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Abstract
This paper investigates the optimal Hermite interpolation of Sobolev spacesWn∞[a,b],
n ∈ N in space L∞[a,b] and weighted spaces Lp,ω[a,b], 1≤ p <∞ with ω a
continuous-integrable weight function in (a,b) when the amount of Hermite data is n.
We proved that the Lagrange interpolation algorithms based on the zeros of
polynomial of degree n with the leading coefficient 1 of the least deviation from zero
in L∞ (or Lp,ω[a,b], 1≤ p < ∞) are optimal forWn∞[a,b] in L∞[a,b] (or Lp,ω[a,b],
1 ≤ p <∞). We also give the optimal Hermite interpolation algorithms when we
assume the endpoints are included in the interpolation systems.
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1 Introduction and main results
Let F be a Banach space of functions defined on a compact set D that can be continuously
embedded in Cr(D), BF be the unit ball of F , and G (� F) be a normed linear space with
norm ‖ · ‖G. We want to approximate functions f from F by using a finite number of
arbitrary Hermite data f (s)(t) for some s ≤ r and t ∈ D. We use an algorithm An that uses
exactly n Hermite data to reconstruct functions from BF . The worst-case error of the
algorithm An for BF in G is defined by

e(BF , An, G) := sup
f ∈BF

∥
∥f – An(f )

∥
∥

G. (1.1)

Let �n be an algorithm class that uses exactly n Hermite data, � =
⋃∞

n=1 �n. If there
exists an algorithm A∗

n ∈ �n such that

e
(

BF , A∗
n, G

)

= inf
�n

e(BF , An, G), (1.2)

then we call A∗
n the nth optimal algorithm for � in the norm G. The value e(BF , A∗

n, G) is
called the nth optimal worst-case error for BF in G and we denote it as e(n, BF , G).
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Let L∞ ≡ L∞[a, b] be the space of measurable functions defined on [a, b], for which the
norm

‖f ‖∞ := ess sup
x∈[a,b]

∣
∣f (x)

∣
∣

is finite. Meanwhile, for 1 ≤ p < ∞ and continuous-integrable ω(x) > 0 on (a, b), let Lp,ω ≡
Lp,ω[a, b] be the space of measurable functions defined on [a, b], for which the norm

‖f ‖p,ω :=
(∫ b

a

∣
∣f (x)

∣
∣
p
ω(x) dx

)1/p

is finite. Using Cn ≡ Cn[a, b], n = 0, 1, 2, . . . represents the spaces of functions with an nth-
order continuous derivative on [a, b], respectively. Denote by W n∞ ≡ W n∞[a, b], n ∈ N the
class of all functions f such that f (n–1)(f (0) := f ) are absolutely continuous and f (n) ∈ L∞.

For the construction of algorithms for approximating multivariate functions using func-
tion values, the univariate Lagrange interpolation polynomial algorithms play a key role,
see [2, 5, 8, 13–15]. Recently, some papers [3, 10] have considered the algorithms for ap-
proximating multivariate functions using Hermite data. To compare the approximation
errors of Lagrange interpolation and Hermite interpolation, we introduce the concept of
Hermite interpolation.

Let x1, x2, . . . , xr be r distinct points in [a, b]. Let � := {a ≤ x1 < x2 < · · · < xr ≤ b,αi ∈
N, n =

∑r
i=1 αi} be a Hermite interpolation system. Then, the Hermite interpolation poly-

nomial H�(f ) of a function f ∈ W n∞ based on � is defined by

H�(f ) ∈Pn–1, and H (j)
� (f , xi) = f (j)(xi), 0 ≤ j ≤ αi – 1, 1 ≤ i ≤ r, (1.3)

where, and in the following, Pn represents the space of all algebraic polynomials of degree
at most n. The classical Hermite interpolation formula gives

H�(f , x) =
r

∑

k=1

W�(x)
(x – xk)αk

αk –1
∑

h=0

f (h)(xk)
(x – xk)h

h!

{
(x – xk)αk

W�(x)

}(αk –h–1)

(xk )
,

where, and in the following,

W�(x) =
r

∏

k=1

(x – xk)αk , (1.4)

and {f (x)}(s)
(xk ) is the s-degree Taylor polynomial of f at xk . In particular, if x1, x2, . . . , xn are

n distinct points in [a, b], i.e., � := {a ≤ x1 < x2 < · · · < xn ≤ b,αi = 1, i = 1, 2, . . . , n}, then we
obtain the well-known Lagrange interpolation

L�(f , x) =
n

∑

k=1

f (xk)�k(x),

where

�k(x) =
W�(x)

(x – xk)W ′
�(xk)

, k = 1, 2, . . . , n.
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Choosing interpolation systems is important for interpolation algorithms. For example,
given a sufficiently smooth function, if nodes are not suitably chosen, then the Lagrange
interpolation polynomials do not converge to the function as the number of nodes tends
to infinity. A well-known example is Runge’s phenomenon. Hence, the study of optimal
Lagrange interpolation nodes is a hot research topic, see [1, 6, 9, 16] and the references
therein.

The most important optimal Lagrange interpolation nodes problem is for C0 in L∞. For
n = 3 and n = 4, the results can be found in [11] and [12], respectively. For n ≥ 5, it is
still an open problem. For r ≥ 1, it is well known that the rth optimal Lagrange interpo-
lation nodes are the zeros of the rth Chebyshev polynomial of the first kind for Cr[–1, 1]
in L∞[–1, 1]. Recently, [16] obtained the rth optimal Lagrange interpolation nodes for
W r∞[–1, 1] in Lp,ω[–1, 1], 1 ≤ p < ∞.

Hermite interpolation is a kind of interpolation that is wider than Lagrange interpola-
tion. It can use not only the function value data but also the derivatives value data. Under
the condition of using the same amount of data, can increasing the use of derivatives value
data make the calculation result more accurate? In general the answer is no. In the follow-
ing, we give the optimal Hermite interpolation systems to show this.

Let

En,p,ω := inf
g∈Pn–1

∥
∥xn – g(x)

∥
∥

p,ω, 1 ≤ p < ∞. (1.5)

Furthermore, let Wn,p,ω ∈Pn satisfy

‖Wn,p,ω‖p,ω = En,p,ω and Wn,p,ω(x) = xn + c1xn–1 + · · · + cn. (1.6)

Then, Wn,p,ω is unique and has exactly n zeros (see Lemma 2.2)

a < ξ1,p,ω < ξ2,p,ω < · · · < ξn,p,ω < b. (1.7)

Let

�n,p,ω = {ξ1,p,ω, ξ2,p,ω, . . . , ξn,p,ω}. (1.8)

Then, L�n,p,ω (f ) has the explicit expression

L�n,p,ω (f , x) =
n

∑

k=1

f (ξk,p,ω)�k,p,ω(x), (1.9)

where

�k,p,ω(x) =
Wn,p,ω(x)

(x – ξk,p,ω)W ′
n,p,ω(ξk,p,ω)

and

Wn,p,ω(x) =
n

∏

k=1

(x – ξk,p,ω). (1.10)



Xu and Yu Journal of Inequalities and Applications          (2022) 2022:7 Page 4 of 14

First, we obtained the following results.

Theorem 1.1
(1) For p = ∞, we have

e
(

n, BW n
∞, L∞

)

= e
(

BW n
∞, L�n,∞ , L∞

)

=
(b – a)n

n!22n–1 , (1.11)

where

�n,∞ =
(

a + b
2

+
b – a

2
cos

(2n – 1)π
2n

,
a + b

2
+

b – a
2

cos
(2n – 3)π

2n
, . . . ,

a + b
2

+
b – a

2
cos

π

2n

)

. (1.12)

(2) Let 1 ≤ p < ∞ and assume that ω(x) > 0 is continuous-integrable on (a, b). Then, we
have

e
(

n, BW n
∞, Lp,ω

)

= e
(

BW n
∞, L�n,p,ω , Lp,ω

)

=
En,p,ω

n!
, (1.13)

where �n,p,ω is given by (1.8).

From Theorem 1.1 we know that the optimal Hermite interpolation is Lagrange interpo-
lation, i.e., increasing the use of derivatives value data can not make the calculation result
more accurate.

In practice one often wants to have boundary points as interpolation systems, i.e.,

� :=

{

a = x1 < x2 < · · · < xr = b,αi ∈ N, n =
r

∑

i=1

αi

}

. (1.14)

Then, the following question arises: for which �∗ of the form (1.14), we have

e(BF , H�∗ , G) = e(n, BF , G) := inf
� is of the form (1.14)

e(BF , H�, G). (1.15)

For the Lagrange interpolation, Hoang [6] considered this problem for Cn[–1, 1] in
L∞[–1, 1]. Recently, Xu and Wang [16] considered this problem for W n∞[–1, 1] in L∞[–1, 1]
and Lp,ω[–1, 1], 1 ≤ p < ∞. In this paper, we will extend the result of [16] into Hermite in-
terpolation and obtain the following results.

Theorem 1.2
(1) Let p = ∞ and n > 2. Then, we have

e
(

n, BW n
∞, L∞

)

= e
(

BW n
∞, L�∗

n,∞ , L∞
)

=
(b – a)n

(cos π
2n )n22n–1n!

, (1.16)

where

�∗
n,∞ =

(

a,
a + b

2
+

b – a
2

cos
(2n – 3)π

2n

/

cos
π

2n
, . . . ,

a + b
2

+
b – a

2
cos

3π

2n

/

cos
π

2n
, b

)

. (1.17)
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(2) Let 1 ≤ p < ∞, n > 2 and assume that ω(x) > 0 is continuous-integrable on (a, b).
Then, we have

e
(

n, BW n
∞, Lp,ω

)

= e
(

BW n
∞, L�∗

n,p,ω , Lp,ω
)

=
En–2,p,ω

n!
, (1.18)

where

ω(x) = (x – a)p(b – x)pω(x), �∗
n,p,ω = (a, ξ1,p,ω, ξ2,p,ω, . . . , ξn–2,p,ω, b), (1.19)

and ξ1,p,ω, ξ2,p,ω, . . . , ξn–2,p,ω are given by (1.7) with n – 2.

The remainder of this paper is organized as follows. In Sect. 2, we give the proofs of
Theorem 1.1 and Theorem 1.2. In Sect. 3, we give some examples to show the results.

2 Proofs of Theorem 1.1 and Theorem 1.2
To prove Theorem 1.1, we first give a lemma.

Lemma 2.1 Let f ∈ W n∞. Assume that � := {a ≤ x1 < x2 < · · · < xr ≤ b,αi ∈ N, n =
∑r

i=1 αi}
is a Hermite interpolation system. Then, the remainder R�(f , x) := f (x) – H�(f , x) for the
Hermite interpolation polynomial based on � satisfies

∣
∣R�(f , x)

∣
∣ =

∣
∣f (x) – H�(f , x)

∣
∣ ≤ ‖f (n)‖∞

n!
∣
∣W�(x)

∣
∣, x ∈ [a, b], (2.1)

where W� is given by (1.4). In particular, if f ∈ Cn, then

R�(f , x) = f (x) – H�(f , x) =
f (n)(ξ )

n!
W�(x), x ∈ [a, b], (2.2)

for some ξ ∈ [–1, 1] depending on x and �.

Proof Since (2.1) is trivially satisfied if x coincides with one of the interpolation points
x1, . . . , xr , we need be concerned only with the case where x does not coincide with one of
the interpolation nodes. Keeping x fixed, consider g : [a, b] →R given by

g(y) := R�(f , y) – W�(y)
R�(f , x)
W�(x)

, y ∈ [a, b]. (2.3)

By the assumption on f we know g ∈ W n∞. From (1.3) and (2.3) we conclude that g
has at least n + 1 zeros (counting multiplicity), namely single zero x and αk fold zeros
xk , k = 1, . . . , r. Then, by Rolle’s theorem, the derivative g ′ has at least n zeros. Repeating
the argument, by induction we deduce that the derivative g(n–1) has at least two zeros in
[a, b], which we denote by z1 and z2 (z1 < z2), respectively. Since g ∈ W n∞, then by the
Newton–Leibniz formula we obtain

0 = g(n–1)(z2) – g(n–1)(z1) =
∫ z2

z1

g(n)(y) dy. (2.4)

It is known that H�(f ) is an algebraic polynomial of degree at most n – 1. Hence, we obtain

(

H�(f )
)(n)(y) = 0. (2.5)
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By a direct computation we obtain

(W�)(n)(y) = n!. (2.6)

Substituting (2.5) and (2.6) into (2.4), we obtain

0 =
∫ z2

z1

[

f (n)(y) – n!
R�(f , x)
W�(x)

]

dy =
∫ z2

z1

f (n)(y) dy – n!(z2 – z1)
R�(f , x)
W�(x)

. (2.7)

From (2.7) it follows that

R�(f , x) =

∫ z2
z1

f (n)(y) dy
n!(z2 – z1)

W�(x). (2.8)

Combining

∣
∣
∣
∣

∫ z2

z1

f (n)(y) dy
∣
∣
∣
∣
≤

∫ z2

z1

∣
∣f (n)(y)

∣
∣dy ≤

∫ z2

z1

∥
∥f (n)∥∥∞ dy =

∥
∥f (n)∥∥∞(z2 – z1)

with (2.8) we obtain (2.1). Besides, if f ∈ Cn, then g(n) has at least one zero ξ in [a, b], i.e.,
g(n)(ξ ) = 0. Hence, by differentiating n times on two sides of (2.3) first, and then substitut-
ing (2.5) and (2.6) into the obtained relation, we obtain

0 = f (n)(ξ ) – n!
R�(f , x)
W�(x)

. (2.9)

From (2.9) we obtain (2.2). This completes the proof of Lemma 2.1. �

Lemma 2.2 Let 1 ≤ p < ∞ and assume that ω(x) > 0 is continuous-integrable on (–1, 1).
Then, there exists a unique Wn,p,ω ∈Pn for all n ∈ N such that

‖Wn,p,ω‖p,ω = En,p,ω and Wn,p,ω(x) = xn + c1xn–1 + · · · + cn,

where En,p,ω is given by (1.5). Furthermore, Wn,p,ω has exactly n zeros given by (1.7).

Proof The proof of the problem on [–1, 1] can be found in [16]. In general, we can use
the variable substitution x = a+b

2 + b–a
2 t to refer the problem on [a, b] to this on [–1, 1]. We

omit the details. �

Proof of Theorem 1.1 We consider (1) first. Let �n,∞ be given by (1.12). Then, for any
f ∈ W n∞, it follows from (2.1) that

∣
∣f (x) – L�n,∞ (f , x)

∣
∣ ≤ ‖f (n)‖∞

n!

∣
∣
∣
∣
∣

n
∏

i=1

(

x –
a + b

2
–

b – a
2

cos
(2i – 1)π

2n

)
∣
∣
∣
∣
∣
,

x ∈ [a, b]. (2.10)
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Let x = a+b
2 + b–a

2 t. Then, (2.10) becomes

∣
∣f (x) – L�n,∞ (f , x)

∣
∣ ≤ ‖f (n)‖∞(b – a)n

n!2n

∣
∣
∣
∣
∣

n
∏

i=1

(

t – cos
(2i – 1)π

2n

)
∣
∣
∣
∣
∣

=
‖f (n)‖∞(b – a)n

n!22n–1

∣
∣Tn(t)

∣
∣, t ∈ [–1, 1], (2.11)

where Tn is the nth Chebyshev polynomial of the first kind, i.e., Tn(t) = cos(n arccos t). Let
f ∈ BW n∞. Then, we have ‖f (n)‖∞ ≤ 1. Combining this fact with ‖Tn‖∞ = 1 as well as (2.11),
we obtain

e
(

BW n
∞, L�n,∞ , L∞

)

= sup
f ∈BW n∞

∥
∥f – L�n,∞ (f )

∥
∥∞ ≤ (b – a)n

n!22n–1 . (2.12)

From (1.2) and (2.12) we obtain the upper estimate.
Now, we consider the lower estimate. Let � := {a ≤ x1 < x2 < · · · < xr ≤ b,αi ∈ N, n =

∑r
i=1 αi} be an arbitrary Hermite interpolation system of cardinality n in [a, b]. Consider

the function g(x) = xn

n! . Then, from g(n)(x) = 1 and (2.2) it follows that g ∈ W n∞ and

g(x) – H�(g, x) =
W�(x)

n!
, x ∈ [a, b]. (2.13)

Let x = a+b
2 + b–a

2 t. Then, by (1.4) we obtain

W�(x) = xn + a1xn–1 + a2xn–2 + · · · + an =
(b – a)n

2n h(t), t ∈ [–1, 1], (2.14)

where

h(t) = tn + b1tn–1 + b2tn–2 + · · · + bn. (2.15)

Then, it follows from Theorem 6.1 in [4, Ch. 3] that

‖h‖∞ ≥ 21–n. (2.16)

Combining (1.1), (2.13), (2.14) and (2.16), we obtain

e
(

BW n
∞, H�, L∞

) ≥ ∥
∥g – H�(g)

∥
∥∞ =

‖W�‖∞
n!

=
(b – a)n

n!2n ‖h‖∞ ≥ (b – a)n

n!22n–1 . (2.17)

From (1.2) and (2.17) we obtain the lower estimate.
Next, we consider (2). We consider the upper estimate first. Let �n,p,ω be given by (1.8)

and Wn,p,ω be given by (1.6). If f ∈ BW n∞, then we have ‖f (n)‖∞ ≤ 1. Combining this fact
with (2.1) we obtain

∣
∣f (x) – L�n,p,ω (f , x)

∣
∣ ≤ |Wn,p,ω(x)|

n!
, x ∈ [a, b].

It follows that

∥
∥f – L�n,p,ω (f )

∥
∥

p,ω ≤ ‖Wn,p,ω‖p,ω

n!
=

En,p,ω

n!
. (2.18)
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From (1.1) and (2.18) we obtain

e
(

BW n
∞, L�n,p,ω , Lp,ω

) ≤ En,p,ω

n!
. (2.19)

From (1.2) and (2.19) we obtain the upper estimate.
Now, we consider the lower estimate. Let � := {a ≤ x1 < x2 < · · · < xr ≤ b,αi ∈ N, n =

∑r
i=1 αi} be an arbitrary Hermite interpolation system of cardinality n in [a, b]. Consider

the function g(x) = xn

n! . Then, g ∈ W n∞ and (2.13) holds. From the first equality in (2.14) and
(1.5) as well as (1.6) it follows that

‖W�‖p,ω ≥ En,p,ω. (2.20)

From (1.1), (2.13) and (2.20) it follows that

e
(

BW n
∞, H�, Lp,ω

) ≥ ∥
∥g – H�(g)

∥
∥

p,ω =
‖W�‖p,ω

n!
≥ En,p,ω

n!
. (2.21)

From (1.2) and (2.21) we obtain the lower estimate of (2). Theorem 1.1 is proved. �

Let BCn = {f ∈ Cn : ‖f (n)‖∞ ≤ 1}. Using the fact BW n∞ ⊂ BCn and g(x) = xn

n! ∈ BCn for
n ∈N, combining the proof of Theorem 1.1, we obtained the following results.

Corollary 2.3
(1) For p = ∞, we have

e
(

n, BCn, L∞
)

= e
(

BCn, L�n,∞ , L∞
)

=
(b – a)n

n!22n–1 , (2.22)

where �n,∞ is given by (1.12).
(2) Let 1 ≤ p < ∞ and assume that ω(x) > 0 is continuous-integrable on (a, b). Then, we

have

e
(

n, BCn, Lp,ω
)

= e
(

BCn, L�n,p,ω , Lp,ω
)

=
En,p,ω

n!
, (2.23)

where �n,p,ω is given by (1.8).

Proof of Theorem 1.2 We consider (1) first. For any f ∈ BW n∞, from (2.1) it follows that

∣
∣f (x) – L�∗

n,∞ (f , x)
∣
∣ ≤ 1

n!

∣
∣
∣
∣
∣

n
∏

i=1

(

x –
a + b

2
–

b – a
2

cos
(2i – 1)π

2n

/

cos
π

2n

)
∣
∣
∣
∣
∣
,

x ∈ [a, b]. (2.24)

Let x = a+b
2 + b–a

2 cos π
2n

t. Then, we have

n
∏

i=1

(

x –
a + b

2
–

b – a
2

cos
(2i – 1)π

2n

/

cos
π

2n

)

=
(b – a)nTn(t)
(cos π

2n )n22n–1 ,

t ∈
[

– cos
π

2n
, cos

π

2n

]

. (2.25)
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From (1.1), (2.24) and (2.25) it follows that

e
(

BW n
∞, L�∗

n,∞ , L∞
) ≤ (b – a)n

(cos π
2n )n22n–1n!

sup
t∈[– cos π

2n ,cos π
2n ]

∣
∣Tn(t)

∣
∣

=
(b – a)n

(cos π
2n )n22n–1n!

. (2.26)

From (1.2) and (2.26) we obtain the upper estimate.
Now, we consider the lower estimate. Let � := {a = x1 < x2 < · · · < xr = b,αi ∈ N, n =

∑r
i=1 αi} be an arbitrary Hermite interpolation system of cardinality n including the end-

points a and b. Consider the function g(x) = xn

n! . Then, g ∈ W n∞ and (2.13) holds. Let
x = a+b

2 + b–a
2 t. Denote ti = 2

b–a (xi – a+b
2 ), i = 1, . . . , r. Then, by (1.4) one obtains

W�(x) =
(b – a)n

2n

r
∏

i=1

(t – ti)αi , t1 = –1, tr = 1, t ∈ [–1, 1]. (2.27)

Let

g(t) =
(

t2 – 1
)

n–1
∏

i=2

(

t – cos
(2i – 1)π

2n

/

cos
π

2n

)

=
Tn(t cos π

2n )
2n–1(cos π

2n )n .

Then, it is easy to verify that

‖g‖∞ =
1

2n–1(cos π
2n )n (2.28)

and

g
(

cos iπ
n

cos π
2n

)

=
(–1)i

2n–1(cos π
2n )n , i = 1, . . . , n – 1. (2.29)

Assume that
∥
∥
∥
∥
∥

r
∏

i=1

(t – ti)αi

∥
∥
∥
∥
∥∞

<
1

2n–1(cos π
2n )n . (2.30)

Let

R(t) = g(t) –
r

∏

i=1

(t – ti)αi , t ∈ [–1, 1].

Then, it is easy to verify that R(t) is a polynomial of degree at most n – 1. Furthermore,
from (2.29) and (2.30) one can check that

R
(

cos iπ
n

cos π
2n

)

(–1)i > 0, i = 1, . . . , n – 1.

Thus, the polynomial R(t) has at least n – 2 zeros in (–1, 1). As t1 = –1, tr = 1, it is clear
that ±1 are zeros of R(t). Hence, R(t) has at least n zeros in [–1, 1]. This, and the fact that
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R(t) is a polynomial of degree at most n – 1, implies that R(t) = 0. Therefore,

∥
∥
∥
∥
∥

r
∏

i=1

(t – ti)αi

∥
∥
∥
∥
∥∞

= ‖g‖∞ =
1

2n–1(cos π
2n )n ,

which contradicts (2.30). Hence, we have

∥
∥
∥
∥
∥

r
∏

i=1

(t – ti)αi

∥
∥
∥
∥
∥∞

≥ 1
2n–1(cos π

2n )n . (2.31)

From (1.1), (2.13), (2.27) and (2.31) we obtain

e
(

BW n
∞, H�, L∞

) ≥ ∥
∥g – H�(g)

∥
∥∞ =

‖W�‖∞
n!

≥ (b – a)n

(cos π
2n )n22n–1n!

. (2.32)

From (1.2) and (2.32) we obtain the lower estimate of (1).
Next, we consider (2). Let ω and �∗

n,p,ω be given by (1.19). Then, for any f ∈ BW n∞, from
(2.1) it follows that

∣
∣f (x) – L�∗

n,p,ω (f , x)
∣
∣ ≤ (1 – x2)|Wn–2,p,ω(x)|

n!
, x ∈ [a, b]. (2.33)

From (2.33) it follows that

∥
∥f – L�∗

n,p,ω (f )
∥
∥

p,ω ≤ ‖Wn–2,p,ω‖p,ω

n!
=

En–2,p,ω

n!
. (2.34)

From (1.1) and (2.34) we conclude that

e
(

BW n
∞, L�∗

n,p,ω , Lp,ω
) ≤ En–2,p,ω

n!
. (2.35)

On the other hand, let � := {a = x1 < x2 < · · · < xr = b,αi ∈ N, n =
∑r

i=1 αi} be an arbitrary
Hermite interpolation system of cardinality n including the endpoints. Consider the func-
tion g(x) = xn

n! . Then, g ∈ W n∞ and (2.13) holds. From (1.1), (2.13), (1.5) and (1.6) it follows
that

e
(

BW n
∞, H�, Lp,ω

) ≥ ∥
∥g – H�(g)

∥
∥

p,ω =
1
n!

∥
∥
∥
∥
∥

r
∏

k=1

(x – xk)αk

∥
∥
∥
∥
∥

p,ω

=
1
n!

∥
∥
∥
∥
∥

(x – a)α1–1(b – x)αr–1
r–1
∏

k=2

(x – xk)αk

∥
∥
∥
∥
∥

p,ω

≥ 1
n!

∥
∥
∥
∥
∥

n–2
∏

k=1

(x – ξk,p,ω)

∥
∥
∥
∥
∥

p,ω

=
En–2,p,ω

n!
. (2.36)

From (2.35) and (2.36) as well as (1.2) we obtain the result of (2). Theorem 1.2 is proved. �

Using the fact that BCn ⊂ BW n∞ and g(x) = xn

n! ∈ BCn for n ∈ N, combining the proof of
Theorem 1.2, we obtained the following results.
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Corollary 2.4
(1) Let p = ∞ and n > 2. Then, we have

e
(

n, BCn, L∞
)

= e
(

BCn, L�∗
n,∞ , L∞

)

=
(b – a)n

(cos π
2n )n22n–1n!

,

where �∗
n,∞ is given by (1.17).

(2) Let 1 ≤ p < ∞, n > 2 and assume that ω(x) > 0 is continuous-integrable on (a, b).
Then, we have

e
(

n, BCn, Lp,ω
)

= e
(

BCn, L�∗
n,p,ω , Lp,ω

)

=
En–2,p,ω

n!
,

where ω and �∗
n,p,ω are given by (1.19).

Remark 2.5 When n �= r, the nth optimal Hermite interpolation system of the problems
given by (1.2) and (1.15) for BW r∞ in L∞ and Lp,ω (1 ≤ p < ∞) are open problems.

Remark 2.6 When n = r, the nth optimal Birkhoff interpolation system of the problems
given by (1.2) and (1.15) for BW n∞ in L∞ and Lp,ω (1 ≤ p < ∞) are open problems.

3 Some examples
Example 1 Let ω(x) = 1, [a, b] = [–1, 1]. Then for 1 ≤ p < ∞ we obtain the usual Lp ≡
Lp[–1, 1] spaces. For p = 1, it follows from [4, pp. 87–88] that

En,1,1 =
1

2n–1 , Wn,1,1(x) =
Un(x)

2n , ξk,1,1 = cos
kπ

n + 1
, k = 1, . . . , n,

where Un is the nth Chebyshev polynomial of the second kind, i.e.,

Un(x) =
sin(n + 1)θ

sin θ
, x = cos θ .

From Theorem 1.1 it follows that

e
(

n, BW n
∞, L1

)

= e
(

BW n
∞, L�n,1,1 , L1

)

=
En,1,1

n!
=

1
2n–1n!

,

where �n,1,1 = {cos nπ
n+1 , cos (n–1)π

n+1 , . . . , cos π
n+1 }.

Example 2 Let p = 2. In this case, for any continuous-integrable weight function ω(x) > 0
on (a, b), there is a unique orthogonal system {pk,ω}k∈Z+ in L2,ω that is complete and satisfies
the following conditions:

(1) pk,ω ∈Pk for all k ∈ Z+.
(2)

∫ b

a
pk,ω(x)pj,ω(x)ω(x) dx =

⎧

⎨

⎩

0, k �= j;

1, k = j.
(3.1)

(3) The coefficient Ck,ω of the leading term xk of pk,ω is positive.
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In this case, similar to (3.18) in [16], we have Wk,2,ω = pk,ω
Ck,ω

and

Ek,2,ω = ‖Wk,2,ω‖2,ω = 1/Ck,ω. (3.2)

Let ω(α,β) be the Jacobi weights, i.e., ω(α,β)(x) = (1 – x)α(1 + x)β with α,β > –1 on (–1, 1)
and we denote the corresponding orthogonal system as {p(α,β)

k }k∈Z+ . It is known that the
coefficient of the leading term xk of p(α,β)

k (x) is (see (3.21) in [16])

Ck,ω(α,β) =
√

α + β + 2k + 1�(α + β + 2k + 1)
2k+(α+β+1)/2

√

k!�(α + β + k + 1)�(α + k + 1)�(β + k + 1)
. (3.3)

From Theorem 1.1, (3.2) and (3.3), it follows that

e
(

n, BW n
∞, L2,ω(α,β)

)

= e
(

BW n
∞, L�n,2,ω(α,β) , L2,ω(α,β)

)

=
1

n!Cn,ω(α,β)

=
2n+(α+β+1)/2

√

�(α + β + n + 1)�(α + n + 1)�(β + n + 1)
√

n!(α + β + 2n + 1)�(α + β + 2n + 1)
, (3.4)

where �n,2,ω(α,β) consists of the zeros of p(α,β)
n . From Theorem 1.2, (3.2), (3.3) and (3.4), it

follows that for n > 2

e
(

n, BW n
∞, L2,ω(α,β)

)

= e
(

BW n
∞, L�∗

n,2,ω(α,β)
, L2,ω(α,β)

)

=
En–2,2,ω(α+2,β+2)

n!
=

1
n!Cn–2,ω(α+2,β+2)

=

√

(α + β + n + 2)(α + β + n + 1)
n(n – 1)

e
(

n, BW n
∞, L2,ω(α,β)

)

, (3.5)

where �∗
n,2,ω(α,β) = (–1, ξ1,2,ω(α+2,β+2) , ξ2,2,ω(α+2,β+2) , . . . , ξn–2,2,ω(α+2,β+2) , 1), and ξ1,2,ω(α+2,β+2) ,

ξ2,2,ω(α+2,β+2) , . . . , ξn–2,2,ω(α+2,β+2) are the zeros of p(α+2,β+2)
n–2 .

Next, we list three examples.
For α = β = 0, i.e., ω(0,0)(x) = 1, we have (see [7, p. 205])

Wn,2,1(x) =
2n(n!)2

(2n)!
Pn(x) =

n
∏

k=1

(x – ξk,2,1), (3.6)

where Pn is the nth Legendre polynomial, i.e.,

Pn(x) =
1

2nn!
dn

dxn

(

x2 – 1
)n.

From (3.4) it follows that

e
(

n, BW n
∞, L2

)

= e
(

BW n
∞, L�n,2,1 , L2

)

=
2n+1/2n!

(2n)!
√

2n + 1
, (3.7)
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where �n,2,1 consists of the zeros of Pn. Furthermore, from (3.5) and (3.7) it follows that
for n > 2

e
(

n, BW n
∞, L2

)

=
2n+1/2(n + 2)!

(2n)!
√

(n – 1)n(n + 1)(n + 2)(2n + 1)
. (3.8)

For α = β = –1/2, i.e., ω(–1/2,–1/2)(x) = 1√
1–x2 , we know Wn,2,ω(–1/2,–1/2) (x) = Tn(x)

2n–1 . From (3.4)
it follows that

e
(

n, BW n
∞, L2,ω(–1/2,–1/2)

)

= e
(

BW n
∞, L�n,2,ω(–1/2,–1/2) , L2,ω(–1/2,–1/2)

)

=
√

2π

2nn!
, (3.9)

where �n,2,ω(–1/2,–1/2) = {cos (2n–1)π
2n , cos (2n–3)π

2n , . . . , cos π
2n }. Furthermore, from (3.5) and (3.9)

it follows that for n > 2

e
(

n, BW n
∞, L2,ω(–1/2,–1/2)

)

=
√

2π (n + 1)(n – 1)
2n(n – 1)n!

.

For α = β = 1/2, i.e., ω(1/2,1/2)(x) =
√

1 – x2, we know Wn,2,ω(1/2,1/2) (x) = Un(x)
2n . From (3.4) it

follows that

e
(

n, BW n
∞, L2,ω(1/2,1/2)

)

= e
(

BW n
∞, L�n,2,ω(1/2,1/2) , L2,ω(1/2,1/2)

)

=
√

π

2n+1/2n!
, (3.10)

where �n,2,ω(1/2,1/2) = �n,1,1. From (3.5) and (3.10) it follows that for n > 2

e
(

n, BW n
∞, L2,ω(1/2,1/2)

)

=
√

π (n + 3)(n + 2)n(n – 1)
2n+1/2n!n(n – 1)

.
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