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1 Introduction
In mathematical analysis, the Hardy operator is considered a significant averaging opera-
tor and has been exercised a lot during the recent past. In [1], Hardy defined the classical
Hardy operator as follows:

Pg(z) =
1
z

∫ z

0
g(t) dt, z > 0, (1)

and established a sharp (q, q) inequality for it. Faris [2] introduced the n-dimensional ver-
sion of (1), however, the exact value of norm of the n-dimensional Hardy operator on the
Lebesgue space was obtained in [3]. Subsequently, in [4], the authors defined the fractional
Hardy operator and its adjoint operator as follows:

Hg(z) =
1

|z|n–β

∫
|t|≤|z|

g(t) dt, H∗g(z) =
∫

|t|>|z|
g(t)

|t|n–β
dt, z ∈ R

n \ {0}, (2)

where |z| =
√∑n

i=1 z2
i . Here, we cite some important readings with regards to the study of

Hardy-type operators on different function spaces which include [5–10].
The concept of generalizing function spaces started with the work presented in [11].

However, variable exponent Lebesgue spaces Lp(·) were firstly introduced by Kováčik and
Rákosník in [12]. After that, the development of variable Lebesgue spaces was started
along with the investigation of boundedness of several operators including the maximal
operator on Lp(·) [13–16]. Recently, the theory of generalized function spaces showed deep
concern in many fields of mathematical analysis like, for example, in the field of image pro-
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cessing [17], in the analysis of electrorheological fluids models [18], and in the theory of
partial differential equations with nonstandard growth conditions [19].

Besides, Izuku introduced Herz spaces with variable exponent K̇α,p(·)
q in [20, 21]. Later

on, Almeida and Drihemn [22] gave a new definition of Herz spaces by taking the expo-
nent alpha as a variable. However, the Herz space having all the exponents as variables
was defined and studied in [23]. Morrey–Herz spaces with variable exponent MK̇α,λ

q,p(·) first
appeared in [24]. The ensuing paper [25] made some generalization in the definition of
Morrey–Herz spaces given in [24] by replacing the exponent α with α(·). A few important
considerations in this regard can be found in [26–29].

Recent advancements in the field of variable exponent function spaces include the de-
velopment of its weighted theory based on the Muckenhoupt weights [30]. In [31, 32],
Cruz-Uribe with different co-authors gave the continuity criteria for Hardy–Littlewood
maximal operator M:

Mg(z) = sup
B:ball,z∈B

1
|B|

∫
B

∣∣g(t)
∣∣dt,

on weighted Lp(·)(w) spaces. Equivalence between the boundedness of M on Lp(·)(w) and
the Muckenhoupt condition was proved by Diening and Hästö in [33]. Izuki and Noi
defined the weighted Herz spaces with variable exponents in [34]. However, weighted
Morrey–Herz spaces with variable exponents were defined and studied in [35, 36].

The aim of this article is to study the continuity criteria for fractional type Hardy oper-
ators on weighted variable exponents Morrey–Herz spaces. It is worth mentioning here
that our idea is based on Muckenhoupt theory and on Banach function spaces. We thus
extend some results presented in [27]. Also, at an intermediate level, we use the bounded-
ness of fractional integral to control the boundedness of the fractional Hardy operators.
The fractional integral can be defined as

Iβ (g)(z) =
∫
Rn

g(t)
|z – t|n–β

dt.

The variable Lebesgue spaces boundedness property of Riesz potential was reported in
[37]. On the weighted Herz spaces, the boundedness of fractional integral operator was
obtained by Izuki and Noi [34].

The presentation of this paper includes four sections. The next section is full of nec-
essary notations and definitions. In Sect. 3, we furnish key lemmas which are helpful in
proving our main results in Sect. 4.

2 Notations and definitions
In the remainder of this article, the letter C will denote a constant whose value may change
from line to line. A nonempty set S is considered to be a measurable set in R

n, and χS

represents the characteristic function of S, whereas |S| represents its Lebesgue measure.
Let us first define variable exponent Lebesgue spaces based on the fundamental papers
and books [12, 15, 16].
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Definition 2.1 Let p(·) : Rn → [1,∞) be a measurable function. The Lebesgue space with
variable exponent Lp(·)(Rn) is the set of all measurable functions f such that

Fp(f ) =
∫
Rn

∣∣f (x)
∣∣p(x) dx < ∞.

The space Lp(·)(Rn) turns out to be Banach function space with respect to the norm

‖f ‖Lp(·) = inf

{
σ > 0 : Fp

(
f
σ

)
=

∫
Rn

( |f (x)|
σ

)p(x)

dx ≤ 1
}

.

Definition 2.2 We denote by P(Rn) the set of all measurable functions p(·) : Rn → (1,∞)
such that

1 < p– ≤ p(x) ≤ p+ < ∞,

where

p– := essinf
x∈Rn

p(x), p+ := esssup
x∈Rn

p(x).

Definition 2.3 Suppose that p(·) is a real-valued function on R
n. We say that

(i) C log
loc (Rn) is the set of all local log-Hölder continuous functions p(·) satisfying

∣∣p(x) – p(y)
∣∣ ≤ –C

log(|x – y|) , |x – y| <
1
2

, x, y ∈R
n.

(ii) C log
0 (Rn) is the set of all local log-Hölder continuous functions p(·) satisfying at

origin

∣∣p(x) – p(0)
∣∣ � C

log(|e + 1
|x| |)

, x ∈ R
n.

(iii) C log
∞ (Rn) is a set of all log-Hölder continuous functions satisfying at infinity

∣∣p(x) – p∞
∣∣ ≤ C∞

log(e + |x|) , x ∈R
n.

(iv) C log(Rn) = C log
∞ ∩ C log

loc denotes the set of all global log-Hölder continuous functions
p(·).

It was proved in [38] that if p(·) ∈P(Rn)∩C log(Rn), then the Hardy–Littlewood maximal
operator M is bounded on Lp(·)(Rn).

Suppose that w(x) is a weight function on R
n, which is a nonnegative and locally inte-

grable function on R
n. Let Lp(·)(w) be the space of all complex-valued functions f on R

n

such that fw
1

p(·) ∈ Lp(·)(Rn). The space Lp(·)(w) is a Banach function space equipped with
the norm

‖f ‖Lp(·)(w) =
∥∥fw

1
p(·)

∥∥
Lp(·) .
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Benjamin Muckenhoupt introduced the theory of Ap (1 < p < ∞) weights on R
n in [30].

Recently, in [34, 39] Izuki and Noi generalized the Muckenhoupt Ap class by taking p as
variable.

Definition 2.4 Let p(·) ∈P(Rn). A weight w is an Ap(·) weight if

sup
B

1
|B|

∥∥w1/p(·)χB
∥∥

Lp(·)
∥∥w–1/p(·)χB

∥∥
Lp′(·) < ∞.

In [40], authors proved that w ∈ Ap(·) if and only if M is bounded on the space Lp(·).

Remark 2.5 ([34]) Suppose p(·), q(·) ∈P(Rn) ∩ C log(Rn) and p(·) ≤ q(·), then we have

A1 ⊂ Ap(·) ⊂ Aq(·).

Definition 2.6 Suppose p1(·), p2(·) ∈ P(Rn) and β ∈ (0, n) such that 1
p2(x) = 1

p1(x) – β

n . A
weight w is said to be A(p1(·), p2(·)) weight if

‖χB‖Lp2(·)(wp2(·))‖χB‖(Lp1(·)(wp1(·)))′ ≤ C|B|1– β
n .

Definition 2.7 ([34]) Suppose p1(·), p2(·) ∈P(Rn) and β ∈ (0, n) such that 1
p2(x) = 1

p1(x) – β

n .
Then w ∈ A(p1(·),p2(·)) if and only if wp2(·) ∈ A1+p2(·)/p′

1(·).

It is well known that Herz spaces play an important role in harmonic analysis. After they
have been introduced in [41], the theory of these spaces had a remarkable development in
part due to its usefulness in applications. For instance, they appear in the characterization
of multipliers on Hardy spaces [42], in the summability of Fourier transforms [43], and
in regularity theory for elliptic equations in divergence form [44]. For a detailed study of
Herz-type spaces, we recommend the reader to see the book [45]. Now, we define variable
exponent weighted Morrey–Herz space MK̇α(·),λ

q,p(·) (w). Let Bk = {x ∈R
n : |x| ≤ 2k}, Ak = Bk \

Bk–1, and χk = χAk for k ∈ Z.

Definition 2.8 Let w be a weight on R
n, λ ∈ [0,∞), q ∈ (0,∞), p(·) ∈ P(Rn), and α(·) :

R
n → R with α(·) ∈ L∞(Rn). The space MK̇α(·),λ

q,p(·) (w) is the set of all measurable functions
f given by

MK̇α(·),λ
q,p(·) (w) =

{
f ∈ Lp(·)

loc
(
R

n \ {0}, w
)

: ‖f ‖MK̇α(·),λ
q,p(·) (w) < ∞}

,

where

‖f ‖MK̇α(·),λ
q,p(·) (w) = sup

k0∈Z
2–k0λ

( k0∑
k=–∞

2kα(·)q‖f χk‖q
Lp(·)(w)

)1/q

.

Obviously, MK̇α(·),0
q,p(·) (w) = K̇α(·)

q,p(·)(w) is the weighted Herz space with variable exponent
(see [22]).
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3 Key lemmas
We start this section with some useful lemmas that will be helpful in proving our main
results.

Lemma 3.1 ([46]) If X is a Banach function space, then
(i) The associated space X ′ is also a Banach function space.

(ii) ‖ · ‖(X′)′ and ‖ · ‖X are equivalent.
(iii) If g ∈ X and f ∈ X ′, then

∫
Rn

∣∣f (x)g(x)
∣∣dx ≤ ‖g‖X‖f ‖X′

is the generalized Hölder inequality.

Lemma 3.2 Suppose that X is a Banach function space, we have that, for all balls B,

1 ≤ 1
|B| ‖χB‖X‖χB‖X′ .

Lemma 3.3 ([47]) Consider Banach function space X. Let M be a Hardy–Littlewood max-
imal operator that is weakly bounded on X, that is,

‖χ{Mf >σ }‖X � σ –1‖f ‖X

is true for σ > 0 and for all f ∈ X. Then we have

sup
B:ball

1
|B| ‖χB‖X‖χB‖X′ < ∞.

Lemma 3.4 ([37])
(1) X(Rn, W ) is a Banach function space equipped with the norm

‖f ‖X(Rn ,W ) = ‖fW‖X ;

(2) The associate space X ′(Rn, W –1) of X(Rn, W ) is also a Banach function space.

Lemma 3.5 ([34]) Let X be a Banach function space and M be bounded on X ′, then there
exists a constant δ ∈ (0, 1) for all B ⊂R

n and E ⊂ B,

‖χE‖X

‖χB‖X
≤

( |E|
|B|

)δ

.

The paper [12] shows that Lp(·)(Rn) is a Banach function space and the associated space
Lp′(·)(Rn) with equivalent norm.

Remark 3.6 Let p(·) ∈ P(Rn) and by comparing the Lebesgue space Lp(·)(wp(·)) and
Lp′(·)(w–p′(·)) with the definition of X(Rn, W ), we have:

1. If we take W = w and X = Lp(·)(Rn), then we get Lp(·)(Rn, w) = Lp(·)(wp(·)).
2. If we consider W = w–1 and X = Lp′(·)(Rn), then we have Lp′(·)(w–p′(·)) = Lp′(·)(Rn, w–1).
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By virtue of Lemma 3.4, we get

(
Lp(·)(

R
n, w

))′ =
(
Lp(·)(wp(·)))′ = Lp′(·)(w–p′(·)) = Lp′(·)(

R
n, w–1).

Lemma 3.7 ([48]) Let p(·) ∈P(Rn) ∩C log(Rn) be a Log Hölder continuous function both at
infinity and at origin, if wp2(·) ∈ Ap2(·) implies w–p′

2(·) ∈ Ap′
2(·). Thus the Hardy–Littlewood

operator is bounded on Lp′
2(·)(w–p′

2(·)) and there exist constants δ1, δ2 ∈ (0, 1) such that

‖χE‖Lp2(·)(wp2(·))

‖χB‖Lp2(·)(wp2(·))
=

‖χE‖
(Lp′

2(·)(w–p′
2(·)))′

‖χB‖
(Lp′

2(·)(w–p′
2(·)))′

�
( |E|

|B|
)δ1

(3)

and

‖χE‖(Lp2(·)(wp2(·)))′

‖χB‖(Lp2(·)(wp2(·)))′
�

( |E|
|B|

)δ2

, (4)

for all balls B and all measurable sets E ⊂ B.

Lemma 3.8 ([34]) Let p1(·) ∈ P(Rn) ∩ C log(Rn) and 0 < β < n
p1+

, and 1
p2(·) = 1

p1(·) – β

n . If
w ∈ A(p1(·), p2(·)), then Iβ is bounded from Lp1(·)(wp1(·)) to Lp2(·)(wp2(·)).

4 Main results and proofs
The following proposition was proved in [36].

Proposition 4.1 Let q(·) ∈ P(Rn), 0 < p < ∞ and 0 ≤ λ < ∞. If α(·) ∈ L∞(Rn) ∩ C log(Rn),
then

‖f ‖p
MK̇α(·),λ

p,q(·) (wq(·))
= sup

k0∈Z
2–k0λp

k0∑
j=–∞

2jα(·)p‖f χj‖p
Lq(·)(wq(·))

≤ max

{
sup
k0∈Z
k0<0

2–k0λp

( k0∑
j=–∞

2jα(0)p‖f χj‖p
Lq(·)(wq(·))

)
,

sup
k0∈Z
k0≥0

(
2–k0λp

( –1∑
j=–∞

2jα(0)p‖f χj‖p
Lq(·)(wq(·))

)

+ 2–k0λp

( k0∑
j=0

2jα(∞)p‖f χj‖p
Lq(·)(wq(·))

))}
.

One of the main results of this study is as follows.

Theorem 4.2 Let 0 < q1 ≤ q2 < ∞, p2(·) ∈ P(Rn) ∩ C log(Rn), and p1(·) be such that 1
p2(·) =

1
p1(·) – β

n . Also, let wp2(·) ∈ A1, λ > 0 and α(·) ∈ L∞(Rn) ∩ C log(Rn) be log Hölder continuous
at the origin, with α(0) ≤ α(∞) < λ + nδ2 – β , where δ2 ∈ (0, 1) is the constant appearing in
(4), then

‖Hβ f ‖MK̇α(·),λ
q2,p2(·)(wp2(·)) ≤ C‖f ‖MK̇α(·),λ

q1,p1(·)(wp1(·)).
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Proof For any f ∈ MK̇α(·),λ
q1,p1(·)(w

p1(·)), if we represent fj = f · χj = f · χAj for each j ∈ Z, then
we write

f (x) =
∞∑

j=–∞
f (x) · χj(x) =

∞∑
j=–∞

fj(x).

The generalized Hölder inequality yields

∣∣Hβ f (x) · χk(x)
∣∣ ≤ 1

|x|n–β

∫
Bk

∣∣f (t)
∣∣dt · χk(x)

≤ C2–kn
k∑

j=–∞
‖fj‖Lp1(·)(wp1(·))‖χj‖(Lp1(·)(wp1(·)))′2

kβχk(x). (5)

Making use of Lemmas 3.3 and 3.7, respectively, we obtain

‖Hβ f · χk‖Lp2(·)(wp2(·))

≤ C2kβ

k∑
j=–∞

‖fj‖Lp1(·)(wp1(·))‖χj‖(Lp1(·)(wp1(·)))′2
–kn‖χk‖Lp2(·)(wp2(·))

≤ C2kβ

k∑
j=–∞

‖fj‖Lp1(·)(wp1(·))‖χj‖(Lp1(·)(wp1(·)))′ ‖χk‖–1
(Lp2(·)(wp2(·)))′

≤ C2kβ

k∑
j=–∞

‖fj‖Lp1(·)(wp1(·))‖χj‖(Lp1(·)(wp1(·)))′ ‖χj‖–1
(Lp2(·)(wp2(·)))′

‖χj‖(Lp2(·)(wp2(·)))′

‖χk‖(Lp2(·)(wp2(·)))′

≤ C2kβ

k∑
j=–∞

2nδ2(j–k)‖fj‖Lp1(·)(wp1(·))‖χj‖(Lp1(·)(wp1(·)))′ ‖χj‖–1
(Lp2(·)(wp2(·)))′ . (6)

To proceed further, we take f = χBj in the definition of Iβ to get

Iβ (χBj )(x) ≥ C2jβχBj (x),

which implies that

χBj (x) ≤ C2–jβ Iβ (χBj )(x).

Taking the norm on both sides and using Lemmas 3.8 and 3.3, respectively, we get

‖χBj‖Lp2(·)(wp2(·)) ≤ C2–jβ∥∥Iβ (χBj )
∥∥

Lp2(·)(wp2(·))

≤ C2–jβ∥∥(χBj )
∥∥

Lp1(·)(wp1(·))

≤ 2j(n–β)∥∥(χBj )
∥∥–1

(Lp1(·)(wp1(·)))′ . (7)
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Inserting (7) into (6), we are down to

‖Hβ f · χk‖Lp2(·)(wp2(·))

≤ C2kβ

k∑
j=–∞

2nδ2(j–k)2j(n–β)‖fj‖Lp1(·)(wp1(·))‖χj‖–1
Lp2(·)(wp2(·))‖χj‖–1

(Lp2(·)(wp2(·)))′

= C
k∑

j=–∞
2(β–nδ2)(k–j)‖fj‖Lp1(·)(wp1(·))

(
2–jn‖χj‖Lp2(·)(wp2(·))‖χj‖(Lp2(·)(wp2(·)))′

)–1

≤ C
k∑

j=–∞
2(β–nδ2)(k–j)‖fj‖Lp1(·)(wp1(·)). (8)

In the rest of the proof, in order to estimate ‖fj‖Lp1(·)(wp1(·)), we consider two cases as
below.

Case 1: We take j < 0 and start estimating as follows:

‖fj‖Lp1(·)(wp1(·)) = 2–jα(0)(2jα(0)q1‖fj‖q1
Lp1(·)(wp1(·))

) 1
q1

≤ 2–jα(0)

( j∑
i=–∞

2iα(0)q1‖fi‖q1
Lp1(·)(wp1(·))

) 1
q1

≤ 2j(λ–α(0))2–jλ

( j∑
i=–∞

2iα(·)q1‖fi‖q1
Lp1(·)(wp1(·))

) 1
q1

≤ C2j(λ–α(0))‖f ‖MK̇α(·),λ
q1,p1(·)(wp1(·)). (9)

Case 2: For j ≥ 0, we get

‖fj‖Lp1(·)(wp1(·)) = 2–jα(∞)(2jα(∞)q1‖fj‖q1
Lp1(·)(wp1(·))

) 1
q1

≤ 2–jα(∞)

( j∑
i=0

2iα(∞)q1‖fi‖q1
Lp1(·)(wp1(·))

) 1
q1

≤ 2j(λ–α(∞))2–jλ

( j∑
i=–∞

2iα(·)q1‖fi‖q1
Lp1(·)(wp1(·))

) 1
q1

≤ C2j(λ–α(∞))‖f ‖MK̇α(·),λ
q1,p1(·)(wp1(·)). (10)

By the definition of variable exponent Morrey–Herz space along with the use of Propo-
sition 4.1, we arrive at the following inequality:

‖Hβ f ‖q1

MK̇α(·),λ
q2,p2(·)(wp2(·))

= sup
k0∈Z

2–k0λq1

k0∑
k=–∞

2kα(·)q1‖Hβ f · χk‖q1
Lp2(·)(wp2(·))

≤ max

{
sup
k0∈Z
k0<0

2–k0λq1

k0∑
k=–∞

2kα(0)q1‖Hβ f · χk‖q1
Lp2(·)(wp2(·))

,
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sup
k0∈Z
k0≥0

2–k0λq1

( –1∑
k=–∞

2kα(0)q1‖Hβ f · χk‖q1
Lp2(·)(wp2(·))

+
k0∑

k=0

2kα(∞)q1‖Hβ f · χk‖q1
Lp2(·)(wp2(·))

)}

= max{Y1, Y2 + Y3}, (11)

where

Y1 = sup
k0∈Z
k0<0

2–k0λq1

k0∑
k=–∞

2kα(0)q1‖Hβ f · χk‖q1
Lp2(·)(wp2(·))

,

Y2 = sup
k0∈Z
k0≥0

2–k0λq1
–1∑

k=–∞
2kα(0)q1‖Hβ f · χk‖q1

Lp2(·)(wp2(·))
,

Y3 = sup
k0∈Z
k0≥0

2–k0λq1

k0∑
k=0

2kα(∞)q1‖Hβ f · χk‖q1
Lp2(·)(wp2(·))

.

First, we approximate Y1. Since α(0) ≤ α(∞) < nδ2 + λ – β ,

Y1 ≤ C sup
k0∈Z
k0<0

2–k0λq1

k0∑
k=–∞

2kα(0)q1

( k∑
j=–∞

2(β–nδ2)(k–j)‖f ‖Lp1(·)(wp1(·))

)q1

≤ C sup
k0∈Z
k0<0

2–k0λq1

k0∑
k=–∞

2kα(0)q1

( k∑
j=–∞

2(β–nδ2)(k–j)2j(λ–α(0))‖f ‖MK̇α(·),λ
q1,p1(·)(wp1(·))

)q1

≤ C‖f ‖q1

MK̇α(·),λ
q1,p1(·)(wp1(·))

sup
k0∈Z
k0<0

2–k0λq1

k0∑
k=–∞

2kα(0)q1

( k∑
j=–∞

2(β–nδ2)(k–j)2j(λ–α(0))

)q1

≤ C‖f ‖q1

MK̇α(·),λ
q1,p1(·)(wp1(·))

sup
k0∈Z
k0<0

2–k0λq1

k0∑
k=–∞

2kλq1

( k∑
j=–∞

2(j–k)(–β+nδ2–α(0)+λ)

)q1

≤ C‖f ‖q1

MK̇α(·),λ
q1,p1(·)(wp1(·))

.

The estimate of Y2 is similar to that of Y1. Lastly, we estimate Y3

Y3 ≤ C sup
k0∈Z
K0≥0

2–k0λq1

k0∑
k=0

2kα(∞)q1

( k∑
j=–∞

2(β–nδ2)(k–j)‖fj‖Lp1(·)(wp1(·))

)q1

≤ C sup
k0∈Z
k0≥0

2–k0λq1

k0∑
k=0

2kα(∞)q1

( k∑
j=–∞

2(β–nδ2)(k–j)2j(λ–α(∞))‖f ‖MK̇α(·),λ
q1,p1(·)(wp1(·))

)q1
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≤ C‖f ‖q1

MK̇α(·),λ
q1,p1(·)(wp1(·))

sup
k0∈Z
k0≥0

2–k0λq1

k0∑
k=0

2kα(∞)q1

( k∑
j=–∞

2(β–nδ2)(k–j)2j(λ–α(∞))

)q1

≤ C‖f ‖q1

MK̇α(·),λ
q1,p1(·)(wp1(·))

sup
k0∈Z
k0≥0

2–k0λq1

k0∑
k=0

2kλq1

( k∑
j=–∞

2(j–k)(–β+nδ2–α(∞)+λ)

)q1

≤ C‖f ‖q1

MK̇α(·),λ
q1,p1(·)(wp1(·))

.

The desired result is obtained by inserting the approximations of Y1, Y2, and Y3 into (11). �

Theorem 4.3 Let q1, q2, p1(·), p2(·),β ,α(·) and w be as in Theorem 4.2. In addition, if –nδ1 +
λ < α(0) ≤ α(∞), where δ1 ∈ (0, 1) is the constant appearing in (3), then

∥∥H∗
β f

∥∥
MK̇α(·),λ

q2,p2(·)(wp2(·)) ≤ C‖f ‖MK̇α(·),λ
q1,p1(·)(wp1(·)).

Proof An application of the Hölder inequality gives

∣∣H∗
β f (x) · χk(x)

∣∣ ≤
∫

Rn\Bk

∣∣f (t)‖x
∣∣β–n dt · χk(x)

≤ C
∞∑

j=k+1

2j(β–n)‖fj‖Lp1(·)(wp1(·))‖χj‖(Lp1(·)(wp1(·)))′χk(x).

Now, using Lemma 3.3, we have

∥∥H∗
β f · χk

∥∥
Lp2(·)(wp2(·)) ≤ C

∞∑
j=k+1

2j(β–n)‖fj‖Lp1(·)(wp1(·))‖χj‖(Lp1(·)(wp1(·)))′ ‖χk‖Lp2(·)(wp2(·))

≤ C
∞∑

j=k+1

2jβ‖fj‖Lp1(·)(wp1(·))‖χj‖–1
Lp1(·)(wp1(·))‖χk‖Lp2(·)(wp2(·)). (12)

In view of inequality (7), we obtain

∥∥H∗
β f · χk

∥∥
Lp2(·)(wp2(·)) ≤ C

∞∑
j=k+1

‖fj‖Lp1(·)(wp1(·))
‖χk‖Lp2(·)(wp2(·))

‖χj‖Lp2(·)(wp2(·))

≤ C
∞∑

j=k+1

2nδ1(k–j)‖fj‖Lp1(·)(wp1(·)), (13)

where we used Lemma 3.7 in the last step.
In the remaining proof of this theorem, we follow the procedure as in Theorem 4.2 to

have

∥∥H∗
β f · χk

∥∥
Lp2(·)(wp2(·)) = max{Z1, Z2 + Z3}, (14)
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where

Z1 = sup
k0∈Z
k0<0

2–k0λq1

k0∑
k=–∞

2kα(0)q1
∥∥H∗

β f · χk
∥∥q1

Lp2(·)(wp2(·)).

Z2 = sup
k0∈Z
k0≥0

2–k0λq1
–1∑

k=–∞
2kα(0)q1

∥∥H∗
β f · χk

∥∥q1
Lp2(·)(wp2(·)).

Z3 = sup
k0∈Z
k0≥0

2–k0λq1

k0∑
k=0

2kα(∞)q1
∥∥H∗

β f · χk
∥∥q1

Lp2(·)(wp2(·)).

The estimates of Zi (i = 1, 2, 3) are similar to those of Yi (i = 1, 2, 3) of Theorem 4.2. Here
we conclude our result. �
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