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Abstract
This is the first paper dealing with the study of minimum and maximum principle
sufficiency properties for nonsmooth variational inequalities by using gap functions
in the setting of Hadamard manifolds. We also provide some characterizations of
these two sufficiency properties. We conclude the paper with a discussion of the error
bounds for nonsmooth variational inequalities in the setting of Hadamard manifolds.
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1 Introduction
The variational inequality problem, introduced by Hartman and Stampacchia [20], plays
an important role in current mathematical technology. It has been extended and gener-
alized to study a wide class of problems arising in optimization, nonlinear programming,
physics, economics, transportation equilibrium problems, and engineering sciences. For
further details, see [1–4, 7, 8, 21–23, 25, 32, 36] and the references therein.

The weak sharp minimum property for the convex optimization problem was intro-
duced and studied by Ferris [13, 17]. It has significant applications in sensitivity analy-
sis, error bounds, and finite convergence of algorithms for solving convex optimization
problems, see [12, 17, 18, 27]. In 1992, Ferris and Mangasarian [19] studied the mini-
mum principle sufficiency property for convex programming and proved that this prop-
erty is equivalent to the weak sharp minimum property of convex programming. Mar-
cotte and Zhu [24] extended the minimum principle sufficiency property for variational
inequalities and characterized the weak sharp solutions for variational inequalities us-
ing pseudomonotone+ and continuous mapping on a compact polyhedral set. Extending
the results of Marcotte and Zhu [24], Wu and Wu [35] established the maximum princi-
ple sufficiency property for variational inequalities and also characterized the weak sharp
solutions of variational inequalities. Recently, Wu [34] characterized the minimum prin-
ciple sufficiency property when the mapping in a variational inequality is constant and
pseudomonotone+.
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The variational inequality problem can be used to solve any differentiable optimization
problem over a convex feasible region. However, in many practical problems, the function
involved in the optimization problem need not be differentiable but has some kind of di-
rectional derivative. In this case, the relevant optimization problem can be considered by
using a nonsmooth variational inequality with a bifunction, see [10]. In 2016, Alshahrani
et al. [6] defined the minimum and maximum principle sufficiency properties for nons-
mooth variational inequalities (NVI) by using a gap function that is similar to that of Wu
and Wu [35] and provided some characterizations for these two properties. They also dis-
cussed error bounds for nonsmooth variational inequalities. For further related results,
see [5, 11, 33] and the reference therein.

On the other hand, in the last two decades, several classical problems have been ex-
tended from a linear space setting to Riemannian/Hadamard manifolds setting (nonlin-
ear space) because some nonconvex and constrained optimization problems in Euclidean
space become convex and unconstrained ones in Riemannian/Hadamard manifolds, see
[31]. In 2003, Németh [25] extended the notion of variational inequalities to Hadamard
manifolds and related it to geodesic convex optimization problems. He also proved the ex-
istence and uniqueness results for variational inequalities on Hadamard manifolds. Then,
Colao et al. [15] developed the equilibrium theory in Hadamard manifolds and also proved
some existence results. In 2017, we [9] derived the generalized convexity of a real-valued
function defined on a Riemannian manifold in terms of a bifunction h. We also defined
the generalized monotonicity of the bifunction h. We also proved the relationship between
the generalized convexity of a real-valued function and the generalized monotonicity of
h. In 2020, we [8] extended the notion of the nonsmooth variational inequality problem
(NVIP) and the Minty nonsmooth variational inequality problem (MNVIP) in the setting
of Hadamard manifolds and proved some existence results for the nonsmooth variational
inequality problem. We gave some relations among (NVIP), (MNVIP), and optimization
problems in the setting of Hadamard manifolds. The gap functions for (NVIP) and (MN-
VIP) were also studied in the setting of Hadamard manifolds.

Motivated by the above results, in the present paper, we extend the work of Alshahrani
et al. [6] in the setting of Hadamard manifolds. Hence, we defined the minimum and max-
imum principle sufficiency properties for nonsmooth variational inequalities by using a
gap function in the Hadamard manifolds setting and provide several characterizations for
these two properties. We also study the error bounds for nonsmooth variational inequal-
ities in the setting of Hadamard manifolds.

2 Preliminaries
In the present section, we recall some basic definitions, properties, notions and results
from manifolds, which will be needed throughout the paper. For details, see [14, 16, 26, 28–
31].

Let M be a finite-dimensional differentiable manifold. For each x ∈ M, let TxM be the
tangent space at the point x to M, which is a real vector space of the same dimension as
M. The collection of all tangent spaces on M is called a tangent bundle and it is denoted
by TM. A C∞ mapping A : M → TM, which assigns a tangent vector A(x) at x for each
x ∈ M, is called a vector field on M. We denote by 〈·, ·〉x the scalar product on TxM with
the associated norm ‖ · ‖x, where the subscript x can be omitted if there is no confusion.
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A scalar product 〈·, ·〉x is called the Riemannian metric on TxM. A C∞ tensor field g of
type (0, 2) on M is called the Riemannian metric on M if for each x ∈ M, the tensor g(x) is
a Riemannian metric on TxM, and the pair (M, g) is called the Riemannian manifold.

For any x, y ∈ M, let γ : [0, 1] → M be a piecewise-smooth curve joining x to y. The arc
length of γ is defined by

l(γ ) :=
∫ 1

0

∥∥γ̇ (t)
∥∥dt,

where γ̇ (t) denotes the tangent vector at γ (t). For any x, y ∈ M, the Riemannian distance
from x to y is defined by

d(x, y) = inf
γ

l(γ ),

where the infimum is taken over all piecewise-smooth curves γ : [0, 1] → M joining x to y.
Let ∇ be the Levi–Civita connection on M. A curve γ : [0, 1] → M joining x to y is said

to be a geodesic if

γ (0) = x, γ (1) = y and ∇γ̇ γ̇ = 0 on [0, 1].

A geodesic γ : [0, 1] → M joining x to y is said to be minimal if its arc length equals its
Riemannian distance between x and y.

A Riemannian manifold M is said to be complete if for any x ∈ M, all the geodesics em-
anating from x are defined for all t ∈R.

A simply connected complete Riemannian manifold M of nonpositive sectional curva-
ture is called a Hadamard manifold [16].

Let M be a Hadamard manifold. The exponential mapping [31] expx : TxM → M at x is
defined by expx v = γv(1, x) for each v ∈ TxM, where γ (·) = γv(·, x) is the geodesic starting
at x with the velocity v, that is, γ (0) = x and γ̇ (0) = v. Moreover, expx tv = γv(t, x) for each
real number t.

Proposition 1 ([16]) Let M be a Hadamard manifold and x ∈ M. Then, expx : TxM → M
is a diffeomorphism, and for any two points x, y ∈ M, there exists a unique minimal geodesic
joining x to y

γ (t) = expx
(
t exp–1

x y
)
,

for all t ∈ [0, 1].
In particular, the exponential mapping and its inverse are continuous on a Hadamard

manifold.

Let M be a Hadamard manifold. We denote by Pγ (b),γ (a) the parallel transport from
Tγ (a)M to Tγ (b)M along the geodesic γ with respect to ∇ and it is defined by

Pγ (b),γ (a)(v) = A
(
γ (b)

)
, for all a, b ∈R and v ∈ Tγ (a)M,

where A is the unique vector field such that ∇γ̇ (t)v = 0 for all t and A(γ (a)) = v.
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Note that
(i) Pγ (a),γ (a) = Id, the identity transformation of Tγ (a)M.

(ii) Pγ (a),γ (b) ◦ Pγ (b),γ (c) = Pγ (a),γ (c).
(iii) Pγ (a),γ (b) ◦ Pγ (b),γ (a) = Pγ (a),γ (a).

Definition 1 A subset K of a Hadamard manifold M is said to be geodesic convex if for
any pair of distinct points x, y ∈ K , the geodesic γ joining x to y belongs to K , that is, if for
any γ : [0, 1] → M such that γ (0) = x and γ (1) = y, then γ (t) = expx(t exp–1

x y) ∈ K for all
t ∈ [0, 1].

3 Formulation of the problems
Throughout the paper, unless otherwise specified, we assume that M is a Hadamard man-
ifold, K is a nonempty geodesic convex subset of M and h : K × TM → R ∪ {±∞} is a
bifunction.

Recently, we [8] considered the following nonsmooth variational inequality problems:
Nonsmooth variational inequality problem (in short, NVIP): Find x̄ ∈ K such that

h
(
x̄; exp–1

x̄ y
) ≥ 0, for all y ∈ K . (1)

Minty-type nonsmooth variational inequality problem (in short, MTNVIP): Find x̄ ∈ K
such that

h
(
y; exp–1

y x̄
) ≤ 0, for all y ∈ K . (2)

We denote by S∗ and S∗ the solution set of NVIP (1) and MTNVIP (2), respectively, and
assume that they are nonempty.

Consider the following optimization problem (in short, OP):

minf (x), subject to x ∈ K , (3)

where f : K →R is a real-valued function. Assume that the solution set S̄ = {x ∈ K : f (x) ≤
f (y) for all y ∈ K} of OP (3) is nonempty.

Definition 2 ([8]) A bifunction h : K × TM →R∪ {±∞} is said to be geodesic upper sign
continuous if for any x, y ∈ K ,

h
(
w; Pw,y exp–1

y x
) ≤ 0 ⇒ h

(
x; exp–1

x y
) ≥ 0,

where w = expy(t exp–1
y x) for all t ∈ (0, 1).

Definition 3 ([8]) A bifunction h : K × TM →R∪ {±∞} is said to be pseudomonotone if
for all x, y ∈ K ,

h
(
x; exp–1

x y
) ≥ 0 ⇒ h

(
y; exp–1

y x
) ≤ 0.

Recently, we [8] established the following equivalence result between the solution set
of NVIP (1) and MTNVIP (2) under the pseudomonotonicity and geodesic upper sign
continuity assumptions of the bifunction h.
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Lemma 1 ([8]) Let h : K × TM → R ∪ {±∞} be a pseudomonotone and geodesic upper
sign continuous bifunction such that h is positively homogeneous in the second argument,
that is, for all α > 0 and v ∈ TxM, h(x;αv) = αh(x; v). Then, x̄ ∈ K is a solution of NVIP (1)
if and only if it is a solution of MTNVIP (2).

We consider the following condition, which was first considered by Wu and Wu [35], to
develop the weak sharpness of variational inequalities in Hilbert spaces and later it was
considered by Alshahrani et al. [6].

Condition A For all x, y ∈ K ,

U(x) =
{

v ∈ TxM : h(x; v) ≥ 0
}

=
{

v ∈ TxM : h(y; –Py,xv) ≤ 0
}

= V(y).

Note that U(x) is nonempty for all x ∈ S∗ and also V(y) is nonempty for all y ∈ K , since
S∗ is assumed to be nonempty. If h is pseudomonotone, then any exp–1

x y from U(x) also
belongs to V(y) for all x, y ∈ K .

The following result shows the equivalence between S∗ and S∗ without pseudomono-
tonicity and geodesic upper sign continuity of h, but under the assumption of Condition A.

Proposition 2 Let x̄ ∈ K and assume that U(x̄) = V(y) for all y ∈ K . Then,

x̄ ∈ S∗ ⇔ x̄ ∈ S∗.

Proof Let x̄ ∈ S∗. Then, h(x̄; exp–1
x̄ y) ≥ 0 for all y ∈ K , and therefore, exp–1

x̄ y ∈ U(x̄) for all
y ∈ K . By hypothesis, U(x̄) = V(y) for all y ∈ K and thus, exp–1

x̄ y ∈V(y) for all y ∈ K . Hence,

h
(
y; –Py,x̄ exp–1

x̄ y
) ≤ 0, for all y ∈ K .

Since Py,x̄ exp–1
x̄ y = – exp–1

y x̄, we conclude that h(y; exp–1
y x̄) ≤ 0 for all y ∈ K . Hence, x̄ ∈ S∗.

Conversely, assume that x̄ ∈ S∗. Then, h(y; exp–1
y x̄) ≤ 0 for all y ∈ K . Since Py,x̄ exp–1

x̄ y =
– exp–1

y x̄, we have

h
(
y; –Py,x̄ exp–1

x̄ y
) ≤ 0, for all y ∈ K .

Therefore, exp–1
x̄ y ∈ V(y) for all y ∈ K . By hypothesis, U(x̄) = V(y) for all y ∈ K , therefore

we have exp–1
x̄ y ∈U(x̄), that is,

h
(
x̄; exp–1

x̄ y
) ≥ 0, for all y ∈ K ,

and hence, x̄ ∈ S∗. �

Definition 4 ([8]) A function g : K →R is said to be a gap function for NVIP (1) (respec-
tively, MTNVIP (2)) if it satisfies the following properties:

(a) g(x) ≥ 0 for all x ∈ K ;
(b) g(x̄) = 0 if and only if x̄ ∈ K is a solution of NVIP (1) (respectively, MTNVIP (2)).
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The primal gap function ϕ(x) associated with NVIP (1) is defined by

ϕ(x) := sup
y∈K

{
–h

(
x; exp–1

x y
)}

, for all x ∈ K ,

and we set

�(x) :=
{

y ∈ K : h
(
x; exp–1

x y
)

= –ϕ(x)
}

.

In a similar way, the dual gap function �(x) associated with MTNVIP (2) is defined by

�(x) := sup
y∈K

h
(
y; exp–1

y x
)
, for all x ∈ K ,

and we set

�(x) :=
{

y ∈ K : h
(
y; exp–1

y x
)

= �(x)
}

.

Note that both the functions ϕ and � are nonnegative on K and vanish on S∗ and S∗,
respectively. Therefore, they are also gap functions for NVIP (1) and MTNVIP (2), respec-
tively.

4 Characterizations of solution sets
Definition 5 ([9]) A function f : K →R is said to be geodesic radially upper semicontinu-
ous (respectively, geodesic radially lower semicontinuous) on K if for every pair of distinct
points x, y ∈ K , the function f is upper semicontinuous (respectively, lower semicontin-
uous) along the geodesic segment γxy(t) for all t ∈ [0, 1], that is, t �→ f (γxy(t)) is upper
semicontinuous (respectively, lower semicontinuous) on [0, 1]. The function f is said to
be geodesic radially continuous on K if it is both geodesic radially upper semicontinuous
as well as geodesic radially lower semicontinuous on K .

Definition 6 ([9]) Let f : M → R ∪ {±∞} be a function on a Hadamard manifold M and
x be a point where f is finite.

(a) The Dini-upper directional derivative at x ∈ M in the direction v ∈ TxM is defined
by

f D(x; v) = lim sup
t→0+

f (expx tv) – f (x)
t

.

(b) The Dini-lower directional derivative at x ∈ M in the direction v ∈ TxM is defined by

fD(x; v) = lim inf
t→0+

f (expx tv) – f (x)
t

.

Definition 7 ([9]) A function f : K → R is said to be geodesic h-pseudoconvex if for any
pair of distinct points x, y ∈ K , we have

f (y) < f (x) ⇒ h
(
x; exp–1

x y
)

< 0,
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equivalently,

h
(
x; exp–1

x y
) ≥ 0 ⇒ f (x) ≤ f (y).

The function f is called geodesic h-pseudoconcave if in Definition (7), the inequality < is
replaced by >.

Definition 8 ([9]) A function f : K → R is said to be geodesic h-pseudolinear if f is both
geodesic h-pseudoconvex as well as geodesic h-pseudoconcave.

Theorem 1 ([9]) Let f : K → R be a function and h : K × TM → R ∪ {±∞} be positively
homogeneous in the second argument such that

fD(x; v) ≤ h(x; v) ≤ f D(x; v), for all x ∈ K and v ∈ TxM. (4)

Further, assume that one of the following conditions holds:
(a) f is geodesic radially continuous;
(b) h is odd in the second argument.

If f is geodesic h-pseudolinear, then for any x, y ∈ K , we have

h
(
x; exp–1

x y
)

= 0 if and only if f (x) = f (y).

Theorem 2 Let f : K → R be geodesic h-pseudolinear and h : K × TM → R ∪ {±∞} be
positively homogeneous in the second argument such that the condition (4) holds. Assume
that one of the following conditions holds:

(a) f is geodesic radially continuous;
(b) h is odd in the second argument.

Then, the solution set S̄ of OP (3) is geodesic convex.

Proof Let x, y ∈ S̄. Then, f (x) = f (y). By Theorem 1, we have

h
(
x; exp–1

x y
)

= 0 and h
(
y; exp–1

y x
)

= 0.

For any s ∈ [0, 1], let w := expy s exp–1
y x. Then,

h
(
y; exp–1

y w
)

= h
(
y; exp–1

y
(
expy s exp–1

y x
))

= sh
(
y; exp–1

y x
)

= 0. (5)

Again, by Theorem 1 and (5), we obtain

f (w) = f (y).

Therefore, w ∈ S̄ and hence S̄ is geodesic convex. �

For x̄ ∈ S̄, consider the sets

S̄1 =
{

x ∈ K : h
(
x; exp–1

x x̄
)

= 0
}

,
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S̄2 =
{

x ∈ K : h
(
x̄; exp–1

x̄ x
)

= 0
}

.

Theorem 3 Let f : K → R be geodesic h-pseudolinear and h : K × TM → R ∪ {±∞} be
positively homogeneous in the second argument such that the condition (4) holds. Assume
that one of the following conditions holds:

(a) f is geodesic radially continuous;
(b) h is odd in the second argument.

If x̄ ∈ S̄, then S̄ = S̄1 = S̄2.

Proof Since x ∈ S̄ if and only if f (x) = f (x̄), by Theorem 1, we have f (x) = f (x̄) if and only if
h(x; exp–1

x x̄) = 0. Therefore, S̄ = S̄1. Similarly, S̄ = S̄2. �

For any x̄ ∈ S̄, consider the set

S̄3 =
{

x ∈ K : h
(
w; Pw,x exp–1

x x̄
)

= 0
}

,

where w = expx̄ t exp–1
x̄ x for all t ∈ [0, 1].

Theorem 4 Let f : K → R be geodesic h-pseudolinear and h : K × TM → R ∪ {±∞} be
positively homogeneous as well as odd in the second argument such that condition (4) holds.
If x̄ ∈ S̄, then S̄ = S̄3.

Proof Let x ∈ S̄. By Theorem 2, w = expx̄ s exp–1
x̄ x ∈ S̄ for all s ∈ (0, 1). By Theorem 3, we

have

0 = h
(
w; exp–1

w x̄
)

= sh
(
w; Pw,x exp–1

x x̄
)

= h
(
w; Pw,x exp–1

x x̄
)
, since s > 0. (6)

As x ∈ S̄, by Theorem 3 and the oddness of h in the second argument, we have

h
(
x̄; Px̄,x exp–1

x x̄
)

= 0. (7)

By combining (6) and (7), we obtain S̄ ⊆ S̄3.
Conversely, assume that x ∈ S̄3, and taking t = 1 in particular, we obtain

h
(
x; exp–1

x x̄
)

= 0.

Therefore, by Theorem 3, we have x ∈ S̄, and hence, S̄ = S̄3. �

For any x̄ ∈ S̄, consider the sets

S̄4 =
{

x ∈ K : h
(
x; exp–1

x x̄
) ≥ 0

}
,

S̄5 =
{

x ∈ K : h
(
x̄; exp–1

x̄ x
) ≤ 0

}
.

Theorem 5 Let f : K → R be geodesic h-pseudolinear and h : K × TM → R ∪ {±∞} be
positively homogeneous in the second argument such that condition (4) holds. Assume that
one of the following conditions holds:
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(a) f is geodesic radially continuous;
(b) h is odd in the second argument.

If x̄ ∈ S̄, then S̄ = S̄4 = S̄5.

Proof By Theorem 3, we have S̄ ⊆ S̄4. For the converse, assume that x ∈ S̄4, that is,

h
(
x; exp–1

x x̄
) ≥ 0.

Since f is geodesic h-pseudolinear, we have

f (x) ≤ f (x̄).

However, x̄ is a solution of OP (3), and we have f (x̄) ≤ f (x). Therefore, f (x) = f (x̄), which
yields x ∈ S̄, and hence, S̄ = S̄4.

In a similar way, we obtain S̄ = S̄5. �

For any x̄ ∈ S̄, consider the set

S̄6 =
{

x ∈ K : h
(
w; Pw,x exp–1

x x̄
) ≥ 0

}
,

where w = expx̄ t exp–1
x̄ x for all t ∈ [0, 1].

Theorem 6 Let f : K → R be geodesic h-pseudolinear and h : K × TM → R ∪ {±∞} be
positively homogeneous as well as odd in the second argument such that the condition (4)
holds. If x̄ ∈ S̄, then S̄ = S̄6.

Proof Since S̄6 ⊆ S̄4 = S̄. Let x ∈ S̄, then by Theorem 4, we have

h
(
w; Pw,x exp–1

x x̄
)

= 0,

where w = expx̄ t exp–1
x̄ x for all t ∈ [0, 1]. Thus, x ∈ S̄6, and hence, S̄ ⊆ S̄6. Therefore, S̄ =

S̄6. �

For any x̄ ∈ S̄, consider the sets

S̄7 =
{

x ∈ K : h
(
x̄; exp–1

x̄ x
)

= h
(
x; exp–1

x x̄
)}

,

S̄8 =
{

x ∈ K : h
(
x̄; exp–1

x̄ x
) ≤ h

(
x; exp–1

x x̄
)}

.

Theorem 7 Let f : K → R be geodesic h-pseudolinear. Let h : K × TM → R ∪ {±∞} be
positively homogeneous in the second argument such that the condition (4) holds. Assume
that one of the following conditions holds:

(a) f is geodesic radially continuous;
(b) h is odd in the second argument.

If x̄ ∈ S̄, then S̄ = S̄7 = S̄8.

Proof By Theorem 3, we have S̄ ⊆ S̄7. Now, we show that S̄8 ⊆ S̄. Let x ∈ S̄8, then,

h
(
x̄; exp–1

x̄ x
) ≤ h

(
x; exp–1

x x̄
)
. (8)
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Assume on the contrary that x /∈ S̄. Then, f (x) > f (x̄). Since f is geodesic h-pseudoconcave,
we have

h
(
x̄; exp–1

x̄ x
)

> 0.

By (8), we have

h
(
x; exp–1

x x̄
)

> 0.

By the geodesic h-pseudoconvexity of f , we have f (x) ≤ f (x̄), which contradicts f (x) > f (x̄).
Therefore x ∈ S̄, and hence, S̄8 ⊆ S̄. Thus, S̄ ⊆ S̄7 ⊆ S̄8 ⊆ S̄, and hence, S̄ = S̄7 = S̄8. �

Remark 1 Theorems 2–7 extend the Theorems 7.1–7.6 in [10], respectively, from Eu-
clidean space settings to Hadamard manifolds.

5 Relations among S∗, S∗, �(x) and �(x)
In the present section, we study the relationships among the solution set of NVIP (1) and
MTNVIP (2) and sets �(x) and �(x).

The following proposition follows directly from the definitions.

Proposition 3 Let x̄ ∈ K . Then,
(a) x̄ ∈ S∗ ⇔ ϕ(x̄) = 0 ⇔ x̄ ∈ �(x̄);
(b) x̄ ∈ S∗ ⇔ �(x̄) = 0 ⇔ x̄ ∈ �(x̄).

Proposition 4 Let x̄, ȳ ∈ K . Then, the following statements are equivalent:
(a) x̄ ∈ S∗ and ȳ ∈ S∗;
(b) h(y; exp–1

y ȳ) ≤ h(x̄; exp–1
x̄ ȳ) ≤ h(x̄; exp–1

x̄ x), for all x, y ∈ K .

Proof (a) ⇒ (b): Let x̄ ∈ S∗ and ȳ ∈ S∗. Then, for all x, y ∈ K , we have

h
(
x̄; exp–1

x̄ x
) ≥ 0 and h

(
y; exp–1

y ȳ
) ≤ 0.

In particular, taking x = ȳ, we have

h
(
x̄; exp–1

x̄ ȳ
) ≥ 0,

and for y = x̄, we have

h
(
x̄; exp–1

x̄ ȳ
) ≤ 0.

Therefore,

h
(
x̄; exp–1

x̄ ȳ
)

= 0.

Thus, from the definitions of S∗ and S∗, we obtain the required result.
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(b) ⇒ (a): Letting y = ȳ and x = x̄ in the condition (b), we obtain

0 = h
(
ȳ; exp–1

ȳ ȳ
) ≤ h

(
x̄; exp–1

x̄ ȳ
) ≤ h

(
x̄; exp–1

x̄ x̄
)

= 0.

Therefore, (a) is obtained. �

Proposition 5 The following statements hold:
(a) S∗ ⊆ �(x̄), for all x̄ ∈ S∗;
(b) S∗ ⊆ �(ȳ), for all ȳ ∈ S∗.

In particular, if h is geodesic upper sign continuous and positively homogeneous in the sec-
ond argument, then S∗ ⊆ �(x̄) for all x̄ ∈ S∗. If h is pseudomonotone on S∗, then S∗ ⊆ �(x̄)
for all x̄ ∈ S∗.

Proof By using the proof of Proposition 4, we obtain h(x̄; exp–1
x̄ ȳ) = 0 for all x̄ ∈ S∗ and

ȳ ∈ S∗. Thus, ȳ ∈ �(x̄) and x̄ ∈ �(ȳ), and hence S∗ ⊆ �(x̄) and S∗ ⊆ �(ȳ).
For the conclusion part, by using the Lemma 1 and the parts (a) and (b), we obtain the

required result. �

Proposition 6
(a) For all x̄ ∈ S∗ and ȳ ∈ �(x̄),

h
(
x̄; exp–1

x̄ ȳ
)

= h
(
ȳ; exp–1

ȳ x̄
) ⇔ h

(
ȳ; exp–1

ȳ x̄
)

= 0;

(b) For all x̄ ∈ S∗ and ȳ ∈ �(x̄),

h
(
x̄; exp–1

x̄ ȳ
)

= h
(
ȳ; exp–1

ȳ x̄
) ⇔ h

(
x̄; exp–1

x̄ ȳ
)

= 0.

Proof It follows from

h
(
x̄; exp–1

x̄ ȳ
)

= 0, for all x̄ ∈ S∗ and ȳ ∈ �(x̄),

h
(
ȳ; exp–1

ȳ x̄
)

= 0, for all x̄ ∈ S∗ and ȳ ∈ �(x̄). �

Condition B For any x, y, z ∈ K , there exists α,β > 0 such that

h
(
x; exp–1

x y
) ≤ αh

(
x; exp–1

x z
)

+ βh
(
x; Px,z exp–1

z y
)
.

Example 1 Consider M = (Rn
++, X–2) is a Hadamard manifold with null sectional curva-

ture, where X–2 = diag( 1
x2

1
, . . . , 1

x2
n

) is called the Dikin metric (see [28]). In particular, for
n = 1, we have M = (R++, X–2). In particular, we take h(x; ·) = 〈Ax, ·〉 for all x ∈ M, where
A : M → TM is a vector field and let Ax = 1 for all x ∈ M. Then, 〈Ax, exp–1

x y〉 = exp–1
x y.

Now, for any two points x, y ∈ M, we have

exp–1
x y = x ln

(
y
x

)
.

For any x, y, z ∈ M, we can obtain

x ln

(
y
x

)
= x ln

(
z
x

)
+

x
z

z ln

(
y
z

)
,
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that is,

exp–1
x y = exp–1

x z +
x
z

Px,z exp–1
z y.

This implies that

h
(
x; exp–1

x y
)

= h
(
x; exp–1

x z
)

+
x
z

h
(
x; Px,z exp–1

z y
)
.

Therefore, the condition B holds good with α = 1 and β = x
z .

Proposition 7 Let x̄, ȳ ∈ K be such thatU(x̄) = V(ȳ), that is, they satisfy Condition A. Then,
the following assertions hold:

(a) If h is subodd in the second argument, that is, for any x ∈ K and v ∈ TxM,
h(x; v) ≥ –h(x; –v), then h(x̄; exp–1

x̄ ȳ) = 0 if and only if h(ȳ; exp–1
ȳ x̄) = 0.

(b) If Condition B holds and either h(x̄; exp–1
x̄ ȳ) = 0 or h(ȳ; exp–1

ȳ x̄) = 0, then x̄ ∈ S∗ if and
only if ȳ ∈ S∗.

Proof (a) Suppose that h(x̄; exp–1
x̄ ȳ) = 0. Since h is subodd in the second argument, we have

0 = h
(
x̄; exp–1

x̄ ȳ
) ≥ –h

(
x̄; – exp–1

x̄ ȳ
)

= –h
(
x̄; Px̄,ȳ exp–1

ȳ x̄
)
.

Thus,

h
(
x̄; Px̄,ȳ exp–1

ȳ x̄
) ≥ 0.

Then, both the vectors exp–1
x̄ ȳ and Px̄,ȳ exp–1

ȳ x̄ belong to U(x̄). Since U(x̄) = V(ȳ), we have
exp–1

x̄ ȳ ∈V(ȳ) and Px̄,ȳ exp–1
ȳ x̄ ∈V(ȳ). Therefore,

h
(
ȳ; –Pȳx̄ exp–1

x̄ ȳ
) ≤ 0,

that is,

h
(
ȳ; exp–1

ȳ x̄
) ≤ 0, (9)

and

h
(
ȳ; –Pȳ,x̄Px̄,ȳ exp–1

ȳ x̄
) ≤ 0,

that is,

h
(
ȳ; – exp–1

ȳ x̄
) ≤ 0.

Since h is subodd in the second argument, we obtain

0 ≥ h
(
ȳ; – exp–1

ȳ x̄
) ≥ –h

(
ȳ; exp–1

ȳ x̄
)
.
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Therefore,

h
(
ȳ; exp–1

ȳ x̄
) ≥ 0. (10)

From equations (9) and (10), we have

h
(
ȳ; exp–1

ȳ x̄
)

= 0.

(b) If either h(x̄; exp–1
x̄ ȳ) = 0 or h(ȳ; exp–1

ȳ x̄) = 0, then it follows from part (a).
Let us suppose that h(x̄; exp–1

x̄ ȳ) = 0 and x̄ ∈ S∗. Then, h(x̄; exp–1
x̄ z) ≥ 0 for all z ∈ K .

Therefore, by Condition B, we have α,β > 0 such that

0 ≤ h
(
x̄; exp–1

x̄ z
) ≤ αh

(
x̄; exp–1

x̄ ȳ
)

+ βh
(
x̄; Px̄,ȳ exp–1

ȳ z
)
, for all z ∈ K .

Since β > 0, we have h(x̄; Px̄,ȳ exp–1
ȳ z) ≥ 0 for all z ∈ K . Therefore, Px̄,ȳ exp–1

ȳ z ∈U(x̄). Since
U(x̄) = V(ȳ), we have

h
(
ȳ; –Pȳ,x̄Px̄,ȳ exp–1

ȳ z
) ≤ 0, for all z ∈ K ,

that is,

h
(
ȳ; – exp–1

ȳ z
) ≤ 0, for all z ∈ K .

Since h is subodd in the second argument, we have for all z ∈ K ,

0 ≥ h
(
ȳ; Pȳ,z exp–1

z ȳ
) ≥ –h

(
ȳ; –Pȳ,z exp–1

z ȳ
)

= –h
(
ȳ; exp–1

ȳ z
)
,

that is,

h
(
ȳ; exp–1

ȳ z
) ≥ 0.

Therefore, ȳ ∈ S∗. In a similar manner, the converse part can be proved. �

Theorem 8 Let x̄, ȳ ∈ K be such that U(x̄) = V(ȳ) and assume that the Condition B holds.
Then, the following assertions hold:

(a) x̄ ∈ S∗ and ȳ ∈ �(x̄) if and only if x̄ ∈ �(x̄) and ȳ ∈ S∗;
(b) x̄ ∈ S∗ and ȳ ∈ �(x̄) if and only if x̄ ∈ �(x̄) and ȳ ∈ S∗.

Proof (a) Let x̄ ∈ S∗ and ȳ ∈ �(x̄). Then, x̄ ∈ �(x̄) and h(x̄; exp–1
x̄ ȳ) = –ϕ(x̄) = 0, and by

Proposition 7(b), we obtain ȳ ∈ S∗. For the converse part, take x̄ ∈ �(x̄) and ȳ ∈ S∗. Then,
for any x̄ ∈ S∗, we have

h
(
x̄; exp–1

x̄ ȳ
) ≥ 0.

Therefore, exp–1
x̄ ȳ ∈U(x̄). Since U(x̄) = V(ȳ), we have

h
(
ȳ; –Pȳ,x̄ exp–1

x̄ ȳ
) ≤ 0,
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and hence,

h
(
ȳ; exp–1

ȳ x̄
) ≤ 0.

However, ȳ ∈ S∗, we have

h
(
ȳ; exp–1

ȳ x̄
) ≥ 0.

Thus,

h
(
ȳ; exp–1

ȳ x̄
)

= 0,

and by Proposition 7(a), we have

h
(
x̄; exp–1

x̄ ȳ
)

= 0.

Therefore, ȳ ∈ �(x̄).
(b) Since x̄ ∈ S∗ and ȳ ∈ �(x̄), we have

h
(
x̄; exp–1

x̄ ȳ
) ≥ 0 and h

(
ȳ; exp–1

ȳ x̄
)

= �(x̄) ≥ 0.

Hence, exp–1
x̄ ȳ ∈ U(x̄) = V(ȳ), and thus, h(ȳ; exp–1

ȳ x̄) ≤ 0. Therefore,

h
(
ȳ; exp–1

ȳ x̄
)

= 0,

and hence �(x̄) = 0, that is, x̄ ∈ �(x̄). Since x̄ ∈ S∗ and by Proposition 7(b), we have ȳ ∈ S∗.
For the converse part, since x̄ ∈ �(x̄), we have �(x̄) = 0, and hence x̄ ∈ S∗. Thus, by

Proposition 5(b), we obtain ȳ ∈ �(x̄) and by part (a) of Proposition 5, we have x̄ ∈ �(ȳ).
Therefore, by part (a), we obtain x̄ ∈ S∗. �

Remark 2 The following statements also hold under the assumptions of Theorem 8:
(a) ȳ ∈ S∗ and x̄ ∈ �(ȳ) if and only if ȳ ∈ �(ȳ) and x̄ ∈ S∗;
(b) ȳ ∈ S∗ and x̄ ∈ �(ȳ) if and only if ȳ ∈ �(ȳ) and x̄ ∈ S∗.

Remark 3 If h is subodd in the second argument. Then, for any x̄, ȳ ∈ S∗ such that U(x̄) =
V(ȳ), we have

h
(
x̄; exp–1

x̄ ȳ
)

= 0 and h
(
ȳ; exp–1

ȳ x̄
)

= 0.

Proposition 8 Let k < 0 and h be subodd in the second argument, and x̄, ȳ ∈ �(x̄) ∪�(x̄) ∪
S∗ ∪ �(ȳ) ∪ �(ȳ). Consider the following statements

(a) h(ȳ; Pȳ,x̄v) = kh(x̄; v), for all v ∈ Tx̄M;
(b) U(x̄) = V(ȳ);
(c) h(x̄; exp–1

x̄ ȳ) ≤ 0 ⇔ h(ȳ; exp–1
ȳ x̄) ≥ 0, and h(x̄; exp–1

x̄ ȳ) ≥ 0 ⇔ h(ȳ; exp–1
ȳ x̄) ≤ 0;

(d) h(x̄; exp–1
x̄ ȳ) = 0 and h(ȳ; exp–1

ȳ x̄) = 0;
(e) h(x̄; exp–1

x̄ ȳ) = h(ȳ; exp–1
ȳ x̄).
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Then, (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e). Furthermore, if (d), (e) ⇒ (a), then (a) ⇔ (b) ⇔ (c) ⇔
(d) (⇔ (e)).

Proof The following implications are trivial. (a) ⇒ (b) ⇒ (c) and (d) ⇒ (e). Now, to show
(c) ⇒ (d), let us suppose that (c) holds for some x̄, ȳ ∈ K . Therefore, if

h
(
x̄; exp–1

x̄ ȳ
) ≥ 0 and h

(
ȳ; exp–1

ȳ x̄
) ≥ 0, (11)

then (d) follows. To complete the proof, we assert that if (c) is satisfied for x̄, ȳ ∈ �(x̄) ∪
�(x̄) ∪ S∗ ∪ �(ȳ) ∪ �(ȳ), then we can consider (11) without loss of generality. Indeed, if
x̄ ∈ �(x̄) ∪ S∗ ∪ �(ȳ), then h(x̄; exp–1

x̄ ȳ) ≥ 0. On the other hand, if x̄ ∈ �(x̄) ∪ �(ȳ), then
h(ȳ; exp–1

ȳ x̄) ≤ 0, and hence by (c), we obtain h(x̄; exp–1
x̄ ȳ) ≥ 0. Now, If ȳ ∈ S∗ ∪�(ȳ) ∪�(x̄),

we obtain h(ȳ; exp–1
ȳ x̄) ≥ 0, and if ȳ ∈ �(x̄) ∪�(ȳ), we obtain h(x̄; exp–1

x̄ ȳ) ≤ 0, by (c), which
implies that h(ȳ; exp–1

ȳ x̄) ≥ 0. �

Definition 9 A bifunction h : K × TM →R∪ {±∞} is said to be pseudomonotone∗ if it is
pseudomonotone and for some k < 0 and for all x, y ∈ K ,

{
h(x; exp–1

x y) = 0,
h(y; exp–1

y x) = 0

}
⇒ h(x; v) = kh(y; –Py,xv), for all v ∈ TxM.

Remark 4 Since for x̄ ∈ S∗ and ȳ ∈ �(x̄), we have h(ȳ; exp–1
ȳ x̄) = 0, assertions (d) and (e)

in Proposition 8 are equivalent to h(x̄; exp–1
x̄ ȳ) = 0. Therefore, if we add the assumption

pseudomonotone∗ of h in the Proposition 8, then (a) to (e) in Proposition 8 are equivalent
to each other.

6 Minimum principle sufficiency property for nonsmooth variational
inequalities

The NVIP (1) has the minimum principle sufficiency property if

�(x̄) = S∗, for all x̄ ∈ S∗.

Theorem 9 Suppose that the Condition B holds. Then, the following statements hold:
(a) If x̄ ∈ S∗ and U(x̄) = V(ȳ) for all ȳ ∈ �(x̄), then �(x̄) ⊆ S∗;
(b) If x̄ ∈ S∗ with U(x̄) = V(ȳ) for all ȳ ∈ �(x̄), then x̄ ∈ �(x̄) = S∗;
(c) If x̄ ∈ S∗ ∪ S∗ and U(x̄) = V(ȳ) for all ȳ ∈ S∗, then x̄ ∈ S∗ ⊆ �(x̄).

Proof (a) Follows directly by using the part (a) of Theorem 8.
(b) For x̄ ∈ S∗, let ȳ ∈ �(x̄) with U(x̄) = V(ȳ). Then,

h
(
x̄; exp–1

x̄ ȳ
)

= –ϕ(x̄) ≤ 0. (12)

Since h is subodd in the second argument, we have

0 ≥ h
(
x̄; exp–1

x̄ ȳ
) ≥ –h

(
x̄; – exp–1

x̄ ȳ
)

= –h
(
x̄; Px̄,ȳ exp–1

ȳ x̄
)
,
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and hence

h
(
x̄; Px̄,ȳ exp–1

ȳ x̄
) ≥ 0.

Therefore, Px̄,ȳ exp–1
ȳ x̄ ∈U(x̄). Since U(x̄) = V(ȳ), we have

h
(
ȳ; –Pȳ,x̄Px̄,ȳ exp–1

ȳ x̄
) ≤ 0,

and hence

h
(
ȳ; – exp–1

ȳ x̄
) ≤ 0.

By the suboddness of h in the second argument, we obtain

0 ≥ h
(
ȳ; – exp–1

ȳ x̄
) ≥ –h

(
ȳ; exp–1

ȳ x̄
)
.

Therefore,

h
(
ȳ; exp–1

y x̄
) ≥ 0.

Since x̄ ∈ S∗, we have

h
(
ȳ; exp–1

ȳ x̄
) ≤ 0

and hence

h
(
ȳ; exp–1

ȳ x̄
)

= 0.

Therefore by Proposition 6(a), we obtain h(x̄; exp–1
x̄ ȳ) = 0. Now, on using (12), we have

ϕ(x̄) = 0, which means that x̄ ∈ S∗. Hence, by Proposition 7(b), ȳ ∈ S∗.
On the other hand, take ȳ ∈ S∗, then

0 ≤ h
(
ȳ; exp–1

ȳ x̄
) ≤ 0.

By Proposition 7(b), we have x̄ ∈ S∗, which implies that x̄ ∈ �(x̄). By part (a) of the Propo-
sition 7, we obtain h(x̄; exp–1

x̄ ȳ) = 0. Therefore, ȳ ∈ �(x̄) and hence S∗ ⊆ �(x̄).
(c) Let ȳ ∈ S∗. If x̄ ∈ S∗, then from part (a) of the Theorem 8, we obtain x̄ ∈ �(x̄), and

hence, S∗ ⊆ �(x̄). If x̄ ∈ S∗, then,

0 ≤ h
(
ȳ; exp–1

ȳ x̄
) ≤ 0,

that is, h(ȳ; exp–1
ȳ x̄) = 0. Now, from Proposition 7(b), we obtain x̄ ∈ S∗ and by Proposi-

tion 7(a), we obtain h(x̄; exp–1
x̄ ȳ) = 0, which implies that ȳ ∈ �(x̄), and hence S∗ ⊆ �(x̄). �

Remark 5 By Proposition 5 and Theorem 9, the NVIP (1) has the minimum sufficiency
property if S∗ ⊆ S∗ and Condition A holds for all x̄ ∈ S∗ and for all ȳ ∈ �(x̄) and Condition B
holds.
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7 Maximum principle sufficiency property for nonsmooth variational
inequalities

The NVIP (1) has the maximum principle sufficiency property if

�(x̄) = S∗, for all x̄ ∈ S∗.

Theorem 10 Suppose that the Conditions A and B hold. Then, the following statements
hold:

(a) If x̄ ∈ S∗ ∪ S∗ and U(x̄) = V(ȳ) for all ȳ ∈ �(x̄), then x̄ ∈ �(x̄) = S∗;
(b) If for each x̄ ∈ S∗, there exists ȳ ∈ �(x̄) such that U(x̄) = V(ȳ), then S∗ ⊆ S∗;
(c) If for each x̄ ∈ S∗, there exists ȳ ∈ S∗ such that U(x̄) = V(ȳ), then S∗ ⊆ S∗;
(d) If U(x̄) = V(ȳ) for all x̄ ∈ S∗ ∪ S∗ and all ȳ ∈ �(x̄), S∗ = �(x̄) = S∗ for all x̄ ∈ S∗ ∪ S∗.

Proof (a) Suppose that x̄ ∈ S∗ ∪S∗ andU(x̄) = V(ȳ) for all ȳ ∈ �(x̄). If x̄ ∈ S∗, then by part (b)
of Theorem 8, we obtain x̄ ∈ �(x̄) and hence �(x̄) ⊆ S∗. On the other hand, if x̄ ∈ S∗, then
Proposition 3(b), x̄ ∈ �(x̄) and by Proposition 5(b), we obtain S∗ ⊆ �(x̄), which implies
that

h
(
z; exp–1

z x̄
)

= 0, for all z ∈ �(x̄).

Therefore, the above equality holds in particular for all z̄ ∈ S∗; thus, by Proposition 7(b),
x̄ ∈ S∗, and again by Proposition 7(b), ȳ ∈ S∗. Therefore, �(x̄) = S∗.

(b) It directly follows from Theorem 8.
(c) By Proposition 5(b), we have S∗ ⊆ �(x̄), for all x̄ ∈ S∗. Therefore, if x̄ ∈ S∗, then there

exists ȳ ∈ S∗ ⊆ �(x̄) such that U(x̄) = V(ȳ), which implies that h(ȳ; exp–1
ȳ x̄) = 0 and by

Proposition 7(b), we obtain x̄ ∈ S∗ since ȳ ∈ S∗.
(d) Assume that Condition A holds for all x̄ ∈ S∗ ∪ S∗ and all ȳ ∈ �(x̄). Then from (a), we

obtain

�(x̄) = S∗, for all x̄ ∈ S∗ ∪ S∗.

Therefore, from (a) and (b), we have S∗ = S∗. �

Theorem 11 Assume that

h
(
x̄; exp–1

x̄ ȳ
)

= 0 and h
(
ȳ; exp–1

ȳ x̄
)

= 0 ⇒ h(ȳ; Pȳ,x̄v) = kh(x̄; v),

for some k < 0 and for all v ∈ Tx̄M, x̄ ∈ S∗ ∪ S∗ and all ȳ ∈ �(x̄). Then, the following state-
ments are equivalent:

(a) U(x̄) = V(ȳ) for all x̄ ∈ S∗ ∪ S∗ and all ȳ ∈ �(x̄);
(b) S∗ = �(x̄) = S∗ for all x̄ ∈ S∗ ∪ S∗;
(c) For all x̄ ∈ S∗ ∪ S∗ and all ȳ ∈ �(x̄),

h
(
x̄; exp–1

x̄ ȳ
) ≥ 0 ⇔ h

(
ȳ; exp–1

ȳ x̄
) ≤ 0,

and

h
(
x̄; Px̄,ȳ exp–1

ȳ x̄
) ≥ 0 ⇔ h

(
ȳ; Pȳ,x̄ exp–1

x̄ ȳ
) ≤ 0;
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(d) For all x̄ ∈ S∗ ∪ S∗ and all ȳ ∈ �(x̄),

h
(
x̄; exp–1

x̄ ȳ
)

= 0 and h
(
ȳ; exp–1

ȳ x̄
)

= 0;

(e) h(ȳ; Pȳ,x̄v) = kh(x̄; v) for all v ∈ Tx̄M, for some k < 0, all x̄ ∈ S∗ ∪ S∗ and all ȳ ∈ �(x̄).

Proof By Proposition 8, we obtain the equivalence among (a), (c), (d) and (e). Now, from
Theorem 10(d), we have (a) ⇒ (b) and lastly from Proposition 4, we obtain (b) ⇒ (d). �

Remark 6 In the case S∗ ⊆ S∗, the expression S∗ ∪ S∗ in Theorem 11 can be reduced to S∗
and the equality h(ȳ; exp–1

ȳ x̄) = 0 in (d) can also be omitted.

Under geodesic upper sign continuity and pseudomonotonicity∗ of h, all the statements
of Theorem 11 hold, as shown below.

Theorem 12 Let h be a geodesic upper sign continuous and pseudomonotone∗. Then, for
some k > 0, (a)–(e) in the Theorem 11 hold.

Proof If h is geodesic upper sign continuous and pseudomonotone, then S∗ = S∗. Since (d)
can be easily verified for x̄ ∈ S∗ and ȳ ∈ �(x̄), then by Theorem 11, (a)–(e) hold. �

Theorem 13 For some k > 0, the following statements satisfy:

(d) ⇒ (a) ⇒ (b)
(
respectively,(d)

) ⇒ (e) :

(a) The Condition A holds for all x̄ ∈ S∗ ∪ S∗ and all ȳ ∈ �(x̄) ∪ �(x̄);
(b) S∗ = �(x̄) = �(x̄) = S∗ for all x̄ ∈ S∗ ∪ S∗;
(c) For all x̄ ∈ S∗ ∪ S∗ and all ȳ ∈ �(x̄) ∪ �(x̄),

h
(
x̄; Px̄,ȳ exp–1

ȳ x̄
) ≥ 0 ⇔ h

(
ȳ; exp–1

ȳ x̄
) ≥ 0,

and

h
(
x̄; exp–1

x̄ ȳ
) ≥ 0 ⇔ h

(
ȳ; Pȳ,x̄ exp–1

x̄ ȳ
) ≥ 0;

(d) For all x̄ ∈ S∗ ∪ S∗ and all ȳ ∈ �(x̄) ∪ �(x̄),

h
(
x̄; Px̄,ȳ exp–1

ȳ x̄
)

= 0 and h
(
ȳ; exp–1

ȳ x̄
)

= 0;

(e) h(ȳ; Pȳ,x̄v) = kh(x̄; v) for all v ∈ Tx̄M, for some k > 0, all x̄ ∈ S∗ ∪ S∗ and all
ȳ ∈ �(x̄) ∪ �(x̄).

Hence, if (e) ⇒ (d), then (a)–(e) are equivalent.

Proof By Proposition 8, we have (e) ⇒ (a) ⇒ (c) ⇒ (d) and from Proposition 3(b) and
Theorem 10(d), we obtain (a) ⇒ (b). Now, we assert that (b) ⇒ (d). Indeed, let (b) hold.
Then, for each x̄ ∈ S∗ ∪ S∗, we have x̄ ∈ S∗ = S∗ and �(x̄) ∪ �(x̄) = �(x̄) ∩ �(x̄). Thus, for
each ȳ ∈ �(x̄) ∪ �(x̄), (d) holds. �
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8 Error bounds for nonsmooth variational inequalities
Definition 10 A bifunction h : K × TM → R∪ {±∞} is said to be strongly pseudomono-
tone if for all x, y ∈ K , there exists α > 0 such that

h
(
x; exp–1

x y
) ≥ 0 ⇒ h

(
y; exp–1

y x
) ≤ –αd2(x, y),

where d(·, ·) is the Riemannian distance.

Theorem 14 Assume that h is odd in the second argument and strongly pseudomonotone
with constant α > 0. Then,

1√
α

√
ϕ(x) ≥ d

(
x, S∗),

where d(x, S∗) = infy∈S∗ d(x, y) is the Riemannian distance between the point x and the so-
lution set S∗.

Proof Let x̄ ∈ S∗, then

h
(
x̄; exp–1

x̄ y
) ≥ 0, for all y ∈ K .

Since h is strongly pseudomonotone, there exists α > 0 such that

h
(
y; exp–1

y x̄
) ≤ –αd2(y, x̄), for all y ∈ K .

As h is odd in the second argument and – exp–1
y x = Py,x exp–1

x y, we have

–h
(
y; Py,x̄ exp–1

x̄ y
)

= h
(
y; exp–1

y x̄
) ≤ –αd2(y, x̄), for all y ∈ K ,

and hence,

h
(
y; Py,x̄ exp–1

x̄ y
) ≥ αd2(y, x̄), for all y ∈ K .

Since

ϕ(x) ≥ –h
(
x; exp–1

x x̄
)

= h
(
x; Px,x̄ exp–1

x̄ x
) ≥ αd2(x, x̄), for all x ∈ K ,

we have

√
ϕ(x) ≥ √

αd(x, x̄) ≥ √
αd

(
x, S∗).

Therefore,

1√
α

√
ϕ(x) ≥ d

(
x, S∗),

the desired result. �
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The NVIP (1) has weak sharp solutions if

d
(
x, S∗) ≤ ϕ(x), for all x ∈ K .

Therefore, if h is odd in the second argument and strongly pseudomonotone with constant
α > 0, then by Theorem 14, the NVIP (1) has weak sharp solutions.

9 Conclusion
In this paper, we define the notions minimum and maximum principle sufficiency prop-
erties for nonsmooth variational inequalities by using gap functions in the setting of
Hadamard manifolds. We also characterize these two sufficiency properties in the set-
ting of Hadamard manifolds. We conclude our paper by introducing the idea of the error
bounds for nonsmooth variational inequalities in the setting of Hadamard manifolds. The
main objective of the paper is to include the existing results in nonlinear space, namely
Hadamard manifolds. This is the first paper dealing with these two notions for nonsmooth
variational inequalities. Therefore, in the future one can extend the concept of this paper
in many other directions.
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