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Abstract
A branch of mathematical science known as chemical graph theory investigates the
implications of connectedness in chemical networks. A few researchers have looked
at the solutions of fractional differential equations using the concept of star graphs.
Their decision to use star graphs was based on the assumption that their method
requires a common point linked to other nodes but not to each other. Our goal is to
broaden the scope of the method by defining the idea of a cyclohexane graph, which
is a cycloalkane with the molecular formula C6H12 and CAS number 110-82-7. It
consists of a ring of six carbon atoms, each bonded with two hydrogen atoms above
and below the plane with multiple junction nodes. This article examines the
existence of fractional boundary value problem’ solutions on such graphs in the sense
of the Caputo fractional derivative by using the well-known fixed point theorems. In
addition, an example is given to support our key findings.
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1 Introduction
In fractional differential equations, there has been a lot of theoretical and practical devel-
opment in recent years (for detail, see [1–4]). Most articles and books on fractional cal-
culus in the setting of special functions concentrate on the solvability of linear fractional
differential equations [5–13]. Several new papers dealing with nonlinear fractional differ-
ential equations and their solutions using methods such as the stability analysis, Leray–
Schauder theorem, and fixed point analysis have recently been published [14–19].

Chemical graph theory is one of the fields of mathematics that examines the conse-
quences of a chemical network’s connectivity. A chemical graph may represent any ac-
tual or abstract chemical system (i.e., molecular transformations in a chemical reaction).
Chemical graph theory, in other words, is focused on every element of graph theory’s
application to chemistry. Furthermore, in chemical graph theory, the word “chemical” is
used to highlight that, unlike graph theory, one may depend on scientific observation of
many ideas and theorems rather than rigorous mathematical proofs, which is a crucial
difference.
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Figure 1 A picture of a star graphG
�

Lumer’s research [20] was the first to look at differential equation theory applied to
graphs. By altering specified local operators, he investigated extended equations of evolu-
tion on ramification spaces. In 1989, using a geometric network, Zavgorodnij [21] studied
linear differential equations, with the existence of suggested boundary value problem solu-
tions arranged at the interior vertices of the network. Gordeziani et al., on the other hand,
used the double-sweep technique to find the numerical solutions for ordinary differential
equations on graphs, which they found to be more efficient (see [22]).

However, just a few studies on fractional boundary value problems with graphs have
shown the existence of solutions using specific fixed point techniques (see [23, 24]). The
concept of a star graph was used by the authors of these works, namely E� = X �(E�) ∪
Y�(E�), where X �(E�) = {p̃0, p̃1, p̃2} and Y�(E�) = {r̃1 =

−−→
p̃1p̃0, r̃2 =

−−→
p̃2p̃0} are sets of vertices

and edges, respectively, such that p̃0 is the junction node and r̃� =
−−→
p̃�p̃0 is the edge con-

necting nodes p̃� to p̃0 having length �̃� = |−−→p̃�p̃0| for � = 1, 2 (see Fig. 1).
After establishing a local coordinate system with the origin at the vertices r̃1 and r̃2,

the coordinate s ∈ (0, �̃�) is investigated on each edge r̃� =
−−→
p̃�p̃0 (as seen in Fig. 1). Graef

et al. [23] suggested the subsequent system of nonlinear fractional differential equations

defined on each edge r̃� =
−−→
p̃�p̃0 and applied the notable fixed point theorems to prove the

existence of solutions of the following problem:

⎧
⎨

⎩

–RLDjw�(s) = h�(s)L�(s, y(s)) (s ∈ (0, �̃�),� = 1, 2),

w1(0) = w2(0) = 0, w1(�̃1) = w2(�̃2), RLDkw1(�̃1) + RLDkw2(�̃2) = 0,
(1.1)

where j ∈ (1, 2], k ∈ (0, j), h� : [0, �̃�] →R are continuous functions with h�(s) �= 0 on [0, �̃k]
and also L� : [0, �̃�] × R → R are continuous functions. Also, RLDj and RLDk represent
Riemann–Liouville fractional derivatives of orders j and k, respectively.

In [24], Mehandiratta et al. broaden the above work to (u + 1) vertices with

X �
(
E�

)
= {p̃0, p̃1, . . . , p̃u} and Y�

(
E�

)
= {r̃1 =

−−→
p̃1p̃0, r̃2 =

−−→
p̃2p̃0, . . . , r̃u =

−−→
p̃up̃0},

where the length of each r̃� joining vertices p̃� to p̃0 (� = 1, 2, . . . , u) is �̃� = |−−→p̃�p̃0|. They
investigated the solutions of the following problem:

⎧
⎨

⎩

Djw�(s) = H�(s, w�(s),Dkw�(s)) (s ∈ (0, �̃�),� = 1, 2, . . . , u),

w�(0) = 0, w�(�̃�) �= wm(�̃m) (� �= m),
∑u

�=1 w′
�(�̃�) = 0,

(1.2)
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where j ∈ (1, 2], k ∈ (0, j – 1], H� : [0, �̃�] × R × R → R are continuous functions and Dχ

denotes the Caputo fractional derivative of order χ ∈ {j, k}, and used transformations θ̃ =
s

�̃�
∈ [0, 1] and σ (θ̃ ) = w(s) = w(�̃�θ̃ ) for s ∈ [0, �̃�] to prove the following relation:

D
jw(s) = �̃

–j
�

(
D

jσ (θ̃)
)
. (1.3)

By using (1.3) on the interval [0, 1], we can write (1.1) as

⎧
⎨

⎩

Djσ (θ̃ ) = �̃
j
�H�(s,σ�(θ̃ ), �̃–k

� Dkσk(θ̃ )) (θ̃ ∈ [0, 1]),

σ�(0) = 0, σ�(1) = σm(1) (� �= m),
∑u

�=1 �̃–1
� σ ′

�(1) = 0,
(1.4)

where σ�(θ̃ ) = w�(�̃�θ̃ ) and Hk(θ̃ , z, w) = H�(�̃�θ̃ , z, w) for � = 1, 2, . . . , u.
Recently, Mophou et al. [25] investigated the solution of the following fractional Sturm–

Liouville boundary value problems on a star graph:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
j
b–1
�

(β�
D

j
a+ w�)(s) + q�(s)w�(s) = H�(s), s ∈ (a, b�),� = 1, 2, . . . , n,

I1–j
a+ w�(a+) = I1–j

a+ wm(a+), j �= m = 1, 2, . . . , n,
∑n

�=1 β�(a)Dj
a+ w�(a+) = 0,

I1–j
a+ w1(b–

1 ) = 0,

I1–j
a+ w�(b–

� ) = v�, � = 2, 3, . . . , p,

β�(b�)Dj
a+ w�(b–

� ) = v�, � = p, p + 1, . . . , n,

(1.5)

where D
j
a+ and D

j
b–1
�

, � = 1, 2, . . . , n stand, respectively, for the left Riemann–Liouville and

the right Caputo fractional derivative of order j ∈ (0, 1); Ij
a+ is the Riemann–Liouville frac-

tional integral of order j. The real functions β� and q� are defined on [a, b�] (� = 1, 2, . . . , n).
The function H� belongs to L2(a, b�), � = 1, 2, . . . , n, and the controls v�, � = 1, 2, . . . , n are
real variables.

For the recent research in this area, we refer to [26–29] and the references therein.
In this work, we utilized the concept of the cyclohexane graph (see Fig. 2) to extend

the idea of the above fractional boundary value problems to a new problem that is more
generic than star graphs.

The method used in [23] and [24] for identifying the origin at boundary nodes other
than the junction node p̃0 would be insufficient since a cyclohexane graph has several
junction points. As a result, we use another procedure in which we label the vertices of
the preceding graph with 0 or 1 having edge length �̃� = 1 (see Fig. 3).

Here, we examine the existence of solutions to the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

Djw�(s) = H�(s, w�(s),Dkw�(s), w′
�(s)) (s ∈ [0, 1]),

η1w�(0) + η2w�(1) = η3
∫ 1

0 Dj–1w�(ω) dω,

η1Dkw�(1) + η2D2kw�(1) = η3
∫ 1

0 Dj–1w�(ω) dω,

(1.6)

where ηκ (κ = 1, 2, 3) are real constants with ηκ �= 0, Dj, Dj–1, and Dk are the Caputo
fractional derivative of orders j ∈ (1, 2], j – 1 ∈ (0, 1], and k ∈ (0, 1), respectively. Also,
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Figure 2 Chemical bond of cyclohexane compound

Figure 3 Cyclohexane graph with vertices 0 or 1

H� : [0, 1] × R × R × R → R is a given continuously differentiable function for � = 18,
where � is the number of edges of the graph representation of cyclohexane compound
with |r̃k| = 1. Also, D2m is the sequential fractional derivative discussed in [2]

⎧
⎨

⎩

Dkw = Dkw,

Dτkw = DkD(τ–1)kw (τ = 2, 3, . . . ).
(1.7)
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Our goal is to use the relevant fixed point theorems to prove the existence of solutions
to the proposed problem (1.6). Finally, an example is given to highlight the significance of
our results in the particular literature.

2 Preliminaries
In the next sections, the subsequent outcomes will be required.

Definition 2.1 ([2]) The Caputo fractional derivative of order j > 0 for a function H ∈
Cχ [0, +∞) is defined as

D
jH(s) =

1

(χ – j)

∫ s

0
(s – ω)χ–j–1H(χ )(ω) dω

(
χ – 1 < j < χ ,χ = [j] + 1

)
,

where [j] represents the integer part of j.

Lemma 2.2 For p > 0, the general solution of the fractional differential equation Djw(s) = 0
is given by

w(s) = z0 + z1s + z2s2 + · · · + zn–1sn–1,

where zk ∈R, k = 0, 1, . . . , n – 1 (n – 1 < j < n, n = [j] + 1).
Also,

I
p
D

jw(s) = w(s) + z0 + z1s + z2s2 + · · · + zn–1sn–1,

for some zk ∈R, k = 0, 1, . . . , n – 1 (n – 1 < j < n, n = [j] + 1).

Lemma 2.3 Suppose that real-valued functions ϒ1,ϒ2, . . . ,ϒ18 are continuous on the
closed interval [0, 1]. Then w�

� is a solution for boundary value problem satisfying the
boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

Djw�(s) = ϒ�(t) (s ∈ [0, 1],� = 1, 2, . . . , 18),

η1w�(0) + η2w�(1) = η3
∫ 1

0 Dj–1w�(ω) dω,

η1Dkw�(1) + η2D2kw�(1) = η3
∫ 1

0 Dj–1w�(ω) dω,

(2.1)

if and only if w�
� is a solution for the following fractional integral equation:

w�(s) =
∫ s

0

(s – ω)j–1


(j)
ϒ�(ω) dω

+ η3

(
1

η1 + η2
+

A0 + s
A1

)∫ 1

0

∫ ω

0
ϒ�(ζ ) dζ dω

–
η2

η1 + η2

∫ 1

0

(1 – ω)j–1


(j)
ϒ�(ω) dω

–
A0 + s

A1

[
η2


(j – 2k)

∫ 1

0
(1 – ω)j–2k–1ϒ�(ω) dω

+
η1


(j – k)

∫ 1

0
(1 – ω)j–k–1ϒ�(ω) dω

]

,

(2.2)
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where

A0 =
η3 – η2
(4 – j)

(η1 + η2)
(4 – j)
, A1 =

η1


(2 – k)
+

η2


(2 – 2k)
–

η3


(4 – j)
.

Proof Suppose that w�
� is a solution of (2.1), where � = 1, 2, . . . , 18. Then there exist con-

stants z(�)
0 , z(�)

1 ∈R such that

w�
�(s) =

∫ s

0

(s – ω)j–1


(j)
ϒ�(ω) dω + z(�)

0 + z(�)
1 s. (2.3)

Using the boundary conditions for (2.1), we have

z(�)
0 = η3

(
1

η1 + η2
+

A0

A1

)∫ 1

0

∫ ω

0
ϒ�(ζ ) dζ dω

–
η2

η1 + η2

∫ 1

0

(1 – ω)j–1


(j)
ϒ�(ω) dω

–
A0

A1

[
η2


(j – 2k)

∫ 1

0
(1 – ω)j–2k–1ϒ�(ω) dω

+
η1


(j – k)

∫ 1

0
(1 – ω)j–k–1ϒ�(ω) dω

]

,

z(�)
1 =

η3

A1

∫ 1

0

∫ ω

0
ϒ�(ζ ) dζ dω –

η2

A1

∫ 1

0

(1 – ω)j–2k–1


(j – 2k)
ϒ�(ω) dω

–
η1

A1

∫ 1

0

(1 – ω)j–k–1


(j – k)
ϒ�(ω) dω.

Substituting the values of z(�)
0 and z(�)

1 into (2.3), we obtain the solution (2.2). With regard to
the converse statement, it is self-evident that w�

� is a solution for (2.1) when it is a solution
for an integral equation (2.3). �

The fixed point theorems of Schaefer and Krasnoselskii are now presented.

Theorem 2.4 ([30]) If T is a completely continuous, that is, T is continuous and totally
bounded, self-operator on a Banach space C , then either {a ∈ C : a = bT a for some b ∈
(0, 1)} is unbounded or T has a fixed point.

Theorem 2.5 ([30]) Let O be a closed convex and nonempty subset of a Banach space C
and T1,T2 : O → C be two operators satisfying the following conditions:

1. T1k + T2k′ ∈O for all k, k′ ∈O;
2. T1 is compact and continuous on O;
3. T2 is a Banach contraction mapping on O, that is, there is δ ∈ [0, 1) such that

∥
∥T2k – T2k′∥∥ ≤ δ

∥
∥k – k′∥∥

for all k, k′ ∈O. Then T1 + T2 has a fixed point.
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3 Main results
We define the Banach space C� = {w� : w�,Dkw�, w′

� ∈ C[0, 1]} with the norm

‖w�‖C�
= sup

s∈[0,1]

∣
∣w�(s)

∣
∣ + sup

s∈[0,1]

∣
∣Dkw�(s)

∣
∣ + sup

s∈[0,1]

∣
∣w′

�(s)
∣
∣

for � = 1, 2, . . . , 18. It is obvious that the product space C = C1 × C2 × · · · × C18 is a Banach
space, where the norm is defined by

∥
∥w = (w1, w2, . . . , w18)

∥
∥
C =

18∑

�=1

‖w�‖C�
.

In order to apply Lemma 2.3, we introduce the operator T : C → C by

T (w1, w2, . . . , w18)(s) :=
(
T1(w1, w2, . . . , w18), . . . ,T18(w1, w2, . . . , w18)(s)

)
, (3.1)

where

T�(w1, w2, . . . , w18)(s)

=
∫ s

0

(s – ω)j–1


(j)
H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)

dω

+ η3

(
1

η1 + η2
+

A0 + s
A1

)∫ 1

0

∫ ω

0
H�

(
ζ , w�(ζ ),Dkw�(ζ ), w′

�(ζ )
)

dζ dω

–
η2

η1 + η2

∫ 1

0

(1 – ω)j–1


(j)
H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)

dω

–
A0 + s

A1

[
η2


(j – 2k)

∫ 1

0
(1 – ω)j–2k–1H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)

dω

+
η1


(j – k)

∫ 1

0
(1 – ω)j–k–1H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)

dω

]

(3.2)

for all s ∈ [0, 1] and w� ∈ C�.
To simplify calculations, we shall use the following notation:

A0 =
η3 – η2
(4 – j)

(η1 + η2)
(4 – j)
, (3.3)

A1 =
[

η1


(2 – k)
+

η2


(2 – 2k)
–

η3


(4 – j)

]

�= 0, (3.4)

F∗
0 =

1

(j + 1)

+
(

1 + |A0|
|A1|

) |η1|

(j – k + 1)

+
(

1 + |A0|
|A1| +

1
|η1 + η2|

) |η3|
2

+
(

1 + |A0|
|A1|
(j – 2k + 1)

+
1

|η1 + η2|
(j + 1)

)

|η2|, (3.5)

F∗
1 =

1

(j – k + 1)

+
1


(2 – k)|A1|

×
( |η1|


(j – k + 1)
+

|η2|

(j – 2k + 1)

+
|η3|

2

)

, (3.6)
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F∗
2 =

1

(j)

+
1

|A1|
( |η1|


(j – k + 1)
+

|η2|

(j – 2k + 1)

+
|η3|

2

)

, (3.7)

V∗
0 =

(
1 + |A0|

|A1|
) |η1|


(j – k + 1)
+

(
1 + |A0|

|A1| +
1

|η1 + η2|
) |η3|

2

+
(

1 + |A0|
|A1|
(j – 2k + 1)

+
1

|η1 + η2|
(j + 1)

)

|η2|, (3.8)

V∗
1 =

1

(2 – k)|A1|

( |η1|

(j – k + 1)

+
|η2|


(j – 2k + 1)
+

|η3|
2

)

, (3.9)

V∗
2 =

1
|A1|

( |η1|

(j – k + 1)

+
|η2|


(j – 2k + 1)
+

|η3|
2

)

. (3.10)

Theorem 3.1 Consider the fractional boundary value problem (1.6). Suppose that H1,H2,
. . . ,H18 : [0, 1] ×R×R×R → R are continuous functions and there exist constants �� >
0 for all � = 1, 2, . . . , 18 such that |H�(s, w, w̃, ˜̃w)| ≤ �� for all w, w̃, ˜̃w ∈ R, s ∈ [0, 1]. Then
problem (1.6) has a solution.

Proof It is obvious from the implication of (3.2) that the fixed points of T defined by (3.1)
exist if and only if (1.6) has a solution. To prove this, we first show that T is completely
continuous.

AsH1,H2, . . . ,H18 are continuous, T : C → C is continuous, too. LetO ∈ C be a bounded
set and w = (w1, w2, . . . , w18) ∈ C , so that for each s ∈ [0, 1] we have

∣
∣(T�w)(s)

∣
∣

≤
∫ s

0

(s – ω)j–1


(j)
∣
∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

+ |η3|
(

1
|η1 + η2| +

|A0| + s
|A1|

)∫ 1

0

∫ ω

0

∣
∣H�

(
ζ , w�(ζ ),Dkw�(ζ ), w′

�(ζ )
)∣
∣dζ dω

+
|η2|

|η1 + η2|
∫ 1

0

(1 – ω)j–1


(j)
∣
∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

+
|A0| + s

|A1|
[ |η2|


(j – 2k)

∫ 1

0
(1 – ω)j–2k–1∣∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

+
|η1|


(j – k)

∫ 1

0
(1 – ω)j–k–1∣∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

]

≤ ��

[
1


(j + 1)
+

(
1 + |A0|

|A1|
) |η1|


(j – k + 1)
+

(
1 + |A0|

|A1| +
1

|η1 + η2|
) |η3|

2

+
(

1 + |A0|
|A1|
(j – 2k + 1)

+
1

|η1 + η2|
(j + 1)

)

|η2|
]

= ��F∗
0 ,

where F∗
0 is given in (3.5). Also,

∣
∣
(
D

kT�w
)
(s)

∣
∣

≤
∫ s

0

(s – ω)j–k–1


(j – k)
∣
∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω
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+
|η3|s1–k


(2 – k)|A1|
∫ 1

0

∫ ω

0

∣
∣H�

(
ζ , w�(ζ ),Dkw�(ζ ), w′

�(ζ )
)∣
∣dζ dω

+
s1–k


(2 – k)|A1|
[ |η2|


(j – 2k)

∫ 1

0
(1 – ω)j–2k–1∣∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

+
|η1|


(j – k)

∫ 1

0
(1 – ω)j–k–1∣∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

]

≤ ��

[
1


(j – k + 1)
+

1

(2 – k)|A1|

( |η1|

(j – k + 1)

+
|η2|


(j – 2k + 1)
+

|η3|
2

)]

= ��F∗
1 ,

and

∣
∣
(
T ′

� w
)
(s)

∣
∣ ≤

∫ s

0

(s – ω)j–2


(j – 1)
∣
∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

+
|η3|
|A1|

∫ 1

0

∫ ω

0

∣
∣H�

(
ζ , w�(ζ ),Dkw�(ζ ), w′

�(ζ )
)∣
∣dζ dω

+
1

|A1|
[ |η2|


(j – 2k)

∫ 1

0
(1 – ω)j–2k–1∣∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

+
|η1|


(j – k)

∫ 1

0
(1 – ω)j–k–1∣∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

]

≤ ��

[
1


(j)
+

1
|A1|

( |η1|

(j – k + 1)

+
|η2|


(j – 2k + 1)
+

|η3|
2

)]

= ��F∗
2

for all s ∈ [0, 1], where F∗
1 , F∗

2 are defined in (3.6) and (3.7), respectively. Therefore

∥
∥(T�w)(s)

∥
∥
C�

≤ ��

(
F∗

0 + F∗
1 + F∗

2
)
.

Hence,

∥
∥(T w)(s)

∥
∥
C =

18∑

�=1

∥
∥(T�w)(s)

∥
∥
C�

≤
18∑

�=1

��

(
F∗

0 + F∗
1 + F∗

2
)

< ∞,

which shows that T is uniformly bounded.
Now, we have to prove that T is equicontinuous. As for this purpose, let w = (w1, w2, . . . ,

w18) ∈O and s1, s2 ∈ [0, 1] with s1 < s2. Then, we have

∣
∣(T�w)(s2) – (T�w)(s1)

∣
∣

=
∫ s1

0

(s2 – ω)j–1 – (s1 – ω)j–1


(j)
∣
∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

+
∫ s2

s1

(s2 – ω)j–1


(j)
∣
∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

+
|η3|(s2 – s1)

|A1|
∫ 1

0

∫ ω

0

∣
∣H�

(
ζ , w�(ζ ),Dkw�(ζ ), w′

�(ζ )
)∣
∣dζ dω
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+
(s2 – s1)

|A1|
[ |η2|


(j – 2k)

∫ 1

0
(1 – ω)j–2k–1∣∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

+
|η1|


(j – k)

∫ 1

0
(1 – ω)j–k–1∣∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

]

.

It is clear that if s1 → s2 then, independently, the right-hand side of the above expression
converges to zero. Also,

lim
s1→s2

∣
∣
(
D

kT�w
)
(s2) –

(
D

kT�w
)
(s1)

∣
∣ = 0, lim

s1→s2

∣
∣
(
T ′

� w
)
(s2) –

(
T ′

� w
)
(s1)

∣
∣ = 0.

As a result ‖(T w)(s2)–(T w)(s1)‖C → 0 as s1 → s2. This proves that T is equicontinuous on
C = C1 × C2 × · · · × C18. Now, the Arzela–Ascoli theorem implies the complete continuity
of the operator.

Now, we define a subset � of C by

� :=
{

(w1, w2, . . . , w18) ∈ C : (w1, w2, . . . , w18) = bT (w1, w2, . . . , w18), b ∈ (0, 1)
}

.

Here, we shall show that � is bounded. For this, let (w1, w2, . . . , w18) ∈ �. Then, we can
write (w1, w2, . . . , w18) = bT (w1, w2, . . . , w18), and so w�(s) = bT�(w1, w2, . . . , w18), for all s ∈
[0, 1] and � = 1, 2, . . . , 18. Thus,

∣
∣w�(s)

∣
∣ ≤ b

[∫ s

0

(s – ω)j–1


(j)
∣
∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

+ |η3|
(

1
|η1 + η2| +

|A0| + s
|A1|

)∫ 1

0

∫ ω

0

∣
∣H�

(
ζ , w�(ζ ),Dkw�(ζ ), w′

�(ζ )
)∣
∣dζ dω

+
|η2|

|η1 + η2|
∫ 1

0

(1 – ω)j–1


(j)
∣
∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

+
|A0| + s

|A1|
[ |η2|


(j – 2k)

∫ 1

0
(1 – ω)j–2k–1∣∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

+
|η1|


(j – k)

∫ 1

0
(1 – ω)j–k–1∣∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

]

≤ b��F∗
0 .

By similar computations, we have |Dkw�(s)| ≤ b��F∗
1 , |w′

�(s)| ≤ b��F∗
2 , where F∗

0 , . . . ,F∗
2

are given in (3.5)–(3.7). Hence

‖w‖C =
18∑

�=1

‖w�‖C�
≤ b

18∑

�=1

��

(
F∗

0 + F∗
1 + F∗

2
)

< ∞,

which shows the boundedness of �. Now, using Theorem 2.4 and Lemma 2.3, we can
claim that T has a fixed point in C . This demonstrates that the fractional boundary value
problem (1.6) does indeed have a solution. �

We shall now examine the solution of the fractional boundary value problem (1.6) by
applying various conditions.
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Theorem 3.2 Consider the fractional boundary value problem (1.6). Assume that H1,H2,
. . . ,H18 : [0, 1] × R × R × R → R are continuous functions and there exist bounded con-
tinuous functions S1,S2, . . . ,S18 : [0, 1] →R, W1,W2, . . . ,W18 : [0, 1] → [0,∞) and nonde-
creasing continuous functions P1,P2, . . . ,P18 : [0, 1] → [0,∞) such that

∣
∣H�(s, w, w̃, ˜̃w)

∣
∣ ≤W�(s)P�

(|w| + |w̃| + | ˜̃w|)

and

∣
∣H�(s, w1, w2, w3) – H�(s, w̃1, w̃2, w̃3)

∣
∣ ≤ S�(s)

(|w1 – w̃1| + |w2 – w̃2| + |w3 – w̃3|
)

for all s ∈ [0, 1], w1, w2, w3, w̃1, w̃2, w̃3 ∈R and � = 1, 2, . . . , 18. If

F :=
(
V∗

0 + V∗
1 + V∗

2
)

18∑

�=1

‖S�‖ < 1,

then (1.6) has a solution, where ‖S�‖ = sups∈[0,1] |S�(s)| and the constants V∗
0 , . . . ,V∗

2 are
given in (3.8)–(3.10), respectively.

Proof First, we put ‖W�‖ = sups∈[0,1] |W�(s)| and choose a suitable real constant κ� such
that

κ� ≥
18∑

�=1

P�

(‖w�‖C�

)‖W�‖
{
F∗

0 + F∗
1 + F∗

2
}

, (3.11)

where F∗
0 , . . . ,F∗

2 are given in (3.5)–(3.7). We define a set

Oκ�
:=

{
w = (w1, w2, . . . , w18) ∈ C : ‖w‖C ≤ κ�

}
,

where κ� is defined in (3.11). It is obvious that Oκ�
is a nonempty closed bounded and

convex subset of C = C1 × C2 × · · · × C18. Now, we define T1 and T2 on Oκ�
by

T1(w1, w2, . . . , w18)(s) :=
(
T (1)

1 (w1, w2, . . . , w18)(s), . . . ,T (18)
1 (w1, w2, . . . , w18)(s)

)
,

T2(w1, w2, . . . , w18)(s) :=
(
T (1)

2 (w1, w2, . . . , w18)(s), . . . ,T (18)
2 (w1, w2, . . . , w18)(s)

)
,

where

(
T (�)

1 w
)
(s) =

∫ s

0

(s – ω)j–1


(j)
H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)

dω (3.12)

and

(
T (�)

2 w
)
(s)

= η3

(
1

η1 + η2
+

A0 + s
A1

)∫ 1

0

∫ ω

0
H�

(
ζ , w�(ζ ),Dkw�(ζ ), w′

�(ζ )
)

dζ dω

–
η2

η1 + η2

∫ 1

0

(1 – ω)j–1


(j)
H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)

dω
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–
A0 + s

A1

[
η2


(j – 2k)

∫ 1

0
(1 – ω)j–2k–1H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)

dω

+
η1


(j – k)

∫ 1

0
(1 – ω)j–k–1H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)

dω

]

for all s ∈ [0, 1] and w = (w1, w2, . . . , w18) ∈Oκ�
. Let

P̃� = sup
w�∈C�

P�

(‖w�‖C�

)
.

Now, for every w̃ = (w̃1, w̃2, . . . , w̃18), w = (w1, w2, . . . , w18) ∈Oκ�
, we have

∣
∣
(
T (�)

1 w̃ + T (�)
2 w

)
(s)

∣
∣

≤
∫ s

0

(s – ω)j–1


(j)
∣
∣H�

(
ω, w̃�(ω),Dkw̃�(ω), w̃′

�(ω)
)∣
∣dω

+ |η3|
(

1
|η1 + η2| +

|A0| + s
|A1|

)∫ 1

0

∫ ω

0

∣
∣H�

(
ζ , w�(ζ ),Dkw�(ζ ), w′

�(ζ )
)∣
∣dζ dω

+
|η2|

|η1 + η2|
∫ 1

0

(1 – ω)j–1


(j)
∣
∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

+
|A0| + s

|A1|
[ |η2|


(j – 2k)

∫ 1

0
(1 – ω)j–2k–1∣∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

+
|η1|


(j – k)

∫ 1

0
(1 – ω)j–k–1∣∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

]

≤
∫ s

0

(s – ω)j–1


(j)
W�(ω)P�

(∣
∣w̃�(ω)

∣
∣ +

∣
∣Dkw̃�(ω)

∣
∣ +

∣
∣w̃′

�(ω)
∣
∣
)

dω

+ |η3|
(

1
|η1 + η2| +

|A0| + s
|A1|

)

×
∫ 1

0

∫ ω

0
W�(ζ )P�

(∣
∣w�(ζ )

∣
∣ +

∣
∣Dkw�(ζ )

∣
∣ +

∣
∣w′

�(ζ )
∣
∣
)

dζ dω

+
|η2|

|η1 + η2|
∫ 1

0

(1 – ω)j–1


(j)
W�(ζ )P�

(∣
∣w�(ω)

∣
∣ +

∣
∣Dkw�(ω)

∣
∣ +

∣
∣w′

�(ω)
∣
∣
)

dω

+
|A0| + s

|A1|

×
[ |η2|


(j – 2k)

∫ 1

0
(1 – ω)j–2k–1W�(ζ )P�

(∣
∣w�(ω)

∣
∣ +

∣
∣Dkw�(ω)

∣
∣ +

∣
∣w′

�(ω)
∣
∣
)

dω

+
|η1|


(j – k)

∫ 1

0
(1 – ω)j–k–1W�(ζ )P�

(∣
∣w�(ω)

∣
∣ +

∣
∣Dkw�(ω)

∣
∣ +

∣
∣w′

�(ω)
∣
∣
)

dω

]

≤ ‖W�‖P̃�

[
1


(j + 1)
+

(
1 + |A0|

|A1|
) |η1|


(j – k + 1)
+

(
1 + |A0|

|A1| +
1

|η1 + η2|
) |η3|

2

+
(

1 + |A0|
|A1|
(j – 2k + 1)

+
1

|η1 + η2|
(j + 1)

)

|η2|
]

= ‖W�‖P̃�F∗
0 ,
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and

∣
∣DkT (�)

1 w̃(s) + D
kT (�)

2 w(s)
∣
∣

≤
∫ s

0

(s – ω)j–k–1


(j – k)
∣
∣H�

(
ω, w̃�(ω),Dkw̃�(ω), w̃′

�(ω)
)∣
∣dω

+
|η3|s1–k


(2 – k)|A1|
∫ 1

0

∫ ω

0

∣
∣H�

(
ζ , w�(ζ ),Dkw�(ζ ), w′

�(ζ )
)∣
∣dζ dω

+
s1–k


(2 – k)|A1|
[ |η2|


(j – 2k)

∫ 1

0
(1 – ω)j–2k–1∣∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

+
|η1|


(j – k)

∫ 1

0
(1 – ω)j–k–1∣∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

]

≤ ‖W�‖P̃�

[
1


(j – k + 1)
+

1

(2 – k)|A1|

( |η1|

(j – k + 1)

+
|η2|


(j – 2k + 1)
+

|η3|
2

)]

= ‖W�‖P̃�F∗
1 .

By using similar computations, we have

∣
∣
(
T (�)

1 w̃
)′(s) +

(
T (�)

2 w
)′(s)

∣
∣

≤
∫ s

0

(s – ω)j–2


(j – 1)
∣
∣H�

(
ω, w̃�(ω),Dkw̃�(ω), w̃′

�(ω)
)∣
∣dω

+
|η3|
|A1|

∫ 1

0

∫ ω

0

∣
∣H�

(
ζ , w�(ζ ),Dkw�(ζ ), w′

�(ζ )
)∣
∣dζ dω

+
1

|A1|
[ |η2|


(j – 2k)

∫ 1

0
(1 – ω)j–2k–1∣∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

+
|η1|


(j – k)

∫ 1

0
(1 – ω)j–k–1∣∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

]

≤ ‖W�‖P̃�

[
1


(j)
+

1
|A1|

( |η1|

(j – k + 1)

+
|η2|


(j – 2k + 1)
+

|η3|
2

)]

= ‖W�‖P̃�F∗
2 .

This yields

‖T1w̃ + T2w‖C =
18∑

�=1

∥
∥T (�)

1 w̃ + T (k)
2 w

∥
∥
C�

≤ ‖W�‖P̃�

(
F∗

0 + F∗
1 + F∗

2
) ≤ κ�,

and so T1w̃ + T2w ∈ Oκ�
. Also, the continuity of H� follows from the continuity of the

operator T1.
Now, we shall show that T1 is uniformly bounded. As for this purpose, we have

∣
∣
(
T (�)

1 w
)
(s)

∣
∣ ≤

∫ s

0

(s – ω)j–1


(j)
∣
∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

≤ 1

(j + 1)

‖W�‖P�

(∣
∣w�(ω)

∣
∣ +

∣
∣Dkw�(ω)

∣
∣ +

∣
∣w′

�(ω)
∣
∣
)
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for all w ∈Oκ�
. Also,

∣
∣
(
D

kT (�)
1 w

)
(s)

∣
∣ ≤

∫ s

0

(s – ω)j–k–1


(j – k)
∣
∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

≤ 1

(j – k + 1)

‖W�‖P�

(∣
∣w�(ω)

∣
∣ +

∣
∣Dkw�(ω)

∣
∣ +

∣
∣w′

�(ω)
∣
∣
)
,

and

∣
∣
(
T (�)

1 w
)′(s)

∣
∣ ≤ 1


(j)
‖W�‖P�

(∣
∣w�(ω)

∣
∣ +

∣
∣Dkw�(ω)

∣
∣ +

∣
∣w′

�(ω)
∣
∣
)
,

for all w ∈Oκ�
. Thus,

‖T1w‖C =
18∑

�=1

∥
∥T (�)

1 w
∥
∥
C�

≤
{

j + 1

(j + 1)

+
1


(j – k + 1)

} 18∑

�=1

‖W�‖P�

(‖w�‖C�

)
,

which shows that T1 is uniformly bounded on Oκ�
.

Now, we shall prove that T1 is compact on Oκ�
. For this, let s1, s2 ∈ [0, 1] with s1 < s2.

Then, we have

∣
∣
(
T (�)

1 w
)
(s2) –

(
T (k)

1 w
)
(s1)

∣
∣

≤
∣
∣
∣
∣

∫ s2

0

(s2 – ω)j–1


(j)
H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)

dω

–
∫ s1

0

(s1 – ω)j–1


(j)
H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)

dω

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ s1

0

(s2 – ω)j–1 – (s1 – ω)j–1


(j)
H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)

dω

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ s2

s1

(s2 – ω)j–1


(j)
H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)

dω

∣
∣
∣
∣

≤
∫ s1

0

(s2 – ω)j–1 – (s1 – ω)j–1


(j)
∣
∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

+
∫ s2

s1

(s2 – ω)j–1


(j)
∣
∣H�

(
ω, w�(ω),Dkw�(ω), w′

�(ω)
)∣
∣dω

≤
{

sj
2 – sj

1 – (s2 – s1)j


(j + 1)
+

(s2 – s1)j


(j + 1)

}

‖W�‖P�

(‖w�‖C�

)
.

Moreover, |(T (�)
1 w)(s2) – (T (�)

1 w)(s1)| → 0 as s1 → s2. Also, we have

lim
s1→s2

∣
∣
(
D

kT (�)
1 w

)
(s2) –

(
D

kT (�)
1 w

)
(s1)

∣
∣ = 0,

lim
s1→s2

∣
∣
(
T (�)

1 w
)′(s2) –

(
T (�)

1 w
)′(s1)

∣
∣ = 0.

Hence, ‖(T1w)(s2) – (T1w)(s1)‖C converges to zero as s1 → s2. Thus, T1 is equicontinuous
and so T1 is relatively compact operator onOκ�

. Now, by Arzela–Ascoli theorem, we obtain
that T1 is compact on Oκ�

.
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Lastly, we need to prove that T2 is a contraction. For this, let w̃, w ∈Oκ�
. Thus, we have

∣
∣
(
T (�)

2 w̃
)
(s) –

(
T (k)

2 w
)
(s)

∣
∣

≤ |η3|
(

1
|η1 + η2| +

|A0| + s
|A1|

)∫ 1

0

∫ ω

0
S�(ω)

(∣
∣w̃�(ζ ) – w�(ζ )

∣
∣

+
∣
∣Dkw̃�(ζ ) – D

kw�(ζ )
∣
∣ +

∣
∣w̃′

�(ζ ) – w′
�(ζ )

∣
∣
)

dζ dω

+
|η2|

|η1 + η2|
∫ 1

0

(1 – ω)j–1


(j)
S�(ω)

(∣
∣w̃�(ω) – w�(ω)

∣
∣ +

∣
∣Dkw̃�(ω) – D

kw�(ω)
∣
∣

+
∣
∣w̃′

�(ω) – w′
�(ω)

∣
∣
)

dω

+
|A0| + s

|A1|
[ |η2|


(j – 2k)

∫ 1

0
(1 – ω)j–2k–1S�(ω)

(∣
∣w̃�(ω) – w�(ω)

∣
∣

+
∣
∣Dkw̃�(ω) – D

kw�(ω)
∣
∣ +

∣
∣w̃′

�(ω) – w′
�(ω)

∣
∣
)

dω

+
|η1|


(j – k)

∫ 1

0
(1 – ω)j–k–1S�(ω)

(∣
∣w̃�(ω) – w�(ω)

∣
∣

+
∣
∣Dkw̃�(ω) – D

kw�(ω)
∣
∣ +

∣
∣w̃′

�(ω) – w′
�(ω)

∣
∣
)

dω

]

≤ ‖S�‖
[

1

(j + 1)

+
(

1 + |A0|
|A1|

) |η1|

(j – k + 1)

+
(

1 + |A0|
|A1|
(j – 2k + 1)

+
1

|η1 + η2|
(j + 1)

)

|η2|

+
(

1 + |A0|
|A1| +

1
|η1 + η2|

) |η3|
2

]

‖w̃� – w�‖C�

= ‖S�‖V∗
0 ‖w̃� – w�‖C�

for each � = 1, 2, . . . , 18, where V∗
0 is given in (3.8). Also, by similar computations, we have

sup
s∈[0,1]

∣
∣
(
D

kT (�)
2 w̃

)
(s) –

(
D

kT (�)
2 w

)
(s)

∣
∣ ≤ ‖S�‖V∗

1 ‖w̃� – w�‖C�
,

sup
s∈[0,1]

∣
∣
(
T (�)

2 z
)′(s) –

(
T (�)

2 y
)′(s)

∣
∣ ≤ ‖S�‖V∗

2 ‖zk – w�‖C�
,

where V∗
1 and V∗

2 are given in (3.9) and (3.10), respectively. Thus, we have

‖T2w̃ – T2w‖C =
18∑

�=1

∥
∥T (�)

2 w̃ – T (k)
2 w

∥
∥
C�

≤ (
V∗

0 + V∗
1 + V∗

2
)

18∑

�=1

‖S�‖‖w̃k – w�‖C�
,

and so ‖T2w̃ – T2w‖C ≤ F‖w̃ – w‖C . As F < 1, which means that T2 is a contraction on
Oκ�

. As a result of Theorem 2.5, we infer that T contains a fixed point that is a solution to
the fractional boundary value problem (1.6). �

To show the significance of our results, we present the following example.
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Example 3.3 Consider the following system of fractional differential equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D1.7w1(s) = 8es|w1(s)|
20,000(1+|w1(s)|) + 0.0004es|D0.04w1(s)| + 2es| arcsin w′

1(s)|
5000 ,

D1.7w2(s) = es| arctan w2(s)|
5000 + 0.0002es| sin(D0.04w2(s))| + 30es|w′

2(s)|
150,000(1+|w′

2(s)|) ,

D1.7w3(s) = s|w3(s)|
6000(1+|w3(s)|) + 4s|D0.04w3(s)|

24,000 + 12s| arcsin w′
3(s)|

72,000 ,

D1.7w4(s) = 0.0009s| sin w4(s)| + 180s|D0.04w4(s)|
200,000+200,000|D0.04w4(s)| + 36s| arcsin w′

4(s)|
40,000 ,

(3.13)

with boundary conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
2 w1(0) + 7

4 w1(1) = 17
6

∫ 1
0 D0.7w1(ω) dω,

3
2D0.04w1(1) + 7

4D0.08w1(1) = 17
6

∫ 1
0 D0.7w1(ω) dω,

3
2 w2(0) + 7

4 w2(1) = 17
6

∫ 1
0 D0.7w2(ω) dω,

3
2D0.04w2(1) + 7

4D0.08w2(1) = 17
6

∫ 1
0 D0.7w2(ω) dω,

3
2 w3(0) + 7

4 w3(1) = 17
6

∫ 1
0 D0.7w3(ω) dω,

3
2D0.04w3(1) + 7

4D0.08w3(1) = 17
6

∫ 1
0 D0.7w3(ω) dω,

3
2 w4(0) + 7

4 w4(1) = 17
6

∫ 1
0 D0.7w4(ω) dω,

3
2D0.04w4(1) + 7

4D0.08w4(1) = 17
6

∫ 1
0 D0.7w4(ω) dω,

(3.14)

where j = 1.7, k = 0.04, η1 = 3
2 , η2 = 7

4 , η3 = 17
6 , and Dj, Dk serve as the Caputo fractional

derivative of orders j and k, respectively.
Let H1,H2,H3,H4 : [0, 1] ×R×R×R →R are continuous functions defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1(s, w(s), w̃(s), ˜̃w(s)) = 8es|w(s)|
20,000(1+|w(s)|) + 0.0004es|D0.04w̃(s)|
+ 2es| arcsin ˜̃w(s)|

5000 ,

H2(s, w(s), w̃(s), ˜̃w(s)) = es| arctan w(s)|
5000 + 0.0002es| sin(D0.04w̃(s))|

+ 30es| ˜̃w(s)|
150,000(1+| ˜̃w(s)|) ,

H3(s, w(s), w̃(s), ˜̃w(s)) = s|w3(s)|
6000(1+|w3(s)|) + 4s|D0.04w3(s)|

24,000

+ 12s| arcsin w′
3(s)|

72,000 ,

H4(s, w(s), w̃(s), ˜̃w(s)) = 0.0009s| sin w(s)| + 180s|D0.04w̃(s)|
200,000+200,000|D0.04w̃(s)|

+ 36s| arcsin ˜̃w(s)|
40,000 .

Let w1, w2, w̃1, w̃2, ˜̃w1, ˜̃w2 ∈R. Then, we have

∣
∣H1

(
s, w1(s), w̃1(s), ˜̃w1(s)

)
– H1

(
s, w2(s), w̃2(s), ˜̃w2(s)

)∣
∣

≤ es

2500
(∣
∣w1(s) – w2(s)

∣
∣ +

∣
∣w̃1(s) – w̃2(s)

∣
∣ +

∣
∣arcsin ˜̃w1(s) – arcsin ˜̃w2(s)

∣
∣
)
,

∣
∣H2

(
s, w1(s), w̃1(s), ˜̃w1(s)

)
– H2

(
s, w2(s), w̃2(s), ˜̃w2(s)

)∣
∣

≤ es

5000
(∣
∣arctan w1(s) – arctan w2(s)

∣
∣ +

∣
∣sin w̃1(s) – sin w̃2(s)

∣
∣ +

∣
∣ ˜̃w1(s) – ˜̃w2(s)

∣
∣
)
,

∣
∣H3

(
s, w1(s), w̃1(s), ˜̃w1(s)

)
– H3

(
s, w2(s), w̃2(s), ˜̃w2(s)

)∣
∣

≤ s
6000

(∣
∣w1(s) – w2(s)

∣
∣ +

∣
∣w̃1(s) – w̃2(s)

∣
∣ +

∣
∣arcsin ˜̃w1(s) – arcsin ˜̃w2(s)

∣
∣
)
,
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∣
∣H4

(
s, w1(s), w̃1(s), ˜̃w1(s)

)
– H4

(
s, w2(s), w̃2(s), ˜̃w2(s)

)∣
∣

≤ 9s
10,000

(∣
∣sin w1(s) – sin w2(s)

∣
∣ +

∣
∣w̃1(s) – w̃2(s)

∣
∣ +

∣
∣arcsin ˜̃w1(s) – arcsin ˜̃w2(s)

∣
∣
)
.

Here,

S1(s) =
es

2500
, S2(s) =

es

5000
, S3(s) =

s
6000

, S4(s) =
9s

10,000
,

‖S1‖ =
1

2500
, ‖S2‖ =

1
5000

, ‖S3‖ =
1

6000
, ‖S4‖ =

9
10,000

.

Let P1,P2,P3,P4 : [0,∞) →R be identity functions. Then, we obtain

∣
∣H1

(
s, w(s),D0.04w(s), w′(s)

)∣
∣ ≤ es

2500
(|w| + |Dw| +

∣
∣arcsin w′∣∣)

≤ es

2500
(|w| + |Dw| +

∣
∣w′∣∣),

∣
∣H2

(
s, w(s),D0.04w(s), w′(s)

)∣
∣ ≤ es

5000
(| arctan w| +

∣
∣sin(Dw)

∣
∣ +

∣
∣w′∣∣)

≤ es

5000
(|w| + |Dw| +

∣
∣w′∣∣),

∣
∣H3

(
s, w(s),D0.04w(s), w′(s)

)∣
∣ ≤ s

6000
(|w| + |Dw| +

∣
∣arcsin w′∣∣)

≤ s
6000

(|w| + |Dw| +
∣
∣w′∣∣),

∣
∣H4

(
s, w(s),D0.04w(s), w′(s)

)∣
∣ ≤ 9s

10,000
(| sin w| + |Dw| +

∣
∣arcsin w′∣∣)

≤ 9s
10,000

(|w| + |Dw| +
∣
∣w′∣∣),

where the continuous function W1,W2,W3,W4 : [0, 1] → R are defined by

W1(s) =
es

2500
, W2(s) =

es

5000
, W3(s) =

s
6000

, W4(s) =
9s

10,000
.

Furthermore, V∗
0 � 5.642, V∗

1 � 4.084, and V∗
2 � 4.019, thus

F :=
(
V∗

0 + V∗
1 + V∗

2
)(‖S1‖ + ‖S2‖ + ‖S3‖ + ‖S4‖

) � 0.023 < 1.

Hence by Theorem 3.2, the proposed problem (3.13)–(3.14) has a solution.

4 Conclusion
The chemical graph theory is a versatile subject that uses practical and theoretical meth-
ods to study the molecular structure of a chemical substance as a graph, with specific
mathematical challenges in consideration. In recent decades, the rapid development of
this field has given us numerous groundbreaking and distinctive ideas and methods for
such research. In this article, we used the framework of a cyclohexane graph to illustrate
the fractional boundary value problem in the sense of the Caputo fractional derivative.
The Schaefer and Krasnoselskii fixed point theorems were used to examine the existence
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of solutions to the suggested problem. Our method is easy to implement and may be used
on a wide range of graphs, including chordal bipartite graphs, which have many applica-
tions in computer networking and biology.
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