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Abstract
This study introduces extended Branciari quasi-b-distance spaces, a novel implicit
contractive condition in the underlying space, and basic fixed-point results, a weak
well-posed property, a weak limit shadowing property and generalized Ulam–Hyers
stability. The given notions and results are exemplified by suitable models. We apply
these results to obtain a sufficient condition ensuring the existence of a unique
positive-definite solution of a nonlinear matrix equation (NME)
X =Q +

∑k
i=1A∗

i G(X )Ai , whereQ is an n× n Hermitian positive-definite matrix,A1,
A2, . . . ,Am are n× nmatrices, and G is a nonlinear self-mapping of the set of all
Hermitian matrices that are continuous in the trace norm. We demonstrate this
sufficient condition for the NME X =Q +A∗

1X 1/3A1 +A∗
2X 1/3A2 +A∗

3X 1/3A3, and
visualize this through convergence analysis and a solution graph.
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1 Generalized metric spaces
Denote R := the set of real numbers, R+ := [0, +∞), N := the set of natural numbers, and
N

∗ := N∪ {0}.
Many researchers, for example, [11–13], have proposed and expanded the distance idea

in metric fixed-point theory in a variety of ways. Bakhtin [3] developed the concept of a b-
metric space, which Czerwik utilized in [6, 7]. Kamran et al. [11] developed the concept of
an extended b-metric space, whereas Branciari [4] expanded the concept of metric space
and introduced the concept of Branciari distance by substituting the property of triangle
inequality with the property of quadrilateral inequality.

Definition 1.1 Let � �= ∅ be a set and w : �2 → R+ \ (0, 1). We say that a function ρe :
�2 →R+ is an extended b-metric (ρe-metric, for short) if it satisfies:

(eb1) ρe(ϑ ,ν) = 0 if and only if ϑ = ν ;
(eb2) ρe(ϑ ,ν) = ρe(ν,ϑ);
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(eb3) ρe(ϑ ,ν) ≤ w(ϑ ,ν)[ρe(ϑ ,υ) + ρe(υ,ν)],
for all ϑ ,ν,υ ∈ �. The symbol (�,ρe) denotes a ρe-metric space.

Definition 1.2 Let � �= ∅ be a set and let b : �2 →R+ be such that, for all ϑ ,ν ∈ � and all
u, v ∈ � \ {ϑ ,ν},

(bd1) b(ϑ ,ν) = 0 if and only if ϑ = ν (self-distance/indistancy);
(bd2) b(ϑ ,ν) = b(ν,ϑ);
(bd3) b(ϑ ,ν) ≤ b(ϑ , u) + b(u, v) + b(v,ν) (quadrilateral inequality).

The symbol (�, b) denotes a Branciari distance space and is abbreviated as BDS.
Abdeljawad et al. [1] recently defined an extended Branciari b-distance space by inte-

grating an extended b-metric and a Branciari distance.

Definition 1.3 Let � �= ∅ be a set and w : �2 → R+ \ (0, 1). We say that a function eb :
�2 →R+ is an extended Branciari b-metric (eb-metric, for short) if it satisfies:

(ebb1) eb(ϑ ,υ) = 0 if and only if ϑ = υ ,
(ebb2) eb(ϑ ,υ) = eb(υ,ϑ),
(ebb3) eb(ϑ ,υ) ≤ w(ϑ ,υ)[eb(ϑ ,ν) + eb(ν,�) + eb(�,υ)]

for all ϑ ,υ ∈ � all distinct ν,� ∈ � \ {ϑ ,υ}. The symbol (�, eb) denotes an extended Bran-
ciari b-distance space (EBbDS, for short). For w(ϑ ,υ) = b, (�, eb) it will be called a Branciari
b-distance space (BbDS, for short).

On the other hand, in [25], a b-metric space was expanded as a quasi-b-metric space,
which was further extended in [10] by establishing ideas of right- and left-quasi-b-metric
spaces. Motivated by the above, we propose the concept of an extended Branciari quasi-
b-distance with instances, as well as its right- and left-completeness conditions, in Sect. 2.
Section 3 introduces a new implicit relation for the new space structure known as the Gw-
implicit relation. In Sect. 4, we introduce the concept of rightGw-implicit self-mapping and
demonstrate a related fixed-point result in a right-complete extended Branciari quasi-b-
distance space using two examples. Sections 5 and 6 present and develop new ideas such as
generalized w-Ulam–Hyers stability, a weak well-posed property, and a weak limit shad-
owing property in the context of an extended Branciari quasi-b-distance space. Section 7
concludes with the creation and verification of a sufficient condition insuring the exis-
tence of a unique positive-definite solution to a nonlinear matrix problem. This process
is visualized using convergence analysis, three alternative initializations, and a solution
graph.

The significance of this work is that the symmetry criterion is eased in proving fixed-
point results in the extended Branciari quasi-b-distance spaces under a new implicit re-
lation in the context of right-completeness. We also offer new notions in the context of
underlining space, such as generalised w-Ulam–Hyers stability, a weak well-posed prop-
erty, and a weak limit shadowing property, as well as related findings. There is also a novel
application to nonlinear matrix equations that is graphically represented with an illus-
tration. In doing so, we show that the requirements we utilize to ensure the existence of
matrix equation solutions are “weaker”, in the sense of quasinorm, than those previously
derived in the literature.
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2 Extended Branciari quasi-b-distance
Definition 2.1 Let � �= ∅ be a set and w : �2 → R+ \ (0, 1). A function qe : �2 → R+

is called an extended Branciari quasi-b-distance, if for all ν,ϑ ∈ � all distinct μ,υ ∈
�\{ν,ϑ}:

(qeb1) qe(ν,ϑ) = 0 ⇒ ν = ϑ ;
(qeb2) qe(ν,ϑ) ≤ w(ν,ϑ)[qe(ν,μ) + qe(μ,υ) + qe(υ,ϑ)].

The triplet (�, qe, w) is then called an extended Branciari quasi-b-distance space (EBQbDS,
for short) with the coefficient w(ν,ϑ).

Definition 2.2 Let (�, qe, w) be an EBQbDS and {νn} a sequence in �. Then, {νn} is said
to be

(i) left-Cauchy if for every δ > 0, there is an N = N(δ) ∈N such that qe(νr ,νs) < δ for all
r > s > N ,

(ii) right-Cauchy if for every δ > 0, there is an N = N(δ) ∈N such that qe(νr ,νs) < δ for
all s > r > N .

(iii) Cauchy if for every δ > 0, there is an N = N(δ) ∈N such that qe(νr ,νs) < δ for all
r, s > N .

Definition 2.3 Let (�, qe, w) be an EBQbDS. Then, (�, qe, w) is called
(i) left-complete if every left-Cauchy sequence in � is convergent,

(ii) right-complete if every right-Cauchy sequence in � is convergent.
(iii) complete if every Cauchy sequence in � is convergent.

Example 2.4 Let � = R+ and define

qe(ϑ ,ν) =

⎧
⎨

⎩

|ϑ – ν|2 + ϑ if ϑ �= ν,

0 if ϑ = ν,

with w(ϑ ,ν) = 5ϑ + 5ν + 3. Then, it is clear that (�, qe, w) is an EBQbDS, but it is not an
EBbDS. In fact, (qeb2) holds since

qe(ϑ ,ν) = |ϑ – ν|2 + ϑ

= |ϑ – z + z – w + w – ν|2

≤ |ϑ – z|2 + |z – w|2 + |w – ν|2

+ 2|ϑ – z||z – w| + 2|z – w||w – ν| + 2|w – ν||ϑ – z| + ϑ + z + w

≤ (5ϑ + 5ν + 3)
[|ϑ – z|2 + |z – w|2 + |w – ν|2 + ϑ + z + w

]

= w(ϑ ,ν)
[
qe(ϑ , z) + qe(z, w) + qe(w,ν)

]
,

for all ϑ ,ν, z ∈ �, but clearly qe(ϑ ,ν) �= qe(ν,ϑ) if ϑ �= ν .

Example 2.5 Let � = { 1
n : n ∈ {2, 3, 4, 5}} and define

qe(ϑ ,ν) =

⎧
⎨

⎩

|ϑ – ν|2 + ϑ if ϑ �= ν,

0 if ϑ = ν,
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with w(ϑ ,ν) = ϑ + ν + 2. Then, it is clear that (�, qe, w) is an EBQbDS, but it is not an
EBbDS. In fact, (qeb2) holds. For instance,

qe

(
1
2

,
1
3

)

= 0.5277, qe

(
1
2

,
1
4

)

= 0.5, qe

(
1
2

,
1
5

)

= 0.59,

qe

(
1
4

,
1
5

)

= 0.2525, qe

(
1
5

,
1
3

)

= 0.2177,

and so

qe

(
1
2

,
1
3

)

= 0.5277 ≤ 1.13225

=
(

1
2

+
1
3

+ 2
)[

qe

(
1
2

,
1
4

)

+ qe

(
1
2

,
1
5

)

+ qe

(
1
4

,
1
5

)

+ qe

(
1
5

,
1
3

)]

.

Similarly, we can prove this for all ϑ ,ν, z ∈ �, but clearly qe(ϑ ,ν) �= qe(ν,ϑ) if ϑ �= ν .

Example 2.6 (Inspired from [15]) Let � = [0, 5] and define qe : �2 →R by

qe(ϑ ,ν) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ϑ = ν;

ϑ – ν if ϑ > ν;

2(ν – ϑ) if ϑ < ν.

Then, (�, qe, w) is a left-complete EBQbDS with w(ϑ ,ν) = ϑ + ν + 2, but it is not an
EBQbDS. In fact, (qeb2) holds. Consider ϑ ,ν, u, v ∈ � with ϑ > ν . We show that

qe(ϑ ,ν) ≤ w(ϑ ,ν)
[
qe(ϑ , u) + qe(u, v) + qe(v,ν)

]

is true.
• Suppose ϑ > u > v > ν . Then,

qe(ϑ ,ν) = (ϑ – ν) ≤ w(ϑ ,ν)(ϑ – ν) = w(ϑ ,ν)
[
(ϑ – u) + (u – v) + (v – ν)

]

is true.
• Suppose ϑ < u > v > ν . Then,

qe(ϑ ,ν) = (ϑ – ν) ≤ w(ϑ ,ν)
(
3u – (ϑ + ν)

)
= w(ϑ ,ν)

[
2(u – ϑ) + (u – v) + (v – ν)

]

is true.
• Suppose ϑ < u < v > ν . Then,

qe(ϑ ,ν) = (ϑ – ν) ≤ w(ϑ ,ν)
(
3u – (2ϑ + ν)

)
= w(ϑ ,ν)

[
2(u – ϑ) + 2(v – u) + (v – ν)

]

is true.
• Suppose ϑ > u < v > ν . Then,

qe(ϑ ,ν) = (ϑ – ν) ≤ w(ϑ ,ν)(ϑ + 2v – 3u – ν) = w(ϑ ,ν)
[
(ϑ – u) + 2(v – u) + (v – ν)

]

is true.
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3 Gw-implicit relation
In this section, we introduce a modified version of the implicit relation discussed in [2, 20]
in the context of EBQbDS. We start with a defining notion of 	w following [26].

Denote by 	w the set of functions ϕ : R+ →R+ satisfying the following conditions:
(i) ϕ is increasing;

(ii) for a set � �= ∅, there exists w : �2 →R+ \ (0, 1) such that
∑∞

n=1 ϕn(ζ )
∏n

i=1 w(ϑi,ϑm) < ∞, for ζ > 0, ϑi ∈ �, ∀m ∈N, where ϕn denotes the nth
iterate.

It should be noted that ϕ(ζ ) < ζ and the family 	w �= ∅.

Example 3.1 Consider the EBQbDS (�, eb), where � = [0, 1] and w(ν,ϑ) = |ν| + |ϑ | + 5
2 .

Define the mapping ϕ(ζ ) = 2λζ

9 , where 0 < λ < 1. Note that w(ν,ϑ) ≤ 9/2. Then, we have
ϕn(ζ )

∏n
i=1 w(νi,ν) ≤ 2nλnζ

9n .( 9
2 )n = λnζ . Therefore,

∞∑

n=1

ϕn(ζ )
n∏

i=1

w(νi,ν) ≤
∞∑

n=1

λnζ < ∞.

Example 3.2 Consider the EBQbDS (�, eb), where � = [1,∞) and w(ν,ϑ) = 1 + 2
1+ln(ν+ϑ) .

Define the mapping ϕ(ζ ) = λζ

3 , where 0 < λ < 1. Note that 1 + 2
1+ln(ν+ϑ) ≤ 3. Hence, we have

ϕn(ζ )
n∏

i=1

w(νi,ν) ≤ λnζ

3n · 3n = λnζ .

Therefore,
∑∞

n=1 ϕn(ζ )
∏n

i=1 w(νi,ν) < ∞ and hence 	w �= ∅.

Now, we are in a position to design the implicit relation in the setting of EBQbDS.
Let G be the set of functions G : R6

+ → R satisfying the following conditions: for all
ζ , ξ ,μ ≥ 0 and some k ≥ 1,

(G1) G(kζ , ξ , ξ , ζ ,μ, 0) ≤ 0 implies that there exists ϕ ∈ 	w such that kζ ≤ ϕ(ξ );
(G2) if G(kζ , ζ , 0, 0, ζ , ξ ) > 0 and G(kξ , ξ , 0, 0, ξ , ζ ) > 0, then ζ = 0, ξ = 0.
The following examples are inspired by [2].

Example 3.3 Let G(�1,�2,�3,�4,�5,�6) = �
2
1 – a�2

2 – b �
2
3+�

2
4

�
2
5+�

2
6+1 ,

0 < a, b < 1 and a + 2b < 1.
(G1) : Let ζ , ξ ,μ ≥ 0, k ≥ 1 and G(kζ , ξ , ξ , ζ ,μ, 0) = kζ 2 – aξ 2 – b (ζ2+ξ2)

1+μ2 ≤ 0.

Then, k2ζ 2 ≤ k2(a+b)
k2–b ξ 2. Hence, kζ ≤ ϕ(ξ ), where ϕ(ξ ) = hξ , h = k

√
a+b

k2–b . It is easy
to check that 0 < a, b < 1 with a + 2b < 1 and k ≥ 1 can be chosen so that h < 1.

(G2) : For all ζ > 0, ξ > 0,G(kζ , ζ , 0, 0, ζ , ξ ) = (k2 –a)ζ 2 > 0,G(kξ , ξ , 0, 0, ξ , ζ ) = (k2 –a)ξ 2 >
0.

Example 3.4 Let G(�1,�2,�3,�4,�5,�6) = �1 – a�2 – b�3 – c �4�5
1+�5+�6

, 0 < a, b, c < 1 and a +
b + c < 1.

(G1) : Let ζ , ξ ,μ ≥ 0, k ≥ 1 and G(kζ , ξ , ξ , ζ ,μ, 0) = kζ – aξ – bξ – c ζμ

1+μ
≤ 0.

Then, kζ ≤ ( k(a+b)
k–c )ξ . Hence, kζ ≤ ϕ(ξ ), where ϕ(ξ ) = hξ , h = k(a+b)

k–c < 1. It is easy
to check that 0 < a, b, c < 1 with a + b + c < 1 and k ≥ 1 can be chosen so that h < 1.

(G2) : For all ζ > 0, ξ > 0, G(kζ , ζ , 0, 0, ζ , ξ ) = (k – a)ζ 2 > 0, G(kξ , ξ , 0, 0, ξ , ζ ) = (k – a)ξ 2 >
0.
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4 Fixed-point results under a Gw-implicit relation
We start with defining right Gw-implicit mappings on EBQbDS.

Definition 4.1 Let (�, qe, w) be an EBQbDS and T : � → � be a mapping. T is called a
right Gw-implicit mapping if there exists G ∈G such that

G
(
w(ν,ϑ)qe(T ν,T ϑ), qe(ν,ϑ), qe(ν,T ν), qe(ϑ ,T ϑ), qe(ν,T ϑ), qe(ϑ ,T ν)

)≤ 0 (1)

holds for all ν,ϑ ∈ �.

The set of all fixed points of a self-mapping T on a set � �= ∅ will be denoted by Fix(T ).

Theorem 4.2 Let (�, qe, w) be a right-complete EBQbDS with w : �2 → R+ \ (0, 1) and
T : � → � be a right Gw-implicit mapping for G ∈G. Then, Fix(T ) is a singleton set, if T is
continuous. Furthermore, for any ϑ0 ∈ �, the sequence {ϑn} satisfying ϑn = T ϑn–1 converges
to (the unique) element of Fix(T ).

Proof Starting with an arbitrary point ϑ0 ∈ �, we define a sequence {ϑn} in � by ϑn = ϑn–1

for all n ∈ N. First, suppose that ϑn = ϑn+1 for some n ∈ N
∗ – then there is nothing to

prove, as � = ϑn = ϑn+1 = T ϑn = T ϑ . Now, assume that ϑn �= ϑn–1 for all n ∈ N. Since we
have w(ϑ0,T ϑ0) ≥ 1, by the right Gw-implicit condition with ν = ϑn–1 and ϑ = ϑn, we have

G
(

w(ϑn–1,ϑn)qe(T ϑn–1,T ϑn), qe(ϑn–1,ϑn), qe(ϑn–1,T ϑn–1),
qe(ϑn,T ϑn), qe(ϑn–1,T ϑn), qe(ϑn,T ϑn–1)

)

≤ 0,

that is,

G
(

w(ϑn–1,ϑn)qe(ϑn,ϑn+1), qe(ϑn–1,ϑn), qe(ϑn–1,ϑn),
qe(ϑn,ϑn+1), qe(ϑn–1,ϑn+1), 0

)

≤ 0.

It follows from (G1) that there is ϕ ∈ 	w such that

w(ϑn–1,ϑn)qe(ϑn,ϑn+1) ≤ ϕ
(
qe(ϑn–1,ϑn)

)
, for all n ∈N,

and so

qe(ϑn,ϑn+1) ≤ ϕ
(
qe(ϑn–1,ϑn)

)
.

With successive use of (G1), it is easy to derive that

qe(ϑn,ϑn+1) ≤ ϕn(qe(ϑ0,ϑ1)
)
, for all n ∈ N.

Now, we shall prove that {ϑn} is a right-Cauchy sequence. Take m > n, then by (qeb2), we
have

qe(ϑn,ϑm)

≤ w(ϑn,ϑm)
[
qe(ϑn,ϑn+1) + qe(ϑn+1,ϑn+2) + qe(ϑn+2,ϑm)

]
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≤ w(ϑn,ϑm)ϕn(qe(ϑ0,ϑ1)
)

+ w(ϑn,ϑm)ϕn+1(qe(ϑ0,ϑ1)
)

+ w(ϑn,ϑm)qe(ϑn+2,ϑm)

≤ w(ϑn,ϑm)ϕn(qe(ϑ0,ϑ1)
)

+ w(ϑn,ϑm)ϕn+1(qe(ϑ0,ϑ1)
)

+ w(ϑn,ϑm)w(ϑn+2,ϑm)
[
qe(ϑn+2,ϑn+3) + qe(ϑn+3,ϑn+4)

+ qe(ϑn+4,ϑm)
]

≤ w(ϑn,ϑm)ϕn(qe(ϑ0,ϑ1)
)

+ w(ϑn,ϑm)ϕn+1(qe(ϑ0,ϑ1)
)

+ w(ϑn,ϑm)w(ϑn+2,ϑm)ϕn+2(qe(ϑ0,ϑ1)
)

+ w(ϑn,ϑm)

× w(ϑn+2,ϑm)ϕn+3(qe(ϑ0,ϑ1)
)

+ w(ϑn,ϑm)w(ϑn+2,ϑm)qe(ϑn+4,ϑm)

...

≤ w(ϑn,ϑm)ϕn(qe(ϑ0,ϑ1)
)

+ w(ϑn,ϑm)ϕn+1(qe(ϑ0,ϑ1)
)

+ w(ϑn,ϑm)w(ϑn+2,ϑm)ϕn+2(qe(ϑ0,ϑ1)
)

+ w(ϑn,ϑm)

× w(ϑn+2,ϑm)ϕn+3(qe(ϑ0,ϑ1)
)

+ · · ·
+ w(ϑn,ϑm)w(ϑn+2,ϑm) · · ·w(ϑm–2,ϑm)ϕm–2(qe(ϑ0,ϑ1)

)

+ w(ϑn,ϑm)w(ϑn+2,ϑm) · · ·w(ϑm–2,ϑm)ϕm–1(qe(ϑ0,ϑ1)
)

≤ w(ϑn,ϑm)ϕn(qe(ϑ0,ϑ1)
)

+ w(ϑn,ϑm)w(ϑn+1,ϑm)ϕn+1(qe(ϑ0,ϑ1)
)

+ w(ϑn,ϑm)w(ϑn+1,ϑm)w(ϑn+2,ϑm)ϕn+2(qe(ϑ0,ϑ1)
)

+ w(ϑn,ϑm)

× w(ϑn+1,ϑm)w(ϑn+2,ϑm)w(ϑn+3,ϑm)ϕn+3(qe(ϑ0,ϑ1)
)

+ · · ·
+ w(ϑn,ϑm)w(ϑn+1,ϑm)w(ϑn+2,ϑm) · · ·w(ϑm–2,ϑm)ϕm–2(qe(ϑ0,ϑ1)

)

+ w(ϑn,ϑm)w(ϑn+1,ϑm)w(ϑn+2,ϑm) · · ·w(ϑm–2,ϑm)w(ϑm–1,ϑm)

× ϕm–1(qe(ϑ0,ϑ1)
)

≤
m–1∑

i=n

ϕi(qe(ϑ0,ϑ1)
) i∏

j=n

w(ϑj,ϑm)

=
m–1∑

i=1

ϕi(qe(ϑ0,ϑ1)
) i∏

j=n

w(ϑj,ϑm) –
n–1∑

i=1

ϕi(qe(ϑ0,ϑ1)
) i∏

j=n

w(ϑj,ϑm),

which tends to 0 as n, m → ∞, since ϕ ∈ 	w, and hence the sequence {ϑn} is a right-Cauchy
sequence.

Since (�, qe, w) is a right-complete EBQbDS, then there exists a point � ∈ � such that
ϑn → � as n → ∞, that is,

lim
n→∞ qe(ϑn,�) = lim

n→∞ qe(�,ϑn) = 0.

Next, we claim that � ∈ Fix(T ). Using (qeb2), we have

qe(�,T �) ≤ w(�,T �)
[
qe(�,ϑn) + qe(ϑn,ϑn+1) + qe(ϑn+1,T �)

]
.
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Since T is continuous, on letting n → ∞, we obtain qe(�,T �) = 0, that is, T � = � and
hence � is a fixed point of T .

Finally, we claim that Fix(T ) is a singleton set. On the contrary, assume that there exist
�,�0 ∈ Fix(T ) with � �= �0. By the use of the right Gw-implicit condition of T , we obtain

G
(

w(�,�0)qe(T �,T �0), qe(�,�0), qe(�,T �),
qe(�0,T �0), qe(�,T �0), qe(�0,T �)

)

≤ 0,

i.e.,

G
(
w(�,�0)qe(�,�0), qe(�,�0), 0, 0, qe(�,�0), qe(�0,�)

)≤ 0. (2)

Again, using the right Gw-implicit condition of T , we obtain

G
(

w(�0,�)qe(T �0,T �), qe(�0,�), qe(�0,T �0),
qe(�,T �), qe(�0,T �), qe(�,T �0)

)

≤ 0,

i.e.,

G
(
w(�0,�)qe(�0,�), qe(�0,�), 0, 0, qe(�0,�), qe(�,�0)

)≤ 0. (3)

It follows from (G2) with (2)–(3) that qe(�0,�) = 0 and qe(�0,�) = 0, that is, � = �0. �

Example 4.3 Let � = P ∪Q, where P = { 1
2 , 1

3 , 1
4 , 1

5 } and Q = [1, 2]. Define qe : �2 →R+ as

qe

(
1
2

,
1
3

)

= 0.02, qe

(
1
2

,
1
4

)

= 0.06, qe

(
1
2

,
1
5

)

= 0.02,

qe

(
1
3

,
1
4

)

= 0.02, qe

(
1
3

,
1
5

)

= 0.01, qe

(
1
5

,
1
4

)

= 0.02,

and qe(ϑ ,ν) = (ϑ – ν)2 otherwise. Then, (�, qe) is an EBQbDS with w(ϑ ,ν) = ϑ + ν + 2, but
neither a BDS (�, b) nor a metric space (�, d). For instance,

qe

(
1
2

,
1
4

)

= 0.06 � 0.04 = qe

(
1
2

,
1
3

)

+ qe

(
1
3

,
1
4

)

and

qe

(
1
2

,
1
4

)

= 0.06 � 0.05 = qe

(
1
2

,
1
3

)

+ qe

(
1
3

,
1
5

)

+ qe

(
1
5

,
1
4

)

,

but

qe

(
1
2

,
1
4

)

= 0.06 ≤ 0.1375 = w
(

1
2

,
1
4

)[

qe

(
1
2

,
1
3

)

+ qe

(
1
3

,
1
5

)

+ qe

(
1
5

,
1
4

)]

.

Similarly, we can prove the quadrilateral inequality for all ϑ ,ν,υ ∈ �, but clearly qe(ϑ ,ν) �=
qe(ν,ϑ) if ϑ �= ν .
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Consider the self-mapping T on � given by

T (ϑ) =

⎧
⎨

⎩

1
3 if ϑ ∈P ,
1
5 if ϑ ∈Q.

Considering Example 3.3, we can define G ∈G as

G(�1,�2,�3,�4,�5,�6) = �
2
1 – a�2

2 – b
�

2
3 + �

2
4

�
2
5 + �

2
6 + 1

,

taking a = 1
4 , b = 1

4 so that a + 2b = 3
4 < 1. Here, k = w(ν,ϑ) ≥ 1. One can easily check that

h = k
√

a+b
k2–b < 1 and that G belongs to the set G. We will show that T is a right Gw-implicit

mapping.
Let ν,ϑ ∈ � be such that ν ∈P ,ϑ ∈Q. Then, the inequality (1) has the form

[
w(ν,ϑ)qe(T ν,T ϑ)

]2 ≤ 1
4
[
qe(ν,ϑ)

]2 +
1
4

· [qe(ν,T ν)]2 + [qe(ϑ ,T ϑ)]2

1 + [qe(ν,T ϑ)]2 + [qe(ϑ ,T ν)]2 ,

that is,

[

(ν + ϑ + 2)qe

(
1
3

,
1
5

)]2

≤ 1
4
[
qe(ν,ϑ)

]2 +
1
4

· [qe(ν, 1
3 )]2 + [qe(ϑ , 1

5 )]2

1 + [qe(ν, 1
5 )]2 + [qe(ϑ , 1

3 )]2
.

We will demonstrate that the mapping T verifies the above relation. We have to discuss
the following cases:

Case I: Let ν = 1
2 ,ϑ = 1. Then, w(ν,ϑ) = 7

2 , h = 0.71443 < 1 and

(
7
2

)2

· (0.01)2 ≤ 1
4

[

qe

(
1
2

, 1
)]2

+
1
4

· [qe( 1
2 , 1

3 )]2 + [qe(1, 1
5 ]2

1 + [qe( 1
2 , 1

5 )]2 + [qe(1, 1
3 )]2

.

Case II: Let ν = 1
2 ,ϑ = 2. Then, w(ν,ϑ) = 9

2 , h = 0.7115 < 1 and

(
9
2

)2

· (0.01)2 ≤ 1
4

[

qe

(
1
2

, 2
)]2

+
1
4

· [qe( 1
2 , 1

3 )]2 + [qe(2, 1
5 )]2

1 + [qe( 1
2 , 1

5 )]2 + [qe(2, 1
3 )]2

.

Case III: Let ν = 1
3 ,ϑ = 1. Then, w(ν,ϑ) = 9

3 , h = 0.71519 < 1 and

(
10
3

)2

· (0.01)2 ≤ 1
4

[

qe

(
1
3

, 1
)]2

+
1
4

· [qe( 1
3 , 1

3 )]2 + [qe(1, 1
5 )]2

1 + [qe( 1
3 , 1

5 )]2 + [qe(1, 1
3 )]2

.

Case IV: Let ν = 1
3 ,ϑ = 2. Then, w(ν,ϑ) = 13

3 , h = 0.71186 < 1 and

(
13
3

)2

· (0.01)2 ≤ 1
4

[

qe

(
1
3

, 2
)]2

+
1
4

· [qe( 1
3 , 1

3 )]2 + [qe(2, 1
5 )]2

1 + [qe( 1
3 , 1

5 )]2 + [qe(2, 1
3 )]2

.

Case V: Let ν = 1
4 ,ϑ = 1. Then, w(ν,ϑ) = 13

4 , h = 0.71562 < 1 and

(
13
4

)2

· (0.01)2 ≤ 1
4

[

qe

(
1
4

, 1
)]2

+
1
4

· [qe( 1
4 , 1

3 )]2 + [qe(1, 1
5 )]2

1 + [qe( 1
4 , 1

5 )]2 + [qe(1, 1
3 )]2

.



Jain et al. Journal of Inequalities and Applications        (2021) 2021:200 Page 10 of 21

Case VI: Let ν = 1
4 ,ϑ = 2. Then, w(ν,ϑ) = 17

4 , h = 0.71205 < 1 and

(
17
4

)2

· (0.01)2 ≤ 1
4

[

qe

(
1
4

, 2
)]2

+
1
4

· [qe( 1
4 , 1

3 )]2 + [qe(2, 1
5 )]2

1 + [qe( 1
4 , 1

5 )]2 + [qe(2, 1
3 )]2

.

Case VII: Let ν = 1
5 ,ϑ = 1. Then, w(ν,ϑ) = 16

5 , h = 0.7158997 < 1 and

(
16
5

)2

· (0.01)2 ≤ 1
4

[

qe

(
1
5

, 1
)]2

+
1
4

· [qe( 1
5 , 1

3 )]2 + [qe(1, 1
5 )]2

1 + [qe( 1
5 , 1

5 )]2 + [qe(1, 1
3 )]2

.

Case VIII: Let ν = 1
5 ,ϑ = 2. Then, w(ν,ϑ) = 21

5 , h = 0.71217 < 1 and

(
21
5

)2

· (0.01)2 ≤ 1
4

[

qe

(
1
5

, 2
)]2

+
1
4

· [qe( 1
5 , 1

3 )]2 + [qe(2, 1
5 )]2

1 + [qe( 1
5 , 1

5 )]2 + [qe(2, 1
3 )]2

.

In all these cases, it is easy to verify that the inequalities hold true. Thus, all the conditions
are fulfilled and the mapping T has a unique fixed point (which is ϑ∗ = 1

3 ).

Example 4.4 Let � = [0, 1] and define

qe(ν,ϑ) =

⎧
⎨

⎩

|ν – ϑ |2 + ν if ν �= ϑ ,

0 if ν = ϑ ,

with w(ν,ϑ) = ν + ϑ + 2. Then, it is clear that (�, qe) is an EBQbDS with qe(ν,ϑ) �= qe(ϑ ,ν)
if ν �= ϑ , but neither a BDS (�, b) nor a metric space (�, d). For instance,

qe(0, 1) = 1 �
23
25

= qe

(

0,
1
5

)

+ qe

(
1
5

, 1
)

,

qe(0, 1) = 1 �
96

100
= qe

(

0,
1

10

)

+ qe

(
1

10
,

1
5

)

+ qe

(
1
5

, 1
)

,

but (qeb2) holds as

qe(ϑ ,ν) = |ϑ – ν|2 + ϑ

= |ϑ – υ + υ – μ + μ – ν|2

≤ |ϑ – υ|2 + |υ – μ|2 + |μ – ν|2

+ 2|ϑ – υ||υ – μ| + 2|υ – μ||μ – ν| + 2|μ – ν||ϑ – υ| + ϑ + υ + μ

≤ (ϑ + ν + 2)
[∣
∣ϑ –

∣
∣2+|υ – μ

∣
∣2 + μ| – ν

∣
∣2 + ϑ + υ + μ

]

= w(ϑ ,ν)
[
qe(ϑ ,υ) + qe(υ,μ) + qeμ(,ν)

]
,

for all ϑ ,ν,μ,υ ∈ �, but clearly qe(ϑ ,ν) �= qe(ν,ϑ) if ϑ �= ν . In particular,

qe(0, 1) = 1 ≤ 2.88 = w(0, 1)
[

qe

(

0,
1

10

)

+ qe

(
1

10
,

1
5

)

+ qe

(
1
5

, 1
)]

.
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Consider the self-mapping T on � given by T (ϑ) = ϑ
16 . Considering Example 3.4, we can

define G ∈G as

G(�1,�2,�3,�4,�5,�6) = �1 – a�2 – b�3 – c
�4�5

1 + �5 + �6
,

taking a = 1
4 , b = 1

4 , c = 1
4 so that a + b + c = 3

4 < 1. Here, k = w(ν,ϑ) ≥ 1. One can easily
check that h = k(a+b)

k–c < 1 and that G belongs to the set G. We will show that T is a right
Gw-implicit mapping.

If ν,ϑ ∈ �, then the inequality (1) is of the form

w(ν,ϑ)qe(T ν,T ϑ) ≤ 1
4

qe(ν,ϑ) +
1
4

qe(ν,T ν) +
1
4

· qe(ϑ ,T ϑ)qe(ν,T ϑ)
1 + qe(ν,T ϑ) + qe(ϑ ,T ν)

,

that is,

(ν + ϑ + 2)qe

(
ν

16
,
ϑ

16

)

≤ 1
4

qe(ν,ϑ) +
1
4

qe

(

ν,
ν

16

)

+
1
4

· qe(ϑ , ϑ
16 )qe(ν, ϑ

16 )
1 + qe(ν, ϑ

16 ) + qe(ϑ , ν
16 )

. (4)

It is easy to check that (4) holds whenever qe(T ϑ ,T ν) > 0. As examples, we check the
following two cases:

Case I: Let ν = 0,ϑ = 1
2 . Then, w(ν,ϑ) = 5

2 , h = 5
9 < 1 and

5
2

· (0.015625) ≤ 1
4

· 1
4

+
1
4

[(
15
32

)2

+
1
2

]

+
1
4

· 0.

Case II: Let ν = 1
2 ,ϑ = 1. Then, w(ν,ϑ) = 7

2 , h = 17
31 < 1 and

17
6

(0.031358) ≤ 1
4

.
3
4

+
1
4

[(
15
32

)2

+
1
2

]

+
1
4

· (( 15
32 )2 + 1)(( 7

16 )2 + 1
2 )

1 + (( 7
16 )2 + 1

2 ) + (( 31
32 )2 + 1)

.

Similarly, we can verify for other cases. Thus, all the conditions are fulfilled and the map-
ping T has a unique fixed point (which is ϑ∗ = 0).

By choosing G ∈ G from Examples 3.3 and 3.4, we have the following consequences.

Corollary 4.5 Let all the conditions of Theorem 4.2 be satisfied, except that the assumption
of right Gw-implicit mapping for G ∈G is replaced by either of the form

(I)

[
w(ν,ϑ)qe(T ν,T ϑ)

]2 ≤ a
[
qe(ν,ϑ)

]2 + b
[qe(ν,T ν)]2 + [qe(ϑ ,T ϑ)]2

1 + [qe(ν,T ϑ)]2 + [qe(ϑ ,T ν)]2 ,

where 0 < a, b < 1, a + 2b < 1, w(ν,ϑ)
√

a+b
w(ν,ϑ)2–b < 1, or

(II)

w(ν,ϑ)qe(T ν,T ϑ) ≤ aqe(ν,ϑ) + bqe(ν,T ν) + c
qe(ϑ ,T ϑ)qe(ν,T ϑ)

1 + qe(ν,T ϑ) + qe(ϑ ,T ν)
, (5)

where 0 < a, b, c < 1, a + b + c < 1, w(ν,ϑ)(a+b)
w(ν,ϑ)–c < 1. Then, Fix(T ) is a singleton.
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5 Generalized w-Ulam–Hyers stability
In this section, we define generalized w-Ulam–Hyers stability (Gw-UHS) of the fixed-
point problem (fpp) in EBQbDS as an extension of the b-metric space case discussed in
[8, 17] (see also [14]).

Definition 5.1 Let (�, qe) be a complete EBQbDS and T : � → � be a mapping. Then,
the fixed-point equation (FPE)

ϑ = T ϑ , ϑ ∈ � (6)

is said to be Gw-UHS in the setting of EBQbDS if there exists an increasing function φ :
R+ → R+, continuous at 0, with φ(0) = 0, such that for each ε > 0 and an ε-solution υ ∈ �,
that is,

qe(υ,T υ) ≤ ε,

there exists a solution ϑ∗ ∈ � of (6) such that

qe
(
υ,ϑ∗)≤ φ

(
w
(
ϑ∗,υ

)
ε
)
. (7)

If φ(ξ ) = αξ for all ξ ∈ R+, where α > 0, then FPE (6) is said to be w-UHS in the setting of
EBQbDS.

Remark 5.2 If w(ϑ ,υ) = 1, then Definition 5.1 reduces to the notion of GUHS in BDS.
Also, if φ(ξ ) = αξ for all α ∈R+, where α > 0, then it reduces to the notion of UHS in BDS.
Finally, if qe(ϑ ,υ) = |ϑ – υ|, then it reduces to the classical UHS.

Theorem 5.3 Let (�, qe, w) be a right-complete EBQbDS with w : �2 → R+ \ (0, 1) and
T : � → � be a continuous mapping satisfying the contractive condition (5). Then, the
FPE (6) is Gw-UHS.

Proof Following Theorem 4.2, we have T �∗ = �∗, that is, �∗ ∈ � is a (unique) solution of
the FPE (6) with qe(�∗,T �∗) = 0. Let ε > 0 and σ ∗ ∈ � be an ε-solution of (6), that is,

qe
(
σ ∗,T σ ∗)≤ ε.

Since qe(�∗,T �∗) = qe(�∗,�∗) = 0 ≤ ε, �∗ and σ ∗ are ε-solutions. Since we have w(�∗,σ ∗) ≥
1, then,

qe
(
�∗,σ ∗)≤ w

(
�∗,σ ∗)[qe

(
�∗,T �∗) + qe

(
T �∗,T σ ∗) + qe

(
T σ ∗,σ ∗)]

≤ w
(
�∗,σ ∗)qe

(
T �∗,T σ ∗) + εw

(
�∗,σ ∗). (8)

From the contractive condition (5) for T , we obtain

w
(
�∗,σ ∗)qe

(
T �∗,T σ ∗)

≤ aqe
(
�∗,σ ∗) + bqe

(
�∗,T �∗) + c

qe(σ ∗,T σ ∗)qe(�∗,T σ ∗)
1 + qe(�∗,T σ ∗) + qe(σ ∗,T �∗)
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≤ aqe
(
�∗,σ ∗) + cε

qe(�∗,T σ ∗)
1 + qe(�∗,T σ ∗) + qe(σ ∗,T �∗)

≤ aqe
(
�∗,σ ∗) + cε.

Therefore, from (8), we obtain

qe
(
�∗,σ ∗)≤ aqe

(
�∗,σ ∗) + cε + εw

(
�∗,σ ∗)

≤ aqe
(
�∗,σ ∗) + cεw

(
�∗,σ ∗) + εw

(
�∗,σ ∗),

which implies that

qe
(
�∗,σ ∗)(1 – a) ≤ (1 + c)εw

(
�∗,σ ∗),

i.e.,

qe
(
�∗,σ ∗)≤ 1 + c

(1 – a)
w
(
�∗,σ ∗)ε = φ

(
w
(
�∗,σ ∗)ε

)
as

1 + c
(1 – a)

> 0.

Thus, the inequality (7) holds and therefore, the FPE (6) is Gw-UHS. �

6 Weak well-posed property, weak limit shadowing
The notion of well-posedness of an fpp has evoked much interest from several mathemati-
cians, for example, Popa [18, 19] and others. In the paper [5], the authors defined a weak
well-posed (wwp) property in BbDS. In what follows, we extend this notion to EBQbDS.

Definition 6.1 Let (�, qe, w) be a complete EBQbDS and T : � → � be a mapping. The
fpp of T is said to be wwp if it satisfies:

1. Fix(T ) = {ϑ∗} is a singleton set in �;
2. for any sequence {ϑp} in � with limp→∞ qe(ϑp,T (ϑp)) = 0 and

limp,r→∞ qe(T (ϑp),T (ϑr)) = 0, one has limp→∞ qe(ϑp,ϑ∗) = 0.

To guarantee the wwp of a mapping T , we add the following additional condition for
functions G ∈G and call the respective set G′:

(G3) for all ζ , ξ ,μ > 0, k ≥ 1, G(kζ , ξ , 0, 0, ζ ,μ) ≤ 0 implies that there exists ϕ ∈ 	w such
that kζ ≤ ϕ(ξ ).

Theorem 6.2 Let (�, qe, w) be a right-complete EBQbDS with w : �2 → R+ \ (0, 1) and
T : � → � be a continuous and right Gw-implicit mapping for G ∈ G′ and ϕ ∈ 	w such
that limn→∞ qe(ϑn,T ϑn) = 0,

limn,m→∞ qe(T ϑn,T ϑm) = 0 and ϑ∗ is a fixed point of T . Then, the fpp of T is wwp,
provided G ∈G′ is continuous.

Proof Let {ϑn} be a sequence in � such that limn→∞ qe(ϑn,T (ϑn)) = 0 and
limn,m→∞ qe(T ϑn,T ϑm) = 0, for m > n. We obtain from (qeb2) that

qe
(
ϑn,ϑ∗)≤ w

(
ϑn,ϑ∗)[qe(ϑn,T ϑm) + qe(T ϑm,T ϑn) + qe

(
T ϑn,ϑ∗)].
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Taking the limit as n → ∞, we obtain

lim
n→∞ qe

(
ϑn,ϑ∗)≤ lim

n→∞ w
(
ϑn,ϑ∗)[qe(ϑn,T ϑm) + qe

(
T ϑn,ϑ∗)]. (9)

WLOG, we can consider that there exists a subsequence {T ϑnk } of {T ϑn} with distinct
elements. Otherwise, there exists ϑ0 ∈ � and n1 ∈ N such that T ϑn = ϑ0 for n ≥ n1. Since
limn→∞ qe(ϑn,T ϑn) = 0, we obtain

limn→∞ qe(ϑn,ϑ0) = 0. If ϑ0 �= ϑ∗, then ϑ0 �= T ϑ0 due to the uniqueness of the fixed point
of T . For n ≥ n1, we obtain ϑ0 = T ϑn �= T ϑ0.

Since T is a right Gw-implicit mapping, we obtain

G
(

w(ϑn,ϑ0)qe(T ϑn,T ϑ0), qe(ϑn,ϑ0), qe(ϑn,T ϑn),
qe(ϑ0,T ϑ0), qe(ϑn,T ϑ0), qe(ϑ0,T ϑn)

)

≤ 0,

i.e.,

G
(

w(ϑn,ϑ0)qe(ϑ0,T ϑ0), qe(ϑn,ϑ0), qe(ϑn,ϑ0),
qe(ϑ0,T ϑ0), qe(ϑn,T ϑ0), qe(ϑ0,ϑ0)

)

≤ 0,

i.e.,

G
(

w(ϑn,ϑ0)qe(ϑ0,T ϑ0), qe(ϑn,ϑ0), qe(ϑn,ϑ0),
qe(ϑ0,T ϑ0), qe(ϑn,T ϑ0), 0

)

≤ 0.

It follows from (G1) that there exists ϕ ∈ 	w such that

w(ϑn,ϑ0)qe(ϑ0,T ϑ0) ≤ ϕ
(
qe(ϑn,ϑ0)

)
for all n ∈N.

Hence, we obtain

qe(ϑ0,T ϑ0) ≤ w(ϑn,ϑ0)qe(ϑ0,T ϑ0) ≤ ϕ
(
qe(ϑn,ϑ0)

)
< qe(ϑn,ϑ0),

which, on applying the limit as n → ∞, gives qe(ϑ0,T ϑ0) < 0, a contradiction. Hence, there
exist m, q, n > n0 (m > q > n) such that T xm �= T xq �= T xn �= Tn. Then,

qe(ϑn,T ϑm) ≤ w(ϑn,T xm)
{

qe(ϑn,T ϑn) + qe(T ϑn,T ϑq) + qe(T ϑq,T ϑm)
}

,

which tends to 0 as n → ∞. On replacing the value in (9), we obtain

lim
n→∞ qe

(
ϑn,ϑ∗)≤ lim

n→∞ w
(
ϑn,ϑ∗)qe

(
T ϑn,ϑ∗). (10)

Again, using the right Gw-implicit condition of T , we obtain

G
(

w(ϑn,ϑ∗)qe(T ϑn,T ϑ∗), qe(ϑn,ϑ∗), qe(ϑn,T ϑn),
qe(ϑ∗,T ϑ∗), qe(ϑn,T ϑ∗), qe(ϑ∗,T ϑn)

)

≤ 0,
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i.e.,

G
(

w(ϑn,ϑ∗)qe(T ϑn,ϑ∗), qe(ϑn,ϑ∗), qe(ϑn,T ϑn),
0, qe(ϑn,ϑ∗), qe(ϑ∗,T ϑn)

)

≤ 0.

Taking the limit as n → ∞ and using the continuity of G , we obtain

G
(

limn→∞ w(ϑn,ϑ∗)qe(T ϑn,ϑ∗), limn→∞ qe(ϑn,ϑ∗), 0, 0,
limn→∞ qe(ϑn,ϑ∗), limn→∞ qe(ϑ∗,T ϑn)

)

≤ 0.

It follows from (G3) that there exists ϕ ∈ 	w such that

lim
n→∞ w

(
ϑn,ϑ∗)qe

(
T ϑn,ϑ∗)≤ ϕ

(
lim

n→∞ qe
(
ϑn,ϑ∗)

)
,

which, on replacing the values in (10), gives

lim
n→∞ qe

(
ϑn,ϑ∗)≤ lim

n→∞ w
(
ϑn,ϑ∗)qe

(
T ϑn,ϑ∗)

≤ ϕ
(

lim
n→∞ qe

(
ϑn,ϑ∗)

)
< lim

n→∞ qe
(
ϑn,ϑ∗),

a contradiction. Therefore, limn→∞ qe(ϑn,ϑ∗) = 0. �

The limit shadowing property of fpps has been discussed in [16, 23]. We define the weak
limit shadowing property (wlsp) in EBQbDS.

Definition 6.3 Let (�, qe, w) be a complete EBQbDS and T : � → � be a mapping. The
fpp of T is said to have wlsp in � if assuming that {ϑn} in � satisfies qe(ϑn,T ϑn) → 0 as
n → ∞ and qe(T ϑn,T ϑm) → 0, it follows that there exists ϑ ∈ � such that qe(ϑn,T nϑ) →
0 as n → ∞.

Theorem 6.4 Let (�, qe, w) be a complete EBQbDS and T : � → � be a continu-
ous and right Gw-implicit mapping for G ∈ G′ and ϕ ∈ 	w with {ϑn} in � such that
limn→∞ qe(ϑn,T ϑn) = 0, limn,m→∞ qe(T ϑn,T ϑm) = 0 and ϑ∗ ∈ Fix(T ). Then, T has the
wlsp, provided G ∈G′ is continuous.

Proof Let {ϑn} in � be such that limn→∞ qe(ϑn,T ϑn) = 0 and
limn,m→∞ qe(T ϑn,T ϑm) = 0. Since ϑ∗ ∈ Fix(T ), qe(ϑ∗,T ϑ∗) = 0, then by virtue of The-

orem 6.2, we have limn→∞ qe(ϑn,ϑ∗) = 0 and therefore we obtain limn→∞ qe(ϑn,T nϑ∗) =
0. �

7 Application to nonlinear matrix equations
Let H(n) (resp. K(n), P(n)) denote the set of all n × n Hermitian (resp. positive-
semidefinite, positive-definite) matrices over C and M(n) the set of all n×n matrices over
C. For a matrix B ∈H(n), we will denote by s(B) any of its singular values and by s+(B) the
sum of all of its singular values, that is, its trace norm trB = s+(B). For C,D ∈H(n), C �D
(resp. C � D) will mean that the matrix C – D is positive- semidefinite (resp. positive-
definite).
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In [21], Ran and Reurings discussed the existence of solutions of the equation

U + B∗
�(U )B = Q (11)

in K(n), where B ∈M(n), Q is positive-definite and � is a mapping from K(n) into M(n).
Note that U is a solution of (11) if and only if it is a fixed point of the mapping G(U ) = Q–
B∗

�(U )B. In [22], they used the notion of partial ordering and established a modification
of the Banach Contraction Principle, which they applied for solving a class of NMEs of the
form U = Q +

∑k
i=1 B∗

i �(U )Bi using the Ky Fan norm in M(n).
In [24], Sawangsup and Sintunavarat studied the NME of the form U = Q +

∑k
i=1 B∗

i �(U )Bi using the spectral norm of a matrix, and applied a generalized contraction
condition in metric spaces endowed with a transitive binary relation; they also tested nu-
merically its approximate solutions. The related work in solving NMEs using fixed-point
results can be found in [9, 15].

In this section, we establish the existence and uniqueness of the solution of the nonlinear
matrix equation

X = Q +
m∑

i=1

A∗
i G(X )Ai, (12)

where Q is a Hermitian positive-definite matrix, A∗
i stands for the conjugate transpose of

an n × n matrix Ai and G is an order-preserving continuous mapping from the set of all
Hermitian matrices to the set of all positive-definite matrices such that G(O) = O.

The following lemmas are needed in the subsequent discussion.

Lemma 7.1 ([21]) If A� O and B � O are n × n matrices, then

0 ≤ tr(AB) ≤ ‖A‖ tr(B).

Lemma 7.2 ([21]) If A ∈H(n) such that A≺ In, then ‖A‖ < 1.

Theorem 7.3 Consider the problem given by (12). Assume that there exists a positive real
number η such that:

(H1) there exists Q ∈P(n) such that
∑m

i=1 A∗
i G(Q)Ai � 0;

(H2)
∑m

i=1 AiA∗
i ≺ ηIn;

(H3) there exist 0 < λ1,λ2,λ3 < 1 with λ1 + λ2 + λ3 < 1 such that for all X ,Y ∈ P(n) such
that X � Y and

m∑

i=1

A∗
i G(X )Ai �=

m∑

i=1

A∗
i G(Y)Ai,

it is h = (s+(X )+s+(Y)+3)(λ1+λ2)
(s+(X )+s+(Y)+3)–λ3

< 1 and

tr

(

G(X ) –
1
2
G(Y)

)

≤ 1
η(s+(X ) + s+(Y) + 3)1/2
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×
⎧
⎨

⎩

λ1| tr(X – 1
2Y)|2 + λ2| tr(X – 1

2Q – 1
2
∑m

i=1 A∗
i G(X )Ai)|2

+λ3
| tr(Y– 1

2Q– 1
2
∑m

i=1 A∗
i G(Y)Ai)|2| tr(X– 1

2Q– 1
2
∑m

i=1 A∗
i G(Y)Ai)|2

1+| tr(X– 1
2Q– 1

2
∑m

i=1 A∗
i G(Y)Ai)|2+| tr(Y– 1

2Q– 1
2
∑m

i=1 A∗
i G(X )Ai)|2

⎫
⎬

⎭

1/2

.

Then, the matrix equation (12) has a unique solution. Moreover, the iterations

Xn = Q +
m∑

i=1

A∗
i G(Xn–1)Ai, (13)

whereX0 ∈P(n) satisfiesX0 �Q+
∑m

i=1 A∗
i G(X0)Ai, converge in the sense of the trace norm

‖ · ‖tr to the solution of the matrix equation (12).

Proof Define a mapping T : P(n) →P(n) by

T (X ) = Q +
m∑

i=1

A∗
i G(X )Ai, for all X ∈P(n).

Then, T is well defined and continuous on P(n). Then, the fixed point of the mapping T
is a solution of the matrix equation (12).

Now, for X ,Y ∈P(n), we have

∥
∥
∥
∥T (X ) –

1
2
T (Y)

∥
∥
∥
∥

2

tr

=
[

tr

(

T (X ) –
1
2
T (Y)

)]2

=

[

tr

( m∑

i=1

A∗
i

(

G(X ) –
1
2
G(Y)

)

Ai

)]2

=

[ m∑

i=1

tr

(

A∗
i

(

G(X ) –
1
2
G(Y)

)

Ai

)]2

=

[ m∑

i=1

tr

(

AiA∗
i

(

G(X ) –
1
2
G(Y)

))]2

=

[

tr

(( m∑

i=1

AiA∗
i

)(

G(X ) –
1
2
G(Y)

))]2

≤
∥
∥
∥
∥
∥

m∑

i=1

AiA∗
i

∥
∥
∥
∥
∥

2

·
∥
∥
∥
∥

(

G(X ) –
1
2
G(Y)

)∥
∥
∥
∥

2

tr

≤ ‖∑m
i=1 AiA∗

i ‖2
tr

η2(‖X ‖tr + ‖Y‖tr + 3)

⎧
⎨

⎩

λ1‖X – 1
2Y‖2

tr + λ2‖X – 1
2T X ‖2

tr

+λ3
‖Y– 1

2T Y‖2
tr‖X– 1

2T Y‖2
tr

1+‖X– 1
2T Y‖2

tr+‖Y– 1
2T X ‖2

tr

⎫
⎬

⎭

≤ 1
(‖X ‖tr + ‖Y‖tr + 3)

⎧
⎨

⎩

λ1‖X – 1
2Y‖2

tr + λ2‖X – 1
2T X ‖2

tr

+λ3
‖Y– 1

2T Y‖2
tr‖X– 1

2T Y‖2
tr

1+‖X– 1
2T Y‖2

tr+‖Y– 1
2T X ‖2

tr

⎫
⎬

⎭
. (14)

Let qe : P(n) ×P(n) → R+ be defined by

qe(X ,Y) =
∥
∥
∥
∥X –

1
2
Y
∥
∥
∥
∥

2

tr

, for X �= Y , and 0, for X = Y

for all X ,Y ∈ P(n). Then, (P(n), qe) is a right-complete EBQbDS with coefficient
w(X ,Y) = ‖X ‖tr + ‖Y‖tr + 3. It follows from (14) that

w(X ,Y)qe
(
T (X ),T (Y)

)≤ λ1qe(X ,Y) + λ2qe
(
X ,T (X )

)
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+ λ3
qe(Y ,T (Y))qe(X ,T (Y))

1 + qe(X ,T (Y)) + qe(Y ,T (X ))
.

Following G ∈ G as given in Example 3.4, T is a right Gw-implicit mapping for G ∈ G and
ϕ ∈ 	w,

Since
∑m

i=1 A∗
i G(Q)Ai � 0, for some Q ∈ P(n), Q � T (Q), all the hypotheses of Theo-

rem 4.2 are satisfied, and therefore there exists X̂ ∈P(n) such that T (X̂ ) = X̂ . Hence, the
matrix equation (12) has a solution in P(n). �

Example 7.4 Consider the NME (12) for m = 3, η = 0.01, λ1 = 0.25, λ2 = 0.25, λ3 = 0.25
with G(X ) = X 1/3, i.e.,

X = Q + A∗
1X 1/3A1 + A∗

2X 1/3A2 + A∗
3X 1/3A3, (15)

where

A1 =

⎡

⎢
⎣

0.0493 0.0664 0.1310
0.0533 0.0323 0.1340
0.1373 0.0542 0.0256

⎤

⎥
⎦ , A2 =

⎡

⎢
⎣

0.0258 0.0333 0.0380
0.0541 0.0361 0.0423
0.0564 0.0550 0.0366

⎤

⎥
⎦ ,

A3 =

⎡

⎢
⎣

0.5500 0.8600 0.2700
0.4600 0.2400 0.5200
0.9600 0.3600 0.5600

⎤

⎥
⎦ , Q =

⎡

⎢
⎣

11.2301 1.1999 1.9777
1.1999 10.0864 1.6390
1.9777 1.6390 11.7297

⎤

⎥
⎦ .

The conditions of Theorem 15 can be checked numerically by considering different par-
ticular values of the matrices involved. For instance, it can be tested (and verified to be
true) for

X =

⎡

⎢
⎣

2.2300 1.1996 1.9776
1.1996 1.0792 1.6384
1.9776 1.6384 2.7296

⎤

⎥
⎦ , Y =

⎡

⎢
⎣

9.0001 0.0003 0.0001
0.0003 9.0072 0.0006
0.0001 0.0006 9.0001

⎤

⎥
⎦ .

Then, w(X ,Y) = 36.0461 > 1 and h = 0.5035 < 1. To see the behavior of convergence of the
sequence {Xn} defined in (13), we take three different initial values:

U0 =

⎡

⎢
⎣

0.0232 0.0076 0.0025
0.0076 0.0390 0.0064
0.0025 0.0064 0.0223

⎤

⎥
⎦ with ‖U0‖ = 0.08459,

V0 =

⎡

⎢
⎣

1 0 0
0 1 0
0 0 1

⎤

⎥
⎦ with ‖V0‖ = 1,

W0 =

⎡

⎢
⎣

4 0 0
0 4 0
0 0 4

⎤

⎥
⎦ with ‖W0‖ = 4.



Jain et al. Journal of Inequalities and Applications        (2021) 2021:200 Page 19 of 21

Figure 1 Convergence behavior

Figure 2 Solution surface plot

After 10 successive iterations, the approximations of the unique PDS of the system (12)
are the following:

Û ≈ U10 =

⎡

⎢
⎣

15.2273 3.9055 4.5814
3.9055 12.6350 3.3290
4.5814 3.3290 13.6115

⎤

⎥
⎦

with Error = 1.3824 × 10–7;

V̂ ≈ V10 =

⎡

⎢
⎣

15.2273 3.9055 4.5814
3.9055 12.6350 3.3290
4.5814 3.3290 13.6115

⎤

⎥
⎦
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with Error = 9.6297 × 10–8;

Ŵ ≈W10 =

⎡

⎢
⎣

15.2273 3.9055 4.5814
3.9055 12.6350 3.3290
4.5814 3.3290 13.6115

⎤

⎥
⎦

with Error = 6.2457 × 10–8. It can also be verified that the elements of each sequence are
order preserving. The convergence behavior and solution graph are shown in Figs. 1 and
2, respectively.

Remark 7.5 It can be noted that the conditions that we have used to guarantee the exis-
tence of solutions of the matrix equations, are ‘weaker’ in the sense of quasinorm than that
of the conditions obtained previously in the literature.
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16. Păcurar, M., Rus, I.A.: Fixed point theory for cyclic φ-contractions. Nonlinear Anal. 72, 1181–1187 (2010)
17. Phiangsungnoen, S., Sintunavarat, W., Kumam, P.: Fixed point results, generalized Ulam–Hyers stability and

well-posedness via α-admissible mappings in b-metric spaces. Fixed Point Theory Appl. 2014, 188 (2012)
18. Popa, V.: Well-posedness of fixed point problems in orbitally complete metric spaces. Stud. Cerc. St. Ser. Mat. Univ. 16

(2006), Supplement. Proceedings of ICMI 45, Bacau, Sept. 18–20, 209–214 (2006)
19. Popa, V.: Well-posedness of fixed point problems in compact metric spaces. Bul. Univ. Petrol-Gaze, Ploiesti, Sec. Mat.

Inform. Fiz. 60(1), 1–4 (2008)
20. Popa, V., Mocanu, M.: Altering distance and common fixed points under implicit relations. Hacet. J. Math. Stat. 38(3),

329–337 (2009)
21. Ran, A.C.M., Reurings, M.C.B.: On the matrix equation X + A∗F(X)A = Q: solutions and perturbation theory. Linear

Algebra Appl. 346, 15–26 (2002)
22. Ran, A.C.M., Reurings, M.C.B.: A fixed point theorem in partially ordered sets and some applications to matrix

equations. Proc. Am. Math. Soc. 132, 1435–1443 (2004)
23. Rus, I.A.: The theory of a metrical fixed point theorem: theoretical and applicative relevances. Fixed Point Theory 9,

541–559 (2008)
24. Sawangsup, K., Sintunavarat, W.: Fixed point and multidimensional fixed point theorems with applications to

nonlinear matrix equations in terms of weak altering distance functions. Open Math. 15, 111–125 (2017)
25. Shah, M.H., Hussain, N.: Nonlinear contractions in partially ordered quasi b-metric spaces. Commun. Korean Math.

Soc. 27(1), 117–128 (2012)
26. Shatanawi, W., Abodayeh, K., Mukheimer, A.: Some fixed point theorems in extended b-metric spaces. UPB Sci. Bull.,

Ser. A 80(4), 71–78 (2018)


	Extended Branciari quasi-b-distance spaces, implicit relations and application to nonlinear matrix equations
	Abstract
	MSC
	Keywords

	Generalized metric spaces
	Extended Branciari quasi-b-distance
	Gw-implicit relation
	Fixed-point results under a Gw-implicit relation
	Generalized w-Ulam-Hyers stability
	Weak well-posed property, weak limit shadowing
	Application to nonlinear matrix equations
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


