 	(t, f , max(m, G
α

)) > e–κ(T–t) max(α max(m, G
α

), G),

V 	(T , f , max(m, G
α

)) = max(α max(m, G
α

), G)

on region {(t, f , m) | 0 ≤ t ≤ T , 0 < f ≤ max(m, G
α

), 0 < m < ∞}, which includes the re-
gion R.

If m ≤ G
α

, then M = G
α

. Thus, ∂V 	

∂m (t, m, M) = 0 for this case. Otherwise, if m > G
α

, then
M = m. Thus, we have

∂V 	

∂m
(t, m, M) =

∂V 	

∂m
(t, f , M)

∣∣
∣∣
f =m

=
∂V 	

∂M
(t, f , M)

∣∣
∣∣
f =M

= 0.

Thus, V 	(t, f , max(m, G
α

)) satisfies VI 1.
According to the partial differential equation (PDE) theory of variational inequality, the

(strong) solutions of the VI 1 and VI 2 uniquely exist (see Friedman [16, 17]). So, we can
conclude that V (t, f , m) = V ∗(t, f , max(m, G

α
)) is a unique solution of VI 1 on region R. �

The region R can be divided into continuation region C	 and surrender region S	 de-
fined as

C	 =
{

(t, f , M) ∈R	 | V 	(t, f , M) > e–κ(T–t)αM
}

,

S	 =
{

(t, f , M) ∈R	 | V 	(t, f , M) = e–κ(T–t)αM
}

,

respectively.
Here, B	(t, M) is the optimal surrender boundary of VI 2 given by

B	(t, M) = sup
{

f ∈R+ | (t, f , M) ∈ S	
}

.
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Proposition 3.2 The optimal surrender boundaries B(t, m) and B	(t, M) satisfy the fol-
lowing relationship:

B(t, m) = B	

(
t, max

(
m,

G
α

))
.

Proof If (t, f , m) ∈ S, then

V (t, f , m) = e–κ(T–t) max(αm, G) = e–κ(T–t)α max

(
m,

G
α

)
,

and V (t, f , m) = V 	(t, f , max(m, G
α

)) in S by Proposition 3.1. Thus, V 	(t, f , max(m, G
α

)) =
e–κ(T–t)α max(m, G

α
) in S, and this implies that (t, f , max(m, G

α
)) ∈ S	 when (t, f , m) ∈ S.

Similarly, if (t, f , max(m, G
α

)) ∈ S	, we can obtain (t, f , m) ∈ S. Hence,

(t, f , m) ∈ S ⇐⇒
(

t, f , max

(
m,

G
α

))
∈ S	.

By the definition of optimal surrender boundaries,

B(t, m) = B	

(
t, max

(
m,

G
α

))
. �

Remark 3.1 From VI 1 and VI 2, we have the following smooth-pasting conditions.

V
(
t, B(t, m), m

)
= e–κ(T–t)B(t, m),

∂V
∂m

(
t, B(t, m), m

)
= 0.

and

V 	
(
t, B	(t, M), M

)
= e–κ(T–t)B	(t, M),

∂V 	

∂M
(
t, B	(t, M), M

)
= 0.

We can easily confirm that Proposition 3.2 does not violate the above smooth-pasting con-
ditions.

Let us consider the following substitution:

z =
f

M
, Q(t, z) =

V 	(t, f , M)
M

. (2)

Then, VI 2 can be converted to the following Variational Inequality 3 (VI 3):

Variational Inequality 3

⎧
⎪⎪⎨

⎪⎪⎩

LQ(t, z) ≤ 0, if Q(t, z) = e–κ(T–t)α,

LQ(t, z) = 0, if Q(t, z) > e–κ(T–t)α,

Q(T , z) = α and ∂Q
∂z (t, 1) = Q(t, 1), ∀t ∈ [0, T],

on region R̃≡ {(t, z) | 0 ≤ t ≤ T , 0 < z ≤ 1}.
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Define the free boundary b	(t) of VI 3 as

b	(t) =
B	(t, M)

M
.

Then b	(t) satisfies the following smooth-pasting conditions:

Q
(
t, b	(t)

)
= e–κ(T–t)α,

∂Q
∂z

(
t, b	(t)

)
= 0.

(3)

In terms of the value function Q(t, z), the continuation region C		 and the surrender
region S		 of VI 3 are given by

C		 =
{

(t, z) ∈ R̃ | Q(t, z) > e–κ(T–t)α
}

=
{

(t, z) ∈ R̃ | b	(t) < z < 1
}

,

and

S		 =
{

(t, z) ∈ R̃ | Q(t, z) = e–κ(T–t)α
}

=
{

(t, z) ∈ R̃ | 0 < z ≤ b	(t)
}

.

Thus, the the value function Q(t, z) can be seen as the solution of the following non-
homogeneous PDE with the mixed boundary condition:

LQ(t, z) = –α(r – κ)e–κ(T–t)1{x≤b	(t)},

Q(T , z) = α and
∂Q
∂z

(t, 1) = Q(t, 1),
(4)

with smooth-pasting conditions (3), on domain R̃.

Remark 3.2 The right-hand side of the equation in the first line of (4) is obtained by sub-
stituting Q(t, z) = e–κ(T–t)α into LQ(t, z).

According to Jeon et al. [18], the non-homogeneous PDE (4) with mixed boundary con-
dition for operator L can be extended to region R̃ext ≡ {(t, z) | 0 ≤ t ≤ T , 0 < z < ∞} as
follows:

Lemma 3.1 The solution of Q(t, z) of PDE (4) with mixed boundary condition satisfies the
following extended PDE in R̃ext:

LQ(t, z) = –h(t, z)1{z<1} – h
(

t,
1
z

)(
1
z

)(k2–1)

1{z>1}

– (k2 + 1)z
[∫ x

1
h
(

t,
1
y

)(
1
y

)(k2+1)

dy
]

1{z>1},

Q(T , z) = α

{
1{z<1} +

(
1
z

)(k2–1)

1{z>1} + (k2 + 1)z
[∫ z

1

(
1
y

)(k2+1)

dy
]

1{x>1}
}

,

where h(t, z) = α(r – κ)e–κ(T–t)1{z>b	(t)}, and k2 = 2(r–c)
σ 2 .
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Proposition 3.3 The value function Q(t, z) defined in VI 3 is represented by

Q(t, z) = QE(t, z) + QP(t, z),

where

QE(t, z) = αe–r(T–t)N
(
–d–(T – t, z)

)
– α

1
k2

e–r(T–t)
(

1
z

)(k2–1)

N
(

–d–

(
T – t,

1
z

))

+ α

(
1 +

1
k2

)
ze–c(T–t)N

(
d+(T – t, z)

)
,

(5)

and

QP(t, z)

= α(r – κ)e–κ(T–t)
∫ T

t
e–(r–κ)(η–t)N

(
–d–

(
η – t,

x
x∗(η)

))
dη

– α(r – κ)e–κ(T–t) 1
k2

(
1
z

)(k2–1) ∫ T

t
e–(r–κ)(η–t)N

(
–d–

(
η – t,

1
b	(η)z

))
dη

+ α(r – κ)e–κ(T–t)
(

1 +
1
k2

)
z
∫ T

t
b	(η)k2 e–(c–κ)(η–t)N

(
d+

(
η – t, b	(η)z

))
dη,

(6)

where

d±(t, z) =
log z + (r – c ± σ 2

2 )t
σ
√

t
.

Moreover, the free boundary b	(t) satisfies

QE
(
t, b	(t)

)
+ QP

(
t, b	(t)

)
= αe–κ(T–t). (7)

Proof By Lemma 3.1, Q(t, z) is the solution of

LQ(t, z) = –δ(t, z),

Q(T , z) = ε(z),
(8)

on domain R̃ with

δ(t, z) = α(r – κ)e–κ(T–t)
(

1{z<b	(t)} –
1
k2

z1–k2 1{z> 1
b	(t) } +

(
1 +

1
k2

)
b	(t)z1{z> 1

b	(t) }

)
,

ε(z) = α

(
1{z<1} –

1
k2

z1–k2 1{z>1} +
(

1 +
1
k2

)
z1{z>1}

)
.

Then, we can define Q̂(t, w) as the Mellin transform of Q(t, z).

Q̂(t, w) =
∫ ∞

0
Q(t, z)w–1 dw.
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In PDE problem (8), Q̂(t, w) becomes the solution of following ordinary differential equa-
tion (ODE):

dQ̂
dt

+
σ 2

2
(
w2 + (1 – k2)w – k1

)
Q̂ = –δ̂(t, w), (9)

where δ̂(t, w) is the Mellin transform of δ(t, z), and k1 = 2r
σ 2 , k2 = 2(r–c)

σ 2 , and A(w) = w2 + (1 –
k2)w – k1. Then, the solution Q̂(t, w) of ODE (9) is given by

Q̂(t, w) = e
1
2 σ 2A(w)(T–t)ε̂(w) +

∫ T

t
e

1
2 σ 2A(w)(η–t)δ̂(η, w) dη, (10)

where ε̂(w) is the Mellin transform of ε(z).
Applying the inverse Mellin transform to (10),

Q(t, z) =
1

2π i

∫ c+i∞

c–i∞
e

1
2 σ 2A(w)(T–t)ε̂(w)z–w dw

+
1

2π i

∫ c+i∞

c–i∞

∫ T

t
e

1
2 σ 2A(w)(η–t)δ̂(η, w)z–w dη dw.

(11)

To calculate (11), we consider

B(t, z) =
1

2π i

∫ c+i∞

c–i∞
e

1
2 σ 2A(w)tz–w dw.

By Sect. 3 in Jeon et al. [18],

B(t, z) = e– σ2
2 {( 1–k2

2 )2+k1}t z
1–k2

2

σ
√

2π t
exp

{
–

1
2

(log z)2

σ 2t

}
.

Thus, by the Mellin convolution property stated in Appendix of Jeon et al. [18],

Q(t, z) =
∫ ∞

0
ε(u)1{u<1}B

(
T – t,

z
u

)
1
u

du +
∫ T

t

∫ ∞

0
δ(η, u)1{u<1}B

(
η – t,

z
u

)
1
u

du dη.

Let

QE(t, z) =
∫ ∞

0
ε(u)1{u<1}B

(
T – t,

z
u

)
1
u

du,

QP(t, z) =
∫ T

t

∫ ∞

0
δ(η, u)1{u<1}B

(
η – t,

z
u

)
1
u

du dη.

For any ρ ∈R and β > 0, by direct computation, we easily derive the following relations:

∫ β

0
u–ρB

(
t,

z
u

)
1
u

du = z–ρe– 1
2 σ 2t{( 1–k2

2 )2+k1–( 1–k2
2 +ρ)2}N

(– log z
β

+ σ 2t( 1–k2
2 + ρ)

σ
√

t

)
,

∫ ∞

β

u–ρB
(

t,
z
u

)
1
u

du = z–ρe– 1
2 σ 2t{( 1–k2

2 )2+k1–( 1–k2
2 +ρ)2}N

( log z
β

– σ 2t( 1–k2
2 + ρ)

σ
√

t

)
.
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Hence,

QE(t, z) = α

∫ ∞

0

(
1{u<1} –

1
k2

u1–k2 1{u>1} +
(

1 +
1
k2

)
u1{u>1}

)
B

(
T – t,

z
u

)
du
u

= αe–r(T–t)N
(
–d–(T – t, z)

)
– α

1
k2

e–r(T–t)
(

1
z

)(k2–1)

N
(

–d–

(
T – t,

1
z

))

+ α

(
1 +

1
k2

)
ze–c(T–t)N

(
d+(T – t, z)

)
,

where

d±(t, z) =
log z + (r – c ± σ 2

2 )t
σ
√

t
.

Similarly,

QP(t, z) = α(r – κ)e–κ(T–t)
∫ T

t

∫ ∞

0
eκ(η–t)

(
1{u<b	(η)} + 1{u> 1

b	(η) }

(
1
u

)(k2–1)

–
(

1 +
1
k2

)[
u(1–k2) – b	(η)k2 u

]
1{u> 1

b	(η) }

)
B

(
η – t,

z
u

)
1
u

du dη

= α(r – κ)e–κ(T–t)
∫ T

t
e–(r–κ)(η–t)N

(
–d–

(
η – t,

x
x∗(η)

))
dη

– α(r – κ)e–κ(T–t) 1
k2

(
1
z

)(k2–1) ∫ T

t
e–(r–κ)(η–t)N

(
–d–

(
η – t,

1
b	(η)z

))
dη

+ α(r – κ)e–κ(T–t)
(

1 +
1
k2

)
z
∫ T

t
b	(η)k2 e–(c–κ)(η–t)N

(
d+

(
η – t, b	(η)z

))
dη.

By smooth-pasting conditions in (3), we have obtained the desired result. �

From the substitution (2), the solution V 	(t, f , M) of VI 2 is given by

V 	(t, f , M) = MQ
(

t,
f

M

)
and B	(t, M) = Mb	(t).

By Proposition 3.1, Proposition 3.2, and Proposition 3.3, we can derive the following the-
orem.

Theorem 3.1 Let V (t, Ft , mt) denote the price at time t of the variable annuity with con-
stant guarantee G at maturity T and a surrender benefit equal to the accumulated lookback
payoff e–κ(T–t)αmt . Then V (t, Ft , mt) can be decomposed into a corresponding European
part VE(t, Ft , Mt) and an early surrender premium part VP(t, Ft , mt)

V (t, Ft , mt) = VE(t, Ft , mt) + VP(t, Ft , mt),
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where

VE(t, Ft , mt)

= max(αmt , G)e–rτN
(

–d–

(
τ ,

αFt

max(αmt , G)

))

–
max(αmt , G)

k2
e–rτ

(
max(αmt , G)

αFt

)(k2–1)

N
(

–d–

(
τ ,

max(αmt , G)
αFt

))

+ αFt

(
1 +

1
k2

)
e–cτN

(
d+

(
τ ,

αFt

max(αmt , G)

))
,

VP(t, Ft , mt)

= max(αmt , G)(r – κ)e–κτ

∫ τ

0
e–(r–κ)ξN

(
–d–

(
ξ ,

Ft

B(t + τ , mt)

))
dξ

– max(αmt , G)(r – κ)e–κτ 1
k2

(
max(αmt , G)

Ft

)(k2–1)

×
∫ τ

0
e–(r–κ)ξN

(
–d–

(
ξ ,

max(αmt , G)2

B(t + τ , mt)Ft

))
dξ

+ αFt(r – κ)e–κτ

(
1 +

1
k2

)

×
∫ τ

0
B(t + τ , mt)k2 e–(c–κ)ξN

(
d+

(
ξ ,

B(t + τ , mt)Ft

max(αmt , G)2

))
dξ ,

with τ = T – t and k2 = 2(r–c)
σ 2 .

Moreover, the optimal surrender boundary B(t, mt) is given by

B(t, mt) = B	

(
t, max

(
mt ,

G
α

))
= max

(
mt ,

G
α

)
b	(t), (12)

where b	(t) is the solution to the integral equation (7).

Theorem 3.2 When time goes to maturity T , the optimal surrender boundary B(t, m) con-
verges to max(m, G

α
), i.e.,

lim
t→T–

B(t, m) = max

(
m,

G
α

)
.

Proof By Theorem 3.1, it is enough to show that

lim
t→T–

b	(t) = 1.

Consider the time-reversed process of Q(t, z) and b	(t) as follows:

Q̃(τ , z) = Q(T – τ , z) and b̃	(τ ) = b	(T – t).

Define the Laplace–Carson transform Q∗ of Q̃ by

Q∗(λ, z) =
∫ ∞

0
Q̃(τ , z)λe–λτ dτ .
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Also, let

b∗(λ) =
∫ ∞

0
b̃	(τ )e–λτ dτ .

From VI 3, Q̃(τ , z) satisfies the following equation:

⎧
⎨

⎩
– ∂Q̃

∂τ
+ σ 2

2 z2 ∂2Q̃
∂z2 + (r – c)z ∂Q̃

∂z – rQ̃ = 0, b̃	(τ ) < z ≤ 1,

Q̃(t, z) = e–κτ α, Q̃(T , z) = α, b̃	(τ ) ≥ z,
(13)

with the mixed boundary condition dQ̃
dz (τ , 1) = Q̃(τ , 1).

By taking the Laplace–Carson transform to PDE (13), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

σ 2

2 z2 d2Q∗
dz2 + (r – c)z dQ∗

dz – (r + λ)Q∗ + λα = 0, b∗(λ) < z ≤ 1,

Q∗(λ, z) = λα
λ+κ

, b∗(λ) ≥ z,
dQ∗
dz (λ, 1) = Q∗(λ, 1).

(14)

By smooth-pasting conditions, at z = b∗(λ),

Q∗(λ, b∗(λ)
)

=
λα

λ + κ
,

dQ∗

dz
(
λ, b∗(λ)

)
= 0. (15)

For z ∈ (b∗(λ), 1], we assume a general solution of the form

Q∗(λ, z) = c1(λ)
(

z
b∗(λ)

)η1(λ)

+ c2(λ)
(

z
b∗(λ)

)η2(λ)

+
λα

λ + r
,

where η1(λ) (> 1) and η2(λ) (< 0) are the roots of the following algebraic equation for
given λ:

σ 2

2
η2 +

(
r – c –

σ 2

2

)
η – (λ + r) = 0.

By using smooth-pasting conditions (15), we deduce that

c1(λ) =
η2

η2 – η1

λα(r – κ)
(λ + r)(λ + κ)

, c2(λ) = –
η1

η2 – η1

λα(r – κ)
(λ + r)(λ + κ)

.

Using the mixed boundary condition in (14), b∗(λ) is the solution of the following algebraic
equation:

0 =
η1(λ)(1 – η2(λ))
η2(λ)(1 – η1(λ))

(
b∗(λ)

)η1(λ)–η2(λ) +
λ + κ

r – κ

η1(λ) – η2(λ)
η2(λ)(1 – η1(λ))

(
b∗(λ)

)η1(λ) – 1. (16)

Let us define ψ(x;λ) as

ψ(x;λ) =
η1(λ)(1 – η2(λ))
η2(λ)(1 – η1(λ))

xη1(λ)–η2(λ) +
λ + κ

r – κ

η1(λ) – η2(λ)
η2(λ)(1 – η1(λ))

xη1(λ) – 1.
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We deduce that

⎧
⎪⎪⎨

⎪⎪⎩

ψ(0;λ) = –1 < 0,

ψ(1;λ) = (η1(λ)–η2(λ))
η2(λ)(1–η1(λ)) (1 + λ+κ

r–κ
) > 0,

ψ ′(x;λ) = η1(λ)(η1(λ)–n2(λ))
η2(λ)(1–η1(λ)) xη1(λ)–1((1 – η2(λ))x–η2(λ) + λ+κ

r–κ
) > 0.

Hence, there exists a unique b∗(λ) ∈ (0, 1) for any λ > 0 such that ψ(b∗(λ);λ) = 0. This
implies that

lim
λ→∞ b∗(λ) ≤ 1. (17)

Let us rewrite the algebraic equation (16) as follows:

η1(λ)(1 – η2(λ))
η2(λ)(1 – η1(λ))

e(η1(λ)–η2(λ)) log b∗(λ) +
λ + κ

r – κ

η1(λ) – η2(λ)
η2(λ)(1 – η1(λ))

eη1(λ) log b∗(λ) = 1. (18)

Since η1(λ) ∼ O(
√

λ) and η2(λ) ∼ O(–
√

λ) (as λ → ∞), we can deduce that the order of
the left-hand side in (18) is

√
λe

√
λ log b∗(λ).

From (17), if

lim
λ→∞ b∗(λ) < 1,

it is easy to check that the left-hand side in (18) converges to zero. This is contraction to
the right-hand side value of 1.

That is,

b∗(λ) → 1 as λ → ∞.

By virtue of the Abelian theorem on the initial value of the Laplace Transforms, we derive

lim
τ→0

b̃	(τ ) = lim
λ→∞ b∗(λ) = 1.

Hence, we have just proved the desired result. �

4 Properties of the optimal surrender strategy
Figure 2 shows the free boundary b	(t) (Panel (a) in Fig. 2) and the corresponding optimal
surrender boundary B(t, m) (Panel (b) in Fig. 2) when σ = 0.1, r = 0.05, c∗ = 0.0168, κ = 0,
T = 15, G = 100, and α = 0.8. Here, c∗ denotes the fair fee rate, which is defined as the fee
rate c that satisfies the following equation

V (0, F0, m0) = F0.
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Figure 2 Parameter values are given by σ = 0.1, r = 0.05, c∗ = 0.0168, κ = 0, T = 15, G = 100, and α = 0.8

This means that the fair fee rate c∗ matches the value of the VA contract at time 0 to the
lump-sum premium F0 paid at the inception.3

Recall from equation (12) that the optimal surrender boundary B(t, m) can be written as

B(t, m) = max

(
m,

G
α

)
b	(t), (19)

where b	(t) satisfies the integral equation (7), or equivalently

QE(t, b	(t))
α

+
QP(t, b	(t))

α
= e–κ(T–t). (20)

For a given set of parameters, b	(t) that satisfies (20) can be found by solving the integral
equations numerically using the recursive integration method proposed by Huang et al.
[14]. From QE(t, z) and QP(t, z) in (5) and (6), it can be easily seen that b	(t), which is
determined by equation (20), is irrelevant to m, G, and α. Thus, regardless of m, G, and α,

3Note that the fair fee rate c∗ is considered only for Fig. 2. We set the fee rate c be exogenously given for the other part of
this section.
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if we can find b	(t) from equation (20), then the optimal surrender boundary B(t, m) can
be obtained easily as (19). From this, we have the following proposition:

Proposition 4.1 The optimal surrender boundary B(t, m) is increasing in m, G, and de-
creasing in α.

Note that our optimal stopping problem (1) can be rewritten as

V (t, f , m) = α sup
t≤θ≤T

e–r(θ–t)E

[
e–κ(T–θ ) max

(
mθ ,

G
α

) ∣
∣∣ Ft = f , mt = m

]
.

Thus, a larger m or G
α

results in larger surrender benefit, which induces earlier surrender,
or equivalently, higher surrender boundary, and this is exactly what Proposition 4.1 tells
us.

We can observe in Panel (a) of Fig. 2 that the free boundary b	(t) is increasing in time t.
Note that the continuation region is above the free boundary b	(t), and the surrender
region is below the free boundary b	(t). Since it is natural that the continuation region
shrinks as time goes, b	(t) must be increasing in time as a consequence. The surface plot
for B(t, m) in Panel (b) of Fig. 2 is obtained from b	(t) in Panel (a) using relation (19). It is
straightforward that the optimal surrender boundary is increasing in time. Moreover, as
mentioned in Proposition 4.1, B(t, m) is increasing in m.

Remark 4.1 In contrast to Bernard et al. [1], in which the surrender region is above the
continuation region, there are two surrender boundaries in Jeon and Kwak [5] that in-
troduce the surrender guarantee. However, in our model that considers lookback benefit
with surrender guarantee, there is only one surrender boundary, and the surrender region
is below the continuation region.

It is obvious from (19) that if some parameter other than m, G, and α has a positive
impact on b	(t), then it also has a positive impact on the optimal surrender boundary
B(t, m). Thus, we only focus on the effect of parameters c, κ , r, and σ on b	(t), not B(t, m),
throughout the remaining part of this section.

Figure 3 illustrates the effect of fee rate c on the free boundary b	(t), and we can observe
that a higher fee rate results in higher b	(t), which means earlier surrender. This is an
obvious result because the higher fee rate makes the waiting more costly and reduces the
time value of the surrender option.

The impact of κ on the optimal surrender strategy is shown in Fig. 4, and it shows that
the higher κ , the lower b	(t), i.e., delayed surrender. Note that early surrender is penalized
harder when κ is higher. As a result, if κ is high, it is better to delay the surrender to avoid
a strong penalty.

In Fig. 5, we focus on how the interest rate r affects the optimal surrender strategy. It can
be observed that the higher interest rate r results in higher b	(t) and thus earlier surren-
der. To understand the intuition behind this result, recall that b	(t) satisfies the following
equation:

Q
(
t, b	(t)

)
= e–κ(T–t)α. (21)
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Figure 3 Free boundary b	(t): Sensitivity to c. Parameter values are given by σ = 0.2, r = 0.05, κ = 0, T = 10

Figure 4 Free boundary b	(t): Sensitivity to κ . Parameter values are given by σ = 0.2, r = 0.05, c = 0.03, T = 10

Figure 5 Free boundary b	(t): Sensitivity to r. Parameter values are given by σ = 0.2, c = 0.02, κ = 0, T = 10
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Figure 6 Value Q(z) and V(t, f ,m): Sensitivity to r. Parameter values are given by σ = 0.2, c = 0.02, κ = 0, and
α = 1

In VI 3, Q(t, ·) can be interpreted as the value of an option that provides a payoff e–κ(T–t)α

if it is exercised at time t. In this case, the higher interest rate reduces the present value
of the option’s payoff, and thus, reduces the value of the option Q(t, ·). In short, Q(t, ·) is
decreasing in r, and this is shown in Panel (a) of Fig. 6. Since b	(t) should satisfy the equa-
tion (21) and the right-hand side of the equation (21) is not affected by r, we can deduce
that higher r results in higher b	(t) as we can see in Fig. 5.

Remark 4.2 Recall that the relation between V (t, f , m) and Q(t, z) is as follows:

V (t, f , m) = max

(
m,

G
α

)
Q

(
t,

f
max(m, G

α
)

)
.

Thus, the impact of r on Q(t, z) and that on V (t, f , m) are identical as we can see in both
panels of Fig. 6. For the same reason, in Fig. 7, we only present the figures for V (t, f , m)
instead of showing Q(t, z) and V (t, f , m) together.

Figure 8 shows that higher volatility of the index delays the surrender (lower b	(t)). This
result can be explained using an argument similar to that for Fig. 5. Obviously, the higher
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Figure 7 Value V(t, f ,m): Sensitivity to σ . Parameter values are given by r = 0.05, κ = 0, f = 100,m = 100,
G = 100, and α = 1

Figure 8 Free boundary b	(t): Sensitivity to σ . Parameter values are given by r = 0.05, c = 0.03, κ = 0, T = 10



Jeon and Kwak Journal of Inequalities and Applications          (2022) 2022:8 Page 20 of 21

σ , the higher Q(t, ·), which is the opposite of the impact of r. This is consistent with
both panels of Fig. 7. Then, to satisfy the value matching condition in (21), b	(t) must
be decreasing in σ as in Fig. 8

Remark 4.3 One may think that something is wrong with Panel (a) in Fig. 7 because the
value of the VA contract is increasing in time t during some period of time when σ = 0.1,
which never happens for usual financial options. However, this is due to the existence of a
positive fee rate c. In the VA contract of our model, instead of paying an option premium
at the inception, a stream of fee is withdrawn periodically from the policyholder’s account
as compensation for the guarantees provided by the insurer. In Panel (a) of Fig. 7, V (t, f , m)
is calculated for different values of time t ∈ [0, T], while the fee rate c is fixed as 0.03. Let c̄t

be the fee rate that satisfies V (t, Ft , mt) = Ft , or equivalently, V (t, 100, 100) = 100 because
Ft = 100 and mt = 100 for all t in Fig. 7. Then, c̄t varies as time goes. If c is positive, then the
relation between c̄t and c also changes as time goes, and this may result in the phenomenon
in Panel (a) of Fig. 7. However, if c = 0, then c̄t is always greater than c as in Panel (b) of
Fig. 7, and the value of the VA contract is decreasing in time t like usual financial options.

5 Concluding remarks
In this paper, we investigate the optimal surrender policy for VA contract with lookback
benefit, which is a proportion of the maximum value of the policyholder’s account process.
Since we have to find the optimal surrender time for VA contracts, this problem can be
categorized into the optimal stopping problem. We obtain its associated two-dimensional
parabolic variational inequality that has not been dealt with in the previous research. We
convert this problem into the one-dimensional problem and derive the integral equation
representation for the optimal surrender boundary. Using recursive integration methods,
we present numerical solutions and demonstrate the impacts of the parameters on the
optimal surrender strategy. The important characteristic in our model is that the optimal
surrender of VA contract with lookback benefit happens when the policyholder’s account
value decreases to a low enough level and hits the optimal surrender boundary, which is
the opposite of the VA contract with a constant guarantee. Therefore, by utilizing our VA
contract with lookback benefit, the insurer who has a portfolio of VA contracts will be able
to diversify the early surrenders of VA contracts in their portfolio.
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