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Abstract
In this paper, some special mappings of several variables such as the multicubic and
the multimixed quadratic–cubic mappings are introduced. Then, the systems of
equations defining a multicubic and a multimixed quadratic–cubic mapping are
unified to a single equation. Under some mild conditions, it is shown that a
multimixed quadratic–cubic mapping can be multiquadratic, multicubic and
multiquadratic–cubic. Furthermore, by applying a known fixed-point theorem, the
Hyers–Ulam stability of multimixed quadratic–cubic, multiquadratic, multicubic and
multiquadratic–cubic are studied in non-Archimedean normed spaces.
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1 Introduction
The stability problems of functional equations are some of the classical and practical is-
sues in the area of mathematical analysis, physics and engineering. The story of stability
for functional equations commenced with the question of Ulam [42] for group homomor-
phisms. Later, it was answered and developed by Hyers [28], Aoki [2], Rassias [38] and
Găvruţa [24] for additive and linear functional equations on Banach spaces. Indeed, a cer-
tain equation is applicable to model a physical process of a small change of the equation
gives rise to a small change in the corresponding result. In this case, we say the equation is
stable. In other words, a functional equation F is said to be stable if any mapping φ fulfill-
ing F approximately is near to an exact solution of F. Moreover, F is called hyperstable if
any function φ satisfying F approximately (under some conditions) is an exact solution of
F. For more details and updated definitions of the stability and hyperstability of functional
equations, refer to [15]. Some stability results can be available for instance in [5, 16, 26]
and [30] and also references therein.

In the two last decades, the Ulam stability problem has been answered and studied
for some special several variables mappings such as multiadditive, multi-Jensen, multi-
quadratic, multicubic and multiquartic mappings. In what follows, we state some histori-
cal notes about known functional equations used in this paper. Here, we have three famous
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functional equations, studied in books [1, 21, 32] and [39] and references therein.

A(x + y) = A(x) + A(y) (The Cauchy equation), (1.1)

Q(x + y) + Q(x – y) = 2Q(x) + 2Q(y) (The quadratic equation), (1.2)

C(x + 2y) + C(x – 2y) = 4C(x + y) + 4C(x – y) – 6C(x) (The cubic equation). (1.3)

Indeed, Rassias was the first author who defined the cubic functional equation in [37] as
follows:

C(x + 2y) = 3C(x + y) + C(x – y) – 3C(x) + 6C(y). (1.4)

Next, Jun and Kim introduced the cubic equation

C(2x + y) + C(2x – y) = 2C(x + y) + 2C(x – y) + 12C(x) (1.5)

in [29] and a different form of the cubic functional equation, namely (1.3) was introduced
by them in [30]. Equations (1.3) and (1.5) were generalized by Bodaghi in [6] as follows:

C(rx + sy) + C(rx – sy) = rs2[
C(x + y) + C(x – y)

]
+ 2r

(
r2 – s2)

C(x), (1.6)

where r, s are fixed integers with r ± s �= 0; see also [9].
Throughout this paper, we use the notations N, Z and Q as the set of positive integers,

integers and rationals, respectively, and moreover N0 := N ∪ {0}, R+ := [0,∞). For any l ∈
N0, n ∈N, t = (t1, . . . , tn) ∈ An and x = (x1, . . . , xn) ∈ V n we write lx := (lx1, . . . , lxn) and tx :=
(t1x1, . . . , tnxn), where A = {–2, –1, 1, 2} and lx stands, as usual, for the scaler product of l
on x in the commutative group V .

Let V be a commutative group, W be a linear space over Q, and n ∈ Z with n ≥ 2. A
mapping f : V n −→ W is called

• multiadditive if it satisfies (1.1) in each variable [18];
• multiquadratic if it satisfies (1.2) in each variable [19];
• multicubic if it satisfies either (1.5) or (1.6) in each variable [13, 25].

We have the following observations from [18] and [45]. Consider a mapping f : V n −→ W .
Then,

(i) f is multiadditive if and only if it satisfies

f (x1 + x2) =
∑

j1,...,jn∈{1,2}
f (x1j1 , . . . , xnjn );

(ii) f is multiquadratic if and only if it fulfills

∑

s∈{–1,1}n

f (x1 + sx2) = 2n
∑

j1,...,jn∈{1,2}
f (x1j1 , . . . , xnjn ), (1.7)

where xj = (x1j, x2j, . . . , xnj) ∈ V n with j ∈ {1, 2}. More information about the structure of
multiadditive mappings and their Ulam stabilities can be found in [18, 20], [34, Sects. 13.4
and 17.2] and [44]. Furthermore, some facts on multiquadratic mappings such as Jensen



Bodaghi Journal of Inequalities and Applications          (2022) 2022:6 Page 3 of 19

type and generalized forms with stabilities in various Banach spaces are available in [7, 10–
12, 19, 22] and [40]).

Ghaemi et al. [25] introduced multicubic mappings for the first time. In fact, they consid-
ered a mapping f : V n −→ W that satisfies (1.6) in each variable. Next, a special case of such
mappings was studied in [13]. In other words, the authors unified the system of functional
equations defining a multicubic mapping to a single equation, namely, the multicubic func-
tional equation [13]. Moreover, they showed that every multicubic functional equation is
stable and such functional equations can be hyperstable (for the miscellaneous versions
of multicubic mappings and their stabilities in non-Archimedean normed and modular
spaces, we refer to [23] and [36], respectively). In addition, the general system of cubic
functional equations has been defined in [25] and characterized as a single equation in
[23]. For the definitions and the structure of multiadditive–quadratic and multiquadratic–
cubic mappings, see [3] and [8].

In [17], Chang and Jung introduced the mixed-type quadratic and cubic functional equa-
tion

6Cq(x + y) – 6Cq(x – y) + 4Cq(3y) = 3Cq(x + 2y) – 3Cq(x – 2y) + 9Cq(2y). (1.8)

They established the general solution of (1.8) and investigated the Hyers–Ulam–Rassias
stability of this equation; for a different form of the mixed-type quadratic–cubic functional
equations, see [31]. Towanlong and Nakmahachalasint [41] considered the mixed-type
quadratic–cubic functional that is different (when its solution is either an even or odd
mapping) from (1.8) as follows:

Cq(x + 2y) – 3Cq(x + y) + 3Cq(x) – Cq(x – y) – 3Cq(y) + 3Cq(–y) = 0. (1.9)

It is easily verified that the function Cq(x) = ax3 + bx2 + c is a solution of equation (1.9); see
[35] for more stability results of (1.9).

According to equation (1.9), in this paper, we define the multimixed quadratic–cubic
mappings and present a characterization of such mappings. In other words, we describe
the system of n equations defining a multimixed quadratic–cubic mapping as a single
equation. We also show that under some mild condition, a multimixed quadratic–cubic
mapping can be multiquadratic, multicubic and multiquadratic–cubic. Finally, we prove
the Hyers–Ulam stability and hyperstability of the multimixed quadratic–cubic mappings
in non-Archimedean normed spaces by applying a known fixed-point theorem that was
introduced and studied in [14]; for more applications of this method we refer to [4, 43]
and [44].

2 The structure of some several variables mappings
Recall that the mixed-type quadratic and cubic functional equation (1.9) was introduced
in [41] and the authors proved the following theorem.

Theorem 2.1 Let X and Y be vector spaces. A function h : X −→ Y satisfies functional
equation (1.9) if and only if there exist a quadratic function A2 : X −→ Y , a cubic function
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A3 : X −→ Y and a constant A0 such that

h(x) = A0 + A2(x) + A3(x)

for all x ∈ X.

Next, by using an alternative method we obtain the general solution of (1.9), which is a
tool to reach some of our goals in this section.

Lemma 2.2 Let X and Y be real vector spaces. Suppose that h : X −→ Y satisfies (1.9) for
all x, y ∈ X.

(i) If h is even and h(0) = 0, then it is quadratic;
(ii) If h is odd, then it is cubic.

Proof (i) We first note that the evenness of h converts (1.9) to

h(x + 2y) – 3h(x + y) + 3h(x) – h(x – y) = 0, (2.1)

for all x, y ∈ X (here and in the rest of the proof ). Letting x = 0 in (2.1), we have

h(2y) = 4h(y). (2.2)

Interchanging x with x – y in (2.1), we find

h(x + y) – 3h(x) + 3h(x – y) – h(x – 2y) = 0. (2.3)

A difference computation of (2.1) and (2.3) shows that

h(x + 2y) + h(x – 2y) – 4h(x + y) – 4h(x – y) + 6h(x) = 0. (2.4)

Replacing x by 2x in (2.4) and using (2.2), we obtain

h(x + y) + h(x – y) – h(2x + y) – h(2x – y) + 6h(x) = 0. (2.5)

Switching (x, y) by (y, x) in (2.5) and applying again the evenness of f , we obtain

h(x + y) + h(x – y) – h(x + 2y) – h(x – 2y) + 6h(y) = 0. (2.6)

Inserting (2.4) into (2.6), we find

h(x + y) + h(x – y) = 2h(x) + 2h(y).

(ii) Using our assumption on (1.9), we obtain

h(x + 2y) – 3h(x + y) + 3h(x) – h(x – y) – 6h(y) = 0. (2.7)
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Putting x = 0 in (2.7) and applying from the oddness of h, we find

h(2y) = 8h(y). (2.8)

On the other hand, if we replace x – y instead of x in (2.6), then,

h(x + y) – 3h(x) + 3h(x – y) – h(x – 2y) – 6h(y) = 0. (2.9)

Now, it follows from (2.7) and (2.9) that

h(x + 2y) + h(x – 2y) = 4
[
h(x + y) + h(x – y)

]
– 6h(x).

This completes the proof. �

Henceforth, let V and W be vector spaces over Q, n ∈ N and xn
i = (xi1, xi2, . . . , xin) ∈ V n,

where i ∈ {1, 2}. We denote xn
i by xi if there is no risk of a mistake. Let x1, x2 ∈ V n and m ∈

N0 with 0 ≤ m ≤ n. Put Mn = {Nn = (N1, . . . , Nn) | Nj ∈ {x1j ± x2j, x1j}}, where j ∈ {1, . . . , n}.
Consider

Mn
m :=

{
Nn ∈Mn | Card{Nj : Nj = x1j} = m

}
.

For r ∈Q, we put rMn
m = {rNn : Nn ∈Mn

m} in which rNn = (rN1, . . . , rNn).

Definition 2.3 A mapping f : V n −→ W is n-multicubic or multicubic if f satisfies (1.3)
in each variable.

For a multicubic mapping f , we use the notations

f
(
Mn

m
)

:=
∑

Nn∈Mn
m

f (Nn), (2.10)

and

f
(
Mn

m, z
)

:=
∑

Nn∈Mn
m

f (Nn, z) (z ∈ V ).

We recall that
(n

m
)

:= n!
m!(n–m)! is the binomial coefficient, where n, m ∈ N0 with n ≥ m.

In the upcoming result, we find a necessary and sufficient condition for a several-variable
mapping to be multicubic.

Proposition 2.4 For a mapping f : V n −→ W , the following assertions are equivalent.
(i) f is multicubic;

(ii) f satisfies

∑

t∈{–2,2}n

f (x1 + tx2) =
n∑

m=0

4n–m(–6)mf
(
Mn

m
)
, (2.11)

where f (Mn
m) is defined in (2.10).
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Proof (i) ⇒ (ii) The proof of this implication is by induction on n. For n = 1, it is clear that
f fulfills (1.3). Suppose that (2.11) holds for some positive integer n > 1. Then,

∑

t∈{–2,2}n+1

f
(
xn+1

1 + txn+1
2

)

= 4
∑

t∈{–2,2}n

∑

s∈{–1,1}
f
(
xn

1 + txn
2, x1,n+1 + sx2,n+1

)
– 6

∑

t∈{–2,2}n

f
(
xn

1 + txn
2, x1,n+1

)

= 4
n∑

m=0

∑

s∈{–1,1}
4n–m(–6)mf

(
Mn

m, x1,n+1 + sx2,n+1
)

– 6
n∑

m=0

4n–m(–6)mf
(
Mn

m, x1,n+1
)

=
n+1∑

m=0

4n+1–m(–6)mf
(
Mn+1

m
)
.

(ii) ⇒ (i) Let j ∈ {1, . . . , n} be arbitrary and fixed. It is enough to prove that f is cubic in
the jth variable. Set

f ∗
j (z) := f (z1, . . . , zj–1, z, zj+1, . . . , zn).

Assuming x2m = 0 for all m ∈ {1, . . . , n}\{j}, x2j = w and x1 = (z1, . . . , zj–1, z, zj+1, . . . , zn) in
(2.11), we obtain

2n–1[f ∗
j (z + 2w) + f ∗

j (z – 2w)
]

=
n–1∑

m=0

[(
n – 1

m

)

2n–1–m4n–m(–6)m

]
[
f ∗
j (z + w) + f ∗

j (z – w)
]

+
n∑

m=1

[(
n
m

)

2n–m4n–m(–6)m

]

f ∗
j (z)

= 4
n–1∑

m=0

[(
n – 1

m

)

8n–1–m(–6)m

]
[
f ∗
j (z + w) + f ∗

j (z – w)
]

– 6
n–1∑

m=0

[(
n
m

)

8n–1–m(–6)m

]

f ∗
j (z)

= 4 × 2n–1[f ∗
j (z + w) + f ∗

j (z – w)
]

– 6 × 2n–1f ∗
j (z). (2.12)

It follows from (2.12) that

f ∗
j (z + 2w) + f ∗

j (z – 2w) = 4
[
f ∗
j (z + w) + f ∗

j (z – w)
]

– 6f ∗
j (z).

Now, the proof is completed. �

Definition 2.5 Let n ∈N and k ∈ {0, . . . , n}. A mapping f : V n −→ W is called k-quadratic
and n – k-cubic (briefly, multiquadratic–cubic) if f is quadratic (see equation (1.2)) in each
of some k variables and is cubic in each of the other variables (see equation (1.3)).

In Definition 2.5, we suppose for simplicity that f is quadratic in each of the first k vari-
ables, but one can obtain analogous results without this assumption. It is obvious that for
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k = n (resp., k = 0), the above definition leads to the so-called multiquadratic (resp., multi-
cubic) mappings; some basic facts on the mentioned mappings can be found, for instance,
in [8, 13] and [45].

To reach our results in the rest of this section, we identify x = (x1, . . . , xn) ∈ V n

with (xk , xn–k) ∈ V k × V n–k , where xk := (x1, . . . , xk) and xn–k := (xk+1, . . . , xn). Put xk
i =

(xi1, . . . , xik) ∈ V k and xn–k
i = (xi,k+1, . . . , xin) ∈ V n–k , where i ∈ {1, 2}. For a multiquadratic–

cubic mapping f , we also recall the notation

f
(
xk

i ,Mn–k
m

)
:=

∑

Nn∈Mn–k
m

f
(
xk

i ,Nn–k
)
,

where

Mn–k
m :=

{
Nn–k ∈Mn–k | Card{Nj : Nj = x1j} = m

}
,

in which

Mn–k =
{
Nn–k = (Nk+1, . . . , Nn) | Nj ∈ {x1j ± x2j, x1j}

}
.

In the following result, we describe a multiquadratic–cubic mapping as an equation. The
proof is similar to the proof of [8, Proposition 2.1], but we include some parts for the sake
of completeness.

Proposition 2.6 Let n ∈ N and k ∈ {0, . . . , n}. If a mapping f : V n −→ W is k-quadratic
and n – k-cubic mapping, then f satisfies the equation

∑

s∈{–1,1}k

∑

t∈{–2,2}n–k

f
(
xk

1 + sxk
2, xn–k

1 + txn–k
2

)
= 2k

n–k∑

m=0

4n–k–m(–6)m
∑

i∈{1,2}
f
(
xk

i ,Mn–k
m

)
(2.13)

for all xk
i = (xi1, . . . , xik) ∈ V k and xn–k

i = (xi,k+1, . . . , xin) ∈ V n–k , where i ∈ {1, 2}.

Proof Since for k ∈ {0, n} our assertion follows from Proposition 2.4 and [45, Theorem 3],
we can assume that k ∈ {1, . . . , n – 1}. Let xn–k ∈ V n–k be arbitrary and fixed. Consider
the mapping gxn–k : V k −→ W defined via gxn–k (xk) := f (xk , xn–k) for xk ∈ V k . Similar to the
proof of Proposition 2.1 from [8], one can show that

∑

s∈{–1,1}k

f
(
xk

1 + sxk
2, xn–k) = 2k

∑

j1,...,jk∈{1,2}
f
(
xj11, . . . , xjk k , xn–k) (2.14)

for all xk
1, xk

2 ∈ V k and xn–k ∈ V n–k . Similar to the above, we obtain from Proposition 2.4
that

∑

t∈{–2,2}n–k

f
(
xk , xn–k

1 + txn–k
2

)
=

n–k∑

m=0

4n–k–m(–6)mf
(
xk ,Mn–k

m
)

(2.15)

for all xn–k
1 , xn–k

2 ∈ V n–k and xk ∈ V k . Now, equalities (2.14) and (2.15) show that (2.13)
holds for f . �
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It is easily seen that the mapping f : Rn −→ R defined by f (r1, . . . , rn) =
∏k

j=1
∏n

i=k+1 r2
j r3

i

is multiquadratic–cubic and hence (2.13) is valid for f by Proposition 2.6. Therefore, this
equation is called a multiquadratic–cubic functional equation. Note that in the case k = n
and k = 0, equation (2.13) converts to (1.7) and (2.11), respectively.

Definition 2.7 Let V and W be vector spaces over Q, n ∈ N. A mapping f : V n −→ W
is said to be n-multimixed quadratic–cubic, or briefly multimixed quadratic–cubic, if f
satisfies (1.9) in each variable.

Let x1, x2 ∈ V n and pl ∈N0 with 0 ≤ pl ≤ n, where l ∈ {1, 2, 3, 4}. Set

M
n =

{
Mn = (M1, . . . , Mn) | Mj ∈ {x1j ± x2j, x1j, x2j, –x2j}

}
,

for all j ∈ {1, . . . , n}. Consider the subset Mn
(p1,p2,p3,p4) of Mn as follows:

M
n
(p1,p2,p3,p4) :=

{
Mn ∈M

n | Card{Mj : Mj = x1j} = p1,

Card{Mj : Mj = x2j} = p2, Card{Mj : Mj = –x2j} = p3,

Card{Mj : Mj = x1j + x2j} = p4
}

.

Hereafter, for a multimixed quadratic–cubic mapping f , we use the notations

f
(
M

n
(p1,p2,p3,p4)

)
:=

∑

Mn∈Mn
(p1,p2,p3,p4)

f (Mn), (2.16)

and

f
(
M

n
(p1,p2,p3,p4), z

)
:=

∑

Mn∈Mn
(p1,p2,p3,p4)

f (Mn, z) (z ∈ V ).

For each x1, x2 ∈ V n, we consider the equation

f (x1 + 2x2) =
n∑

p1=0

n–p1∑

p2=0

n–p1–p2∑

p3=0

n–p1–p2–p3∑

p4=0

(–3)p1+p3 3p2+p4 f
(
M

n
(p1,p2,p3,p4)

)
, (2.17)

where f (Mn
(p1,p2,p3,p4)) is defined in (2.16).

Definition 2.8 Given a mapping f : V n −→ W . We say f
(i) has zero condition if f (x) = 0 for any x ∈ V n with at least one component that is

equal to zero;
(ii) is even in the jth variable if

f (z1, . . . , zj–1, –zj, zj+1, . . . , zn) = f (z1, . . . , zj–1, zj, zj+1, . . . , zn);

(iii) is odd in the jth variable if

f (z1, . . . , zj–1, –zj, zj+1, . . . , zn) = –f (z1, . . . , zj–1, zj, zj+1, . . . , zn).
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In what follows, it is assumed that every mapping f : V n −→ W satisfying (2.17) has zero
condition. With this assumption, we unify the general system of mixed-type quadratic and
cubic functional equations defining a multimixed quadratic–cubic mapping to an equa-
tion and indeed this functional equation describe a multimixed quadratic–cubic mapping
as well.

Proposition 2.9 A mapping f : V n −→ W is multimixed quadratic–cubic if and only if it
satisfies equation (2.17).

Proof Suppose that f is a multimixed quadratic–cubic mapping. We proceed with the
proof by induction on n. For n = 1, it is obvious that f satisfies equation (1.9). Let (2.17) be
true for some fixed and positive integer n > 1. Then,

f
(
xn+1

1 + 2xn+1
2 , z

)

=
n∑

p1=0

n–p1∑

p2=0

n–p1–p2∑

p3=0

n–p1–p2–p3∑

p4=0

(–3)p1+p3 3p2+p4 f
(
M

n
(p1,p2,p3,p4), z

)
, (2.18)

for all x1, x2 ∈ V n and z ∈ V . Using (2.18) and the fact that (2.17) holds for the case n = 1,
we obtain

f
(
xn+1

1 + 2xn+1
2

)

= f
(
xn

1 + 2xn
2, x1,n+1 + 2x2,n+1

)

= 3f
(
xn

1 + 2xn
2, x1,n+1 + x2,n+1

)
+ f

(
xn

1 + 2xn
2, x1,n+1 – x2,n+1

)

– 3f
(
xn

1 + 2xn
2, x1,n+1

)
+ 3f

(
xn

1 + 2xn
2, x2,n+1

)
– 3f

(
xn

1 + 2xn
2, –x2,n+1

)

= 3
n∑

p1=0

n–p1∑

p2=0

n–p1–p2∑

p3=0

n–p1–p2–p3∑

p4=0

(–3)p1+p3 3p2+p4 f
(
M

n
(p1,p2,p3,p4), x1,n+1 + x2,n+1

)

+
n∑

p1=0

n–p1∑

p2=0

n–p1–p2∑

p3=0

n–p1–p2–p3∑

p4=0

(–3)p1+p3 3p2+p4 f
(
M

n
(p1,p2,p3,p4), x1,n+1 – x2,n+1

)

– 3
n∑

p1=0

n–p1∑

p2=0

n–p1–p2∑

p3=0

n–p1–p2–p3∑

p4=0

(–3)p1+p3 3p2+p4 f
(
M

n
(p1,p2,p3,p4), x1,n+1

)

+ 3
n∑

p1=0

n–p1∑

p2=0

n–p1–p2∑

p3=0

n–p1–p2–p3∑

p4=0

(–3)p1+p3 3p2+p4 f
(
M

n
(p1,p2,p3,p4), x2,n+1

)

– 3
n∑

p1=0

n–p1∑

p2=0

n–p1–p2∑

p3=0

n–p1–p2–p3∑

p4=0

(–3)p1+p3 3p2+p4 f
(
M

n
(p1,p2,p3,p4), –x2,n+1

)

=
n+1∑

p1=0

n+1–p1∑

p2=0

n+1–p1–p2∑

p3=0

n+1–p1–p2–p3∑

p4=0

(–3)p1+p3 3p2+p4 f
(
M

n+1
(p1,p2,p3,p4)

)
.

This means that (2.17) holds for n + 1.
Conversely, let j ∈ {1, . . . , n} be arbitrary and fixed. Set

f ∗
j (z) := f (z1, . . . , zj–1, z, zj+1, . . . , zn).
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Putting x2k = 0 for all k ∈ {1, . . . , n}\{j}, x2j = w and x1 = (z1, . . . , zj–1, z, zj+1, . . . , zn) in (2.17),
we obtain

f ∗
j (z + 2w) =

⎡

⎣
n–1∑

p1=0

n–p1∑

p4=1

(
n – 1

p1

)(
n – 1 – p1

p4 – 1

)

(–3)p1 3p4

⎤

⎦ f ∗
j (z + w)

+

⎡

⎣
n–1∑

p1=0

n–1–p1∑

p4=0

(
n – 1

p1

)(
n – 1 – p1

p4

)

(–3)p1 3p4

⎤

⎦ f ∗
j (z – w)

+

⎡

⎣
n∑

p1=1

n–p1∑

p4=0

(
n – 1
p1 – 1

)(
n – p1

p4

)

(–3)p1 3p4

⎤

⎦ f ∗
j (z)

+ 3

⎡

⎣
n–1∑

p1=0

n–1–p1∑

p4=0

(
n – 1

p1

)(
n – 1 – p1

p4

)

(–3)p1 3p4

⎤

⎦ f ∗
j (w)

– 3

⎡

⎣
n–1∑

p1=0

n–1–p1∑

p4=0

(
n – 1

p1

)(
n – 1 – p1

p4

)

(–3)p1 3p4

⎤

⎦ f ∗
j (–w). (2.19)

On the other hand,

n–1∑

p1=0

(
n – 1

p1

)

(–3)p1

n–1–p1∑

p4=0

(
n – 1 – p1

p4

)

3p4+1 × 1n–1–p4

= 3
n–1∑

p1=0

(
n – 1

p1

)

(–3)p1 4n–1–p1 = 3(4 – 3)n–1 = 3. (2.20)

Similarly,

n–1∑

p1=0

(
n – 1

p1

)

(–3)p1

n–1–p1∑

p4=0

(
n – 1 – p1

p4

)

3p4 × 1n–1–p4 = 1. (2.21)

Moreover,

n–1∑

p1=0

(
n – 1

p1

)

(–3)p1+1
n–1–p1∑

p4=0

(
n – 1 – p1

p4

)

3p4 × 1n–1–p4 = –3. (2.22)

It follows from (2.19), (2.20), (2.21) and (2.22) that

f ∗
j (z + 2w) = 3f ∗

j (z + w) + f ∗
j (z – w) – 3f ∗

j (z) + 3f ∗
j (w) – 3f ∗

j (–w).

This completes the proof. �

Corollary 2.10 Suppose that a mapping f : V n −→ W satisfies equation (2.17).
(i) If f is even in each variable, then it is multiquadratic. Moreover, f satisfies equation

(1.7);
(ii) If f is odd in each variable, then it is multicubic. In addition, equation (2.11) is true

for f ;
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(iii) If f is even in each of some k variables and is odd in each of the other variables, then
it is multiquadratic–cubic. In particular, f fulfilling equation (2.13).

Proof (i) It is shown in Proposition 2.9 that for each j, f ∗
j satisfies (1.9). Since it is assumed

that f ∗
j (0) = 0, the result follows from part (i) of Lemma 2.2.

(ii) This is a direct consequence of part (ii) of Lemma 2.2.
(iii) The result follows from the previous parts. �

3 Stability results
In this section, we prove the Hyers–Ulam stability of equation (2.17) in non-Archimedean
normed spaces. The method of proof is taken from a fixed point result that was proved
in [14, Theorem 1]. Before that, we state some basic facts concerning non-Archimedean
spaces and some preliminary results. A metric d on a nonempty set X is called non-
Archimedean if d(x, z) ≤ max{d(x, y), d(y, z)} for x, y, z ∈ X. By a non-Archimedean field
we mean a field K equipped with a function (valuation) | · | from K into [0,∞) such that

(i) |a| = 0 if and only if a = 0;
(ii) |ab| = |a||b| for all a, b ∈K;

(iii) |a + b| ≤ max{|a|, |b|} for all a, b ∈K.
It is obvious that |1| = | – 1| = 1 and |n| ≤ 1 for all integers n. A trivial valuation on any
field K is defined by the following for a ∈K

|a| :=

⎧
⎨

⎩
0, a = 0,

1, a �= 0.

For a nontrivial non-Archimedean valuation on Q, assume that p is a prime number. It
is known that any non-zero rational number r can be uniquely written as r = m

n ps, where
m, n, s ∈ Z in which m and n are not divisible by p. It is easily verified that the function
| · |p : Q −→ [0,∞) given through

|r|p :=

⎧
⎨

⎩
0, a = 0,

p–s, a �= 0,

is a nontrivial non-Archimedean valuation on Q.
Let V be a vector space over a scalar field K with a non-Archimedean nontrivial val-

uation | · |. A function ‖ · ‖ : V −→ R is a non-Archimedean norm if it satisfies the next
conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖ax‖ = |a|‖x‖, (x ∈ V , a ∈K);

(iii) the strong triangle inequality; namely,

‖x + y‖ ≤ max
{‖x‖,‖y‖} (x, y ∈ V ).

Then, (V ,‖ · ‖) is said to be a non-Archimedean normed space.
A sequence {xn} is Cauchy if and only if {xn+1 – xn} converges to zero in a non-

Archimedean normed space X . Indeed, the above definition is taken from the fact that

‖xn – xm‖ ≤ max
{‖xj+1 – xj‖; m ≤ j ≤ n – 1

}
(n ≥ m).
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A non-Archimedean normed space is complete if every Cauchy sequence is convergent.
If (V ,‖ · ‖) is a non-Archimedean normed space, then it is easy to check that the function
dV : V × V −→ R+, defined via dV (x, y) := ‖x – y‖, is a non-Archimedean metric on V
that is invariant, that is dV (x + z, y + z) = dV (x, y) for x, y, z ∈ X. In other words, every non-
Archimedean normed space is a special case of a metric space with invariant metrics; see
[27] and [33] for more information and details of p-adic numbers as an example of non-
Archimedean normed spaces.

We recall that for a field K with multiplicative identity 1, the characteristic of K is the

smallest positive number n such that
n-times

︷ ︸︸ ︷
1 + · · · + 1 = 0. For two sets A and B, the set of all

mappings from A to B is denoted by BA. Here, we state a theorem that is an important
result in fixed-point theory [14, Theorem 1] and use this result in obtaining our purpose
in this section.

Theorem 3.1 Suppose that the following hypotheses hold.
(H1) E is a nonempty set, Y is a complete non-Archimedean normed space over a

non-Archimedean field of the characteristic different from 2, j ∈ N,
g1, . . . , gj : E −→ E and L1, . . . , Lj : E −→R+,

(H2) T : Y E −→ Y E is an operator satisfying the inequality

∥
∥T λ(x) – T μ(x)

∥
∥ ≤ max

i∈{1,...,j}
Li(x)

∥
∥λ

(
gi(x)

)
– μ

(
gi(x)

)∥∥,

for all λ,μ ∈ Y E , x ∈ E,
(H3) � : RE

+ −→ R
E
+ is an operator defined through

�δ(x) := max
i∈{1,...,j}

Li(x)δ
(
gi(x)

)
δ ∈R

E
+, x ∈ E.

If a function θ : E −→R+ and a mapping ϕ : E −→ Y fulfills the following two conditions:

∥∥T ϕ(x) – ϕ(x)
∥∥ ≤ θ (x), lim

l→∞
�lθ (x) = 0 (x ∈ E),

then for every x ∈ E, the limit liml→∞ T lϕ(x) =: ψ(x) exists and the mapping ψ ∈ Y E , de-
fined in this way, is a fixed point of T with

∥
∥ϕ(x) – ψ(x)

∥
∥ ≤ sup

l∈N0

�lθ (x) (x ∈ E).

Here and subsequently, for the mapping f : V n −→ W , we consider the difference oper-
ator Dqcf : V n × V n −→ W by

Dqcf (x1, x2) := f (x1 + 2x2) –
n∑

p1=0

n–p1∑

p2=0

n–p1–p2∑

p3=0

n–p1–p2–p3∑

p4=0

(–3)p1+p3 3p2+p4 f
(
M

n
(p1,p2,p3,p4)

)
,

where f (Mn
(p1,p2,p3,p4)) is defined in (2.16).

We remember henceforth, all mappings f : V n −→ W are assumed that satisfy the zero
condition. In addition, all non-Archimedean fields have the characteristic different from
2. With these assumptions, we have the next stability result for equation (2.17).
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Theorem 3.2 Let β ∈ {–1, 1} be fixed, V be a linear space and W be a complete non-
Archimedean normed space. Suppose that ϕ : V n × V n −→ R+ is a mapping satisfying the
equality

lim
l→∞

(
1

|2|(3n–k)β

)l

ϕ
(
2lβx1, 2lβx2

)
= 0, (3.1)

for all x1, x2 ∈ V n. Assume also f : V n −→ W is a mapping even in each of some k variables
and is odd in each of the other variables, and moreover satisfies the inequality

∥
∥Dqcf (x1, x2)

∥
∥ ≤ ϕ(x1, x2), (3.2)

for all x1, x2 ∈ V n. Then, there exists a unique multiquadratic–cubic mapping Fqc : V n −→
W such that

∥∥f (x) – Fqc(x)
∥∥ ≤ sup

l∈N0

1

|2|(3n–k) β+1
2

(
1

|2|(3n–k)β

)l

ϕ
(
0, 2lβ+ β–1

2 x
)
, (3.3)

for all x ∈ V n.

Proof Without loss of generality, we assume for simplicity that f is even in each of the first
k variables. Putting x1 = 0 in (3.2), we have

∥
∥f (2x) – STf (x)

∥
∥ ≤ ϕ(0, x) (3.4)

for all x2 = x ∈ V n (here and in the rest of the proof ), where

S =
k∑

p2=0

k–p2∑

p3=0

k–p2–p3∑

p4=0

(
k
p2

)(
k – p2

p3

)(
k – p2 – p3

p4

)

(–3)p3 3p2+p4 ,

and

T =
n–k∑

p2=0

n–k–p2∑

p3=0

n–k–p2–p3∑

p4=0

(
n – k

p2

)(
n – k – p2

p3

)(
n – k – p2 – p3

p4

)

× 3p2+p3+p4 (–1)n–k–p2–p3–p4 .

We compute S as follows:

S =
k∑

p2=0

(
k
p2

)

3p2

k–p2∑

p3=0

(
k – p2

p3

)

(–3)p3

k–p2–p3∑

p4=0

(
k – p2 – p3

p4

)

1k–p2–p3–p4 3p4

=
k∑

p2=0

(
k
p2

)

3p2

k–p2∑

p3=0

(
k – p2

p3

)

(–3)p3 4k–p2–p3

=
k∑

p2=0

(
k
p2

)

3p2 1k–p2 = (3 + 1)k = 22k . (3.5)
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Similarly, one can show that

T = 23(n–k). (3.6)

Relations (3.4), (3.5) and (3.6) imply that

∥∥f (2x) – 23n–kf (x)
∥∥ ≤ ϕ(0, x). (3.7)

Set

θ (x) :=
1

|2|(3n–k) β+1
2

ϕ
(
0, 2

β–1
2 x

)
, T ξ (x) :=

1
2(3n–k)β ξ

(
2βx

)
,

for all ξ ∈ W V n . Here, we rewrite (3.7) as follows:

∥
∥f (x) – T f (x)

∥
∥ ≤ θ (x). (3.8)

For each η ∈ R
V n
+ , we define �η(x) := 1

|2|(3n–k)β η(rβx). Considering E = V n, g1(x) := 2βx and
L1(x) = 1

|2|(3n–k)β , we see that � fulfils (H3). Furthermore, for any λ,μ ∈ W V n , we obtain

∥
∥T λ(x) – T μ(x)

∥
∥ =

∥∥
∥∥

1
2(3n–k)β λ

(
2βx

)
–

1
2(3n–k)β μ

(
2βx

)
∥∥
∥∥ ≤ L1(x)

∥
∥λ

(
g1(x)

)
– μ

(
g1(x)

)∥∥.

It follows from the above relation that hypothesis (H2) holds. One can argue by induction
on l ∈N that

�lθ (x) :=
(

1
|2|(3n–k)β

)l

θ
(
2lβx

)
=

1

|2|(3n–k) β+1
2

(
1

|2|(3n–k)β

)l

ϕ
(
0, 2lβ+ β–1

2
)
. (3.9)

Now, all the assumptions of Theorem 3.1 hold by (3.8) and (3.9) and therefore there exists
a unique mapping Fqc : V n −→ W such that Fqc(x) = liml→∞(T lf )(x) and (3.3) is valid as
well. In addition, an induction argument on l leads us to

∥∥Dqc
(
T lf

)
(x1, x2)

∥∥ ≤
(

1
|2|(3n–k)β

)l

ϕ
(
2lβx1, 2lβx2

)
, (3.10)

for all x1, x2 ∈ V n. Letting l → ∞ in (3.10) and applying (3.1), we obtain DqcFqc(x1, x2) = 0
for all x1, x2 ∈ V n. This means that the mapping Fqc satisfies equation (2.17) and the proof
is now completed by part (iii) of Corollary 2.10. �

In what follows, it is assumed that the non-Archimedean field has the characteristic
different from 2 and |2| < 1. The following corollaries are some direct applications of The-
orem 3.2 concerning the stability of (2.17).

Corollary 3.3 Given δ > 0. Let V be a normed space and W be a complete non-
Archimedean normed space. Suppose that f : V n −→ W is a mapping even in each of some
k variables and is odd in each of the other variables and moreover satisfies the inequality

∥∥Dqcf (x1, x2)
∥∥ ≤ δ,
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for all x1, x2 ∈ V n. Then, there exists a unique multiquadratic–cubic mapping Fqc : V n −→
W such that

∥
∥f (x) – Fqc(x)

∥
∥ ≤ δ,

for all x ∈ V n.

Proof Note that |2| < 1. Given ϕ(x1, x2) = δ in the case β = –1 of Theorem 3.2, we obtain
liml→∞ |2|(3n–k)lδ = 0. Therefore, one can obtain the desired result. �

Corollary 3.4 Let α ∈R fulfill α �= 3n – k. Let V be a non-Archimedean normed space and
W be a complete non-Archimedean normed space. Suppose that f : V n −→ W is a mapping
even in each of some k variables and is odd in each of the other variables and also satisfies
the inequality

∥
∥Dqcf (x1, x2)

∥
∥ ≤

2∑

i=1

n∑

j=1

‖xij‖α ,

for all x1, x2 ∈ V n. Then, there exists a unique multiquadratic–cubic mapping Fqc : V n −→
W such that

∥∥f (x) – Fqc(x)
∥∥ ≤

⎧
⎨

⎩

1
|2|3n–k

∑n
j=1 ‖x1j‖α , α > 3n – k,

1
|2|α

∑n
j=1 ‖x1j‖α , α < 3n – k

for all x = x1 ∈ V n.

Proof Set ϕ(x1, x2) :=
∑2

i=1
∑n

j=1 ‖xij‖α . It now follows from Theorem 3.2 the first and sec-
ond inequalities in the cases β = 1 and β = –1, respectively. �

Here, note that in Corollary 3.4 if we change non-Archimedean normed space V with
a normed space, then in the case α < 3n – k there exists a unique multiquadratic–cubic
mapping Fqc : V n −→ W such that

∥∥f (x) – Fqc(x)
∥∥ ≤ 1

|2|α
n∑

j=1

‖x1j‖α .

Under some conditions, equation (2.17) can be hyperstable as follows.

Corollary 3.5 Suppose that αij > 0 for i ∈ {1, 2} and j ∈ {1, . . . , n} fulfill
∑2

i=1
∑n

j=1 αij �=
3n – k. Let V be a normed space and W be a complete non-Archimedean normed space. If
f : V n −→ W is a mapping even in each of some k variables and is odd in each of the other
variables and moreover satisfies the inequality

∥
∥Dqcf (x1, x2)

∥
∥ ≤

2∏

i=1

n∏

j=1

‖xij‖αij ,

for all x1, x2 ∈ V n, then f is multiquadratic–cubic.
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Next, we have the stability result for functional equation (2.17) when f is either even or
odd in each variable.

Theorem 3.6 Let β ∈ {–1, 1} be fixed. Let V be a linear space and W be a complete non-
Archimedean normed space. Suppose that ϕ : V n × V n −→ R+ is a mapping satisfying

∥∥Dqcf (x1, x2)
∥∥ ≤ ϕ(x1, x2),

for all x1, x2 ∈ V n.
(i) If f : V n −→ W is a mapping even in each variable and fulfilling

lim
l→∞

(
1

|2|2nβ

)l

ϕ
(
2lβx1, 2lβx2

)
= 0,

then there exists a unique multiquadratic mapping Q : V n −→ W such that

∥∥f (x) – Q(x)
∥∥ ≤ sup

l∈N0

1

|2|2n β+1
2

(
1

|2|2nβ

)l

ϕ
(
0, 2lβ+ β–1

2 x
)
,

for all x ∈ V n.
(ii) If f : V n −→ W is a mapping odd in each variable and

lim
l→∞

(
1

|2|3nβ

)l

ϕ
(
2lβx1, 2lβx2

)
= 0,

then there exists a unique multicubic mapping C : V n −→ W such that

∥∥f (x) – C(x)
∥∥ ≤ sup

l∈N0

1

|2|3n β+1
2

(
1

|2|3nβ

)l

ϕ
(
0, 2lβ+ β–1

2 x
)
,

for all x ∈ V n.

Proof The result follows from Theorem 3.2 by putting k = 0, n. �

The upcoming corollaries are some direct consequences of Theorem 3.6 concerning the
stability of multiquadratic and multicubic mappings. We include them without the proofs.

Corollary 3.7 Given δ > 0. Let V be a normed space and W be a complete non-
Archimedean normed space. Suppose that f : V n −→ W is a mapping even in each variable
satisfying the inequality

∥
∥Dqcf (x1, x2)

∥
∥ ≤ δ,

for all x1, x2 ∈ V n.
(i) If f is even in each variable, then there exists a unique multiquadratic mapping

Q : V n −→ W such that

∥∥f (x) – Q(x)
∥∥ ≤ δ,

for all x ∈ V n.
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(ii) If f is odd in each variable, then there exists a unique multicubic mapping
C : V n −→ W such that

∥
∥f (x) – C(x)

∥
∥ ≤ δ,

for all x ∈ V n.

Corollary 3.8 Given α ∈R fulfills α �= 2n, 3n. Let V be a non-Archimedean normed space
and W be a complete non-Archimedean normed space. Suppose that f : V n −→ W is a
mapping satisfying the inequality

∥
∥Dqcf (x1, x2)

∥
∥ ≤

2∑

i=1

n∑

j=1

‖xij‖α ,

for all x1, x2 ∈ V n.
(i) If f is even in each variable, then there exists a unique multiquadratic mapping

Q : V n −→ W such that

∥∥f (x) – Q(x)
∥∥ ≤

⎧
⎨

⎩

1
|2|2n

∑n
j=1 ‖x1j‖α , α > 2n,

1
|2|α

∑n
j=1 ‖x1j‖α , α < 2n,

for all x = x1 ∈ V n.
(ii) If f is odd in each variable, then there exists a unique multicubic mapping

C : V n −→ W such that

∥
∥f (x) – C(x)

∥
∥ ≤

⎧
⎨

⎩

1
|2|3n

∑n
j=1 ‖x1j‖α , α > 3n,

1
|2|α

∑n
j=1 ‖x1j‖α , α < 3n,

for all x = x1 ∈ V n.

Corollary 3.9 Given αij > 0 for i ∈ {1, 2} and j ∈ {1, . . . , n} fulfill
∑2

i=1
∑n

j=1 αij �= 2n, 3n. Let
V be a normed space and W be a complete non-Archimedean normed space. Suppose that
f : V n −→ W is a mapping satisfying the inequality

∥
∥Dqcf (x1, x2)

∥
∥ ≤

2∏

i=1

n∏

j=1

‖xij‖αij ,

for all x1, x2 ∈ V n.
(i) If f is even in each variable, then it is multiquadratic;

(ii) If f is odd in each variable, then it is multicubic.
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