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Abstract
In this paper, we investigate the oscillatory properties of two fourth order differential
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properties are established based on two-sided estimates of the least constant of a
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1 Introduction
Let I = (0,∞) and 1 < p < ∞. Let u be a positive function continuous on I . Suppose that v
is a positive function sufficiently times continuously differentiable on the interval I .

In the paper, we investigate the oscillatory properties of the following half-linear and
linear fourth order differential equations:

(
v(t)y′′(t)

∣
∣y′′(t)

∣
∣p–2)′′ – u(t)y(t)

∣
∣y(t)

∣
∣p–2 = 0, t ∈ I, (1)

and

(
v(t)y′′(t)

)′′ – u(t)y(t) = 0, t ∈ I. (2)

One of the directions of the qualitative theory of differential equations is the investiga-
tion of their oscillatory properties, which have important applications in physics, tech-
nology, medicine, biology, and in other scientific applications. Therefore, the oscillatory
properties of various models described by linear, quasilinear, and nonlinear differential
equations, including delay differential equations, are intensely studied. Recently, [14, 15],
and [16] have investigated the oscillatory properties of second order impulsive differential
equations, the research of which has been significantly developed in recent decades. Most
of the results regarding the oscillatory properties of differential equations relate to second
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order equations. In particular, there are fairly simple methods for establishing the oscilla-
tory properties of second order linear and half-linear equations given in a symmetric form
(see, e.g., [3]). At present, the oscillatory properties of such equations are studied mainly
through three methods. The first method considers the equation as a perturbation of an
Euler-type equation, the solutions of which are known. The second method is based on re-
ducing of the equation to a Hamiltonian system. The third method, called the variational
principle, is based on establishing inequality (3). The first and second methods are diffi-
cult to extend to equations of the fourth or higher order. Therefore, in the recent works
[4, 5, 17], and [18], to overcome these difficulties that arise when equations are fourth or
higher order, at least one of the coefficients has to be taken as a power function. The third
(variational) method is more flexible in its extension to fourth or higher order equations.
The key idea of this method is to characterize a suitable inequality and estimate its least
constant. Thus, in the papers [1, 7, 8], and [13] restrictions on the coefficients have been
removed using the variational method.

In this paper, we also use the variational method: based on the variational Lemma A
(see Sect. 4), we equivalently relate nonoscillation of equations (1) and (2) with the value
of the least constant C in inequality (3), then we obtain estimates for the least constant
C in inequality (3), and from the obtained estimates, in terms of the coefficients, we de-
rive the oscillatory properties of equations (1) and (2). One of the main and most techni-
cally difficult problems in the theory of inequalities is finding of the exact values of their
least constants. Unfortunately, in this paper we have not found the exact value of the least
constant in inequality (3), we have been able to obtain its two-sided estimates, which is
currently the best possible.

Let T ≥ 0. Denote by W 2
p,v(T ,∞) the space of functions f : (T ,∞) → R having gener-

alized derivatives up to the second order on the interval (T ,∞), for which ‖f ′′‖p,v < ∞,
where ‖g‖p,v = (

∫ ∞
T v(t)|g(t)|p dt)

1
p is the standard norm of the weighted space Lp,v(T ,∞).

Let M̊p(T ,∞) = {f ∈ W 2
p (T ,∞) : supp f ⊂ (T ,∞) and supp f is compact}, where W 2

p (T ,
∞) is the Sobolev space.

By the conditions on the function v, we have that M̊p(T ,∞) ⊂ W 2
p,v(T ,∞). Denote by

W̊ 2
p,v(T ,∞) the closure of the set M̊p(T ,∞) with respect to the norm ‖f ′′‖p,v.
Let us consider the following second order differential inequality:

∫ ∞

T
u(t)

∣
∣f (t)

∣
∣2 dt ≤ CT

∫ ∞

T
v(t)

∣
∣f ′′(t)

∣
∣2 dt, f ∈ W̊ 2

2,v(T ,∞). (3)

On the basis of Lemma 3.1 of the work [7], we have the following statement connecting
the oscillatory properties of equation (2) to the least constant CT in inequality (3).

Lemma 1 Let CT be the least constant in (3).
(i) Equation (2) is nonoscillatory if and only if there exists a number T > 0 such that

0 < CT ≤ 1.
(ii) Equation (2) is oscillatory if and only if for any number T > 0 we have that CT > 1.

In this paper, we establish an analogue of Lemma 1 also for equation (1).
Since from Lemma 1 it follows that the oscillatory properties of equations (1) and (2)

depend on the least constant CT in (3), we first find two-sided estimates of CT of inde-
pendent interest. Then, on the basis of the obtained estimates, we study the oscillatory
properties of equations (1) and (2).
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This paper is organized as follows. Section 2 contains all the auxiliary statements neces-
sary to prove the main results. In Sect. 3, we find two-sided estimates of the least constant
CT . In Sect. 4, on the basis of the obtained results, we get nonoscillation conditions of
equations (1) and (2), and then oscillation conditions of equation (2). Section 5 contains
criteria of strong nonoscillation and strong oscillation of equation (2).

In the sequel, χ(a,b)(·) stands for the characteristic function of the interval (a, b) ⊂ I .
Moreover, p′ = p

p–1 .

2 Auxiliary statements
Let 0 ≤ a < b ≤ ∞. In the book [9], there is the following statement.

Theorem A Let 1 < p ≤ q < ∞.
(i) The inequality

(∫ b

a
u(x)

(∫ x

a
f (t) dt

)q

dx
) 1

q
≤ C

(∫ b

a
v(t)

∣
∣f (t)

∣
∣p dt

) 1
p

, f ≥ 0, (4)

holds if and only if

A+ = sup
a<z<b

(∫ b

z
u(x)dx

) 1
q
(∫ z

a
v1–p′

(t) dt
) 1

p′
< ∞,

in addition, A+ ≤ C ≤ p
1
q (p′)

1
p′ A+, where C is the least constant in (4).

(ii) The inequality

(∫ b

a
u(x)

(∫ b

x
f (t) dt

)q

dx
) 1

q
≤ C

(∫ b

a
v(t)

∣∣f (t)
∣∣p dt

) 1
p

, f ≥ 0, (5)

holds if and only if

A– = sup
a<z<b

(∫ z

a
u(x)dx

) 1
q
(∫ b

z
v1–p′

(t) dt
) 1

p′
< ∞,

in addition, A– ≤ C ≤ p
1
q (p′)

1
p′ A–, where C is the least constant in (5).

We also need a statement from the works [6] and [12]. Let 0 < τ ≤ ∞ and

B1(τ ) = sup
0<z<τ

(∫ τ

z
u(x)dx

) 1
q
(∫ z

0
(z – t)p′

v1–p′
(t) dt

) 1
p′

,

B2(τ ) = sup
0<z<τ

(∫ τ

z
(x – z)qu(x)dx

) 1
q
(∫ z

0
v1–p′

(t) dt
) 1

p′
,

B(τ ) = max
{

B1(τ ), B2(τ )
}

.

Theorem B ([6]) Let 1 < p ≤ q < ∞. Then inequality

(∫ τ

0

(
u(x)

∫ x

0
(x – t)f (t) dt

)q

dx
) 1

q
≤ C

(∫ τ

0
v(t)

∣
∣f (t)

∣
∣p dt

) 1
p

, f ≥ 0, (6)
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holds if and only if B(τ ) < ∞; in addition, B(τ ) ≤ C ≤ 8p
1
q (p′)

1
p′ B(τ ), where C is the least

constant in (6).

For f ∈ W 2
p,v(I), we assume that limt→0+ f (t) = f (0), limt→0+ f ′(t) = f ′(0), limt→∞ f (t) =

f (∞) and limt→∞ f ′(t) = f ′(∞).
Assume that

L2W =
{

f ∈ W 2
p,v(I) : f (0) = f ′(0) = 0

}
,

L2R1W =
{

f ∈ W 2
p,v(I) : f (0) = f ′(0) = f ′(∞) = 0

}
.

From the results of the paper [10] we have one more statement.

Lemma C Let 1 < p < ∞.
(i) If the conditions

∫ 1

0
v1–p′

(t) dt < ∞ and
∫ ∞

1
v1–p′

(t) dt = ∞ (7)

hold, then

W̊ 2
p,v(I) = L2W . (8)

(ii) If the conditions

∫ ∞

0
v1–p′

(t) dt < ∞ and
∫ ∞

1
tp′

v1–p′
(t) dt = ∞ (9)

hold, then

W̊ 2
p,v(I) = L2R1W . (10)

Let us note that the second conditions in (7) and (9) cover all the possible singularities
of the function v at infinity.

3 Inequality (3)
The problem of studying inequality (3) is of independent interest, since it can be applied
to study the spectral properties of fourth order differential operators, as well as to obtain a
priori estimates for differential equations and considered as an embedding to solve various
problems of analysis. Therefore, we investigate it in the following more general form

(∫ ∞

0
u(t)

∣∣f (t)
∣∣q dt

) 1
q

≤ C
(∫ ∞

0
v(t)

∣∣f ′′(t)
∣∣p dt

) 1
p

, f ∈ W̊ 2
p,v(I). (11)

In the paper [11], inequality (11) was studied for different zero boundary conditions at the
endpoints of I . However, the obtained estimates of the least constant in (11) are somewhat
cumbersome, and they are not suitable for applying them to establishing the oscillatory
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properties of equations (1) and (2). In this paper, we modify the method of studying in-
equality (3) given in [11] and find two-sided estimates of the least constant C in (11) suit-
able for establishing simple conditions of the oscillatory properties of equations (1) and
(2).

Inequality (11) under conditions (7) is well known. Since due to (8) inequality (11) is
equivalent to inequality (6), for τ = ∞, estimates of the least constant in (11) have the
form

B(∞) ≤ C ≤ 8p
1
q
(
p′) 1

p′ B(∞). (12)

Now, we consider inequality (11) under conditions (9). Let 0 < τ ≤ ∞ and

B3(τ ) =
(∫ ∞

τ

u(t) dt
) 1

q
(∫ τ

0
(τ – s)p′

v1–p′
(s) ds

) 1
p′

,

F1(τ ) = sup
z>τ

(∫ ∞

z
u(t) dt

) 1
q
(∫ z

τ

(s – τ )p′
v1–p′

(s) ds
) 1

p′
,

F2(τ ) = sup
z>τ

(∫ z

τ

(t – τ )qu(t) dt
) 1

q
(∫ ∞

z
v1–p′

(s) ds
) 1

p′
,

B(τ ) = max
{

B(τ ), B3(τ )
}

,

F(τ ) = max
{

F1(τ ), F2(τ )
}

,

BF(τ ) = max
{
B(τ ), F(τ )

}
,

BF = inf
τ∈I

BF(τ ).

Let v1–p′ ∈ L1(I), then for any τ ∈ I there exists kτ > 0 such that

∫ τ

0
v1–p′

(t) dt = kτ

∫ ∞

τ

v1–p′
(t) dt, (13)

where kτ is increasing in τ , limτ→0+ kτ = 0 and limτ→∞ kτ = ∞. Moreover, for kτ1 = 1, we
have that

∫ τ1

0
v1–p′

(t) dt =
∫ ∞

τ1

v1–p′
(t) dt. (14)

Equality (13) is used below to prove the main theorem of this section. The arbitrariness
of the parameter τ : 0 < τ < ∞ allows to get the required estimates of the least constant C
in (11) in contrast to what was in [11], where the parameter τ is fixed and equal to τ1.

Theorem 1 Let 1 < p ≤ q < ∞ and condition (9) hold. Then, for the least constant C in
inequality (11), the following estimates

4– 1
p BF ≤ C ≤ 11p

1
q
(
p′) 1

p′ BF , (15)

sup
τ∈I

(
1 + k1–p

τ

)– 1
p F(τ ) ≤ C ≤ 11p

1
q
(
p′) 1

p′ F(τ0) (16)
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hold, where

τ0 = sup
{
τ ∈ I : B(τ ) < F(τ )

}
. (17)

Remark 1 It is obvious that the function F(τ ) does not increase in τ ∈ I . Suppose that
limτ→0+ F(τ ) = D. Below, in the proof of Theorem 1, both for D = ∞ and D < ∞, we prove
the existence of a nonempty neighborhood of zero, where F(τ ) > B(τ ). In addition, for
D < ∞, we get limτ→0+ B(τ ) = 0. Therefore, there is finite τ0 > 0 in (17).

Proof Sufficiency. By Lemma C, from conditions (9), we have that (10) holds. Hence, for
f ∈ W̊ 2

p,v(I) and τ ∈ I , we get

f (x) = χ(0,τ )(x)
∫ x

0
(x – s)f ′′(s) ds + χ(τ ,∞)(x)

(∫ τ

0
(τ – s)f ′′(s) ds

–
∫ x

τ

(s – τ )f ′′(s) ds – (x – τ )
∫ ∞

x
f ′′(s) ds

)
. (18)

As in Theorem 2.1 of [11], replacing (18) into the left-hand side of (11), then using
Minkowski’s inequality for sums, applying Theorems B and A and the inverse Hölder in-
equality, we have

(∫ ∞

0
u(t)

∣
∣f (t)

∣
∣q dt

) 1
q

≤ (
8p

1
q
(
p′) 1

p′ B(τ ) + B3(τ )
)(∫ τ

0
v(t)

∣
∣f ′′(t)

∣
∣p dt

) 1
p

+ p
1
q
(
p′) 1

p′ (F1(τ ) + F2(τ )
)
(∫ ∞

τ

v(t)
∣∣f ′′(t)

∣∣p dt
) 1

p

≤ 11p
1
q
(
p′) 1

p′ BF(τ )
(∫ ∞

0
v(t)

∣
∣f ′′(t)

∣
∣p dt

) 1
p

. (19)

Since the left-hand side of (19) does not depend on τ ∈ I , we find the right-hand estimate
of (15).

The function F(τ ) does not increase in τ ∈ I . Let us show that

lim
τ→0+

F(τ ) > lim
τ→0+

supB(τ ). (20)

If limτ→0+ F(τ ) = ∞, then the validity of (20) is obvious. Let limτ→0+ F(τ ) < ∞. Then from
limτ→0+ F2(τ ) < ∞ it follows that tqu(t) ∈ L1(0, 1). Hence, limτ→0+ B2(τ ) = 0. From the es-
timates

B1(τ ) <
(∫ τ

0
tqu(t) dt

) 1
q
(∫ τ

0
v1–p′

(t) dt
) 1

p′
,

B3(τ ) < τ

(∫ N

τ

tqu(t) dt
) 1

q
(∫ τ

0
v1–p′

(t) dt
) 1

p′

+
(∫ ∞

N
u(t) dt

) 1
q
(∫ τ

0
(τ – s)p′

v1–p′
(s) ds

) 1
p′

, N > τ > 0,
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we have limτ→0+ B1(τ ) = limτ→0+ B3(τ ) = 0, i.e., limτ→0+ B(τ ) = 0. Consequently, (20)
holds. Therefore, there exists finite τ0 in (17) and the right-hand side of (16) holds.

Necessity. We use the ideas and methods applied to prove Theorem 2.1 of [11]. For
f ∈ W̊ 2

p,v(I) = L2R1W , we assume that g = f ′′. Then from (10) it follows that the condition
f ∈ L2R1W is equivalent to the condition g ∈ L̃p,v(I) = {g ∈ Lp,v(I) :

∫ ∞
0 g(s) ds = 0} (see [11,

Theorem 2.1]).
Let 0 < τ < ∞. We consider two sets

L1 =
{

g ∈ Lp,v(0, τ ) : g ≥ 0
}

, L2 =
{

g ∈ Lp,v(τ ,∞) : g ≤ 0
}

.

As in [11], for any g1 ∈ L1 and g2 ∈ L2, we respectively construct functions g2 ∈ L2 and
g1 ∈L1 such that g(t) = g1(t) for 0 < t ≤ τ and g(t) = g2(t) for t > τ belong to L̃p,v(I).

By the condition of Theorem 1, we have that v1–p′ ∈ L1(I). Therefore, for any τ ∈ I , there
exists kτ such that (13) holds. We define a strictly decreasing function ρ : (0, τ ) → (τ ,∞)
from the equalities

∫ s

0
v1–p′ (t) dt = kτ

∫ ∞

ρ(s)
v1–p′ (t) dt, s ∈ (0, τ );

∫ ρ–1(s)

0
v1–p′

(t) dt = kτ

∫ ∞

s
v1–p′

(t) dt, s ∈ (τ ,∞),

(21)

where ρ–1 is the inverse function to the function ρ .
The function ρ is locally absolutely continuous on (0, τ ). Moreover, ρ(τ ) = τ and

lims→0+ ρ(s) = ∞. From the second equality of (21) it follows that ρ–1 is also locally ab-
solutely continuous on (τ ,∞). By differentiation of (21), we get

1
kτ

=
v1–p′ (ρ(s))

v1–p′ (s)
∣∣ρ ′(s)

∣∣, s ∈ (0, τ );

kτ =
v1–p′ (ρ–1(s))

v1–p′ (s)
∣
∣(ρ–1(s)

)′∣∣, s ∈ (τ ,∞).

(22)

For g1 ∈L1, we assume that

g2(t) = –kτ g1
(
ρ–1(t)

) v1–p′ (t)
v1–p′ (ρ–1(t))

, t > τ . (23)

Changing the variables ρ–1(t) = s and using the first equality in (22), we find that

∫ ∞

τ

v(t)
∣∣g2(t)

∣∣p dt = kp–1
τ

∫ τ

0
v(s)

∣∣g1(s)
∣∣p ds < ∞, (24)

i.e., g2 ∈L2.
Similarly, for g2 ∈L2, assuming

g1(t) = –
1
kτ

g2
(
ρ(t)

) v1–p′ (t)
v1–p′ (ρ(t))

, 0 < t ≤ τ , (25)

we get that g1 ∈L1 and (24) holds.
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In both cases, assuming g(t) = g1(t) for 0 < t ≤ τ and g(t) = g2(t) for t > τ , we have

∫ ∞

0
v(t)

∣
∣g(t)

∣
∣p dt =

(
1 + kp–1

τ

)∫ τ

0
v(t)

∣
∣g1(t)

∣
∣p dt

=
(
1 + k1–p

τ

)∫ ∞

τ

v(t)
∣∣g2(t)

∣∣p dt < ∞, (26)

i.e., g ∈ Lp,v(I).
From the condition v1–p′ ∈ L1(I) it follows that g ∈ L1(I). For any τ ∈ I , integrating

both sides of (23) from τ to ∞ and both sides of (25) from 0 to τ , we establish that
∫ ∞
τ

g(t) dt = –
∫ τ

0 g(t) dt, i.e.,
∫ ∞

0 g(t) dt = 0. Hence, we constructed the function g ∈ L̃p,v

from the functions g1 ∈L1 and g2 ∈L2. Substituting the constructed function in (11) and
using (18), we obtain

(∫ τ

0
u(t)

(∫ t

0
(t – s)g1(s) ds

)q

dt +
∫ ∞

τ

u(t)
(∫ τ

0
(τ – s)g1(s) ds +

∫ t

τ

(s – τ )
∣∣g2(s)

∣∣ds

+ (t – τ )
∫ ∞

t

∣
∣g2(s)

∣
∣ds

)q

dt
) 1

q
≤ C

(∫ ∞

0
v(t)

∣
∣g(t)

∣
∣p dt

) 1
p

, (27)

where all the terms in the left-hand side are nonnegative.
Let the function g ∈ L̃p,v(I) be constructed from the function g1 ∈ L1. Then from (26)

and (27) we have

(∫ τ

0
u(t)

(∫ t

0
(t – s)g1(s) ds

)q

dt
) 1

q
≤ C

(
1 + kp–1

τ

) 1
p

(∫ τ

0
v(t)

∣∣g1(t)
∣∣p dt

) 1
p

,

(∫ ∞

τ

u(t) dt
) 1

q
∫ τ

0
(τ – s)g1(s) ds ≤ C

(
1 + kp–1

τ

) 1
p

(∫ τ

0
v(t)

∣∣g1(t)
∣∣p dt

) 1
p

.

Due to the arbitrariness of the function g1 ∈ L1, by Theorem B, from the inverse Hölder
inequality the latter gives

B(τ ) ≤ C
(
1 + kp–1

τ

) 1
p , B3(τ ) ≤ C

(
1 + kp–1

τ

) 1
p .

The last two estimates imply that

B(τ ) ≤ C
(
1 + kp–1

τ

) 1
p . (28)

Similarly, for the function g ∈ L̃p,v(I) constructed from the function g2 ∈ L2, due to (26)
and (27), we obtain

F(τ ) ≤ C
(
1 + k1–p

τ

) 1
p . (29)

From (28) and (29) we deduce that

BF = inf
τ∈I

max
{
B(τ ), F(τ )

} ≤ C inf
τ∈I

[
max

(
1 + kp–1

τ

)(
1 + k1–p

τ

)] 1
p ≤ 4

1
p C.

This gives the left-hand estimate of (15). Moreover, from (29) we also deduce the left-hand
estimate of (16). The proof of Theorem 1 is complete. �
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4 Oscillatory properties of equations (1) and (2)
Two points t1 and t2 of the interval I such that t1 
= t2 are called conjugate with respect to
equation (1)((2)), if there exists a nonzero solution y of equation (1)((2)) having zeros of
multiplicity two y(i)(t1) = y(i)(t2) = 0, i = 0, 1, at these points t1 and t2.

Equation (1) ((2)) is called oscillatory (at infinity) if for any T > 0 there exist conjugate
points with respect to equation (1)((2)) to the right of T . Otherwise, equation (1)((2)) is
called nonoscillatory.

Let us begin with equation (1). From Theorem 9.4.4 of the book [3], where the variational
method of nonoscillation is established for half-linear higher order equation, we have the
following statement.

Lemma A Let 1 < p < ∞. If for some T > 0 the inequality

∫ ∞

T

[
v(t)

∣∣f ′′(t)
∣∣p – u(t)

∣∣f (t)
∣∣p]dt > 0 (30)

holds for all nonzero f ∈ M̊p(T ,∞), then equation (1) is nonoscillatory.

Due to the compactness of the set supp f for f ∈ M̊p(T ,∞), inequality (30) coincides
with the inequality

∫ ∞

T
u(t)

∣
∣f (t)

∣
∣p dt <

∫ ∞

T
v(t)

∣
∣f ′′(t)

∣
∣p dt, f ∈ M̊p(T ,∞). (31)

From (31) and the density of M̊p(T ,∞) in W̊ 2
p,v(T ,∞) we have the following lemma.

Lemma 2 Let 1 < p < ∞. If for some T > 0 the inequality

∫ ∞

T
u(t)

∣
∣f (t)

∣
∣p dt ≤ CT

∫ ∞

T
v(t)

∣
∣f ′′(t)

∣
∣p dt, f ∈ W̊ 2

p,v(T ,∞), (32)

holds with the least constant CT : 0 < CT < 1, then equation (1) is nonoscillatory.

Theorem 2 Let 1 < p < ∞ and (7) hold. If

lim
z→∞ sup

∫ ∞

z
u(t) dt

(∫ z

0
(z – t)p′

v1–p′ (t) dt
)p–1

≤ (p – 1)p–1

(8p)p , (33)

lim
z→∞ sup

∫ ∞

z
(t – z)pu(t) dt

(∫ z

0
v1–p′ (t) dt

)p–1

≤ (p – 1)p–1

(8p)p , (34)

then equation (1) is nonoscillatory.

Proof From (33) and (34), in view of the upper limit definition, there exist T1 > 0 and T2 > 0
such that

(
B1(T1,∞)

)p = sup
z>T1

∫ ∞

z
u(t) dt

(∫ z

T1

(z – t)p′
v1–p′

(t) dt
)p–1

<
(p – 1)p–1

(8p)p ,

(
B2(T2,∞)

)p = sup
z>T2

∫ ∞

z
(t – z)pu(t) dt

(∫ z

T2

v1–p′
(t) dt

)p–1

<
(p – 1)p–1

(8p)p .
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These inequalities hold for T = max{T1, T2}, hence

(
8p

1
p
(
p′) 1

p′ B̃(T ,∞)
)p < 1, (35)

where B̃(T ,∞) is equal to B(∞) from (12) for p = q and the interval (T ,∞) instead of the
interval (0,∞). Then from (35) and (12) it follows that CT < 1, and by Lemma 2 equation
(1) is nonoscillatory. The proof of Theorem 2 is complete. �

Theorem 3 Let 1 < p < ∞ and (9) hold. If

lim
z→∞ sup

∫ ∞

z
u(t) dt

(∫ z

0
sp′

v1–p′
(s) ds

)p–1

≤ (p – 1)p–1

(11p)p , (36)

lim
z→∞ sup

∫ z

0
tpu(t) dt

(∫ ∞

z
v1–p′

(s) ds
)p–1

≤ (p – 1)p–1

(11p)p , (37)

then equation (1) is nonoscillatory.

Proof From (36) and (37), as in Theorem 2, there exist T1 > 0 and T2 > 0 such that

(
F̃1(T1)

)p = sup
z>T1

∫ ∞

z
u(t) dt

(∫ z

T1

(s – T1)p′
v1–p′

(s) ds
)p–1

<
(p – 1)p–1

(11p)p ,

(
F̃2(T2)

)p = sup
z>T2

∫ z

T2

(t – T2)pu(t) dt
(∫ ∞

z
v1–p′ (s) ds

)p–1

<
(p – 1)p–1

(11p)p ,

where F̃1(T1) and F̃2(T2) are, respectively, equal to F1(T1) and F2(T2) from Theorem 1 for
p = q. It is obvious that the last two inequalities hold for T = max{T1, T2}, hence (̃F(τ ))p =
max{(̃F1(T))p, (̃F2(T))p} < (p–1)p–1

(11p)p or

(
11p

1
p
(
p′) 1

p′ F̃(T)
)p < 1. (38)

Since F̃(τ ) does not increase, then from (38) we get

(
11p

1
p
(
p′) 1

p′ F̃(τ0)
)p < 1, (39)

where τ0 is defined by (17) for τ ∈ (T ,∞). Then from (16) it follows that CT < 1 for the
least constant CT in (32). Therefore, by Lemma 2, equation (1) is nonoscillatory. The proof
of Theorem 3 is complete. �

Now, we turn to equation (2).

Theorem 4 Let (7) hold for p = 2.
(i) If

lim
z→∞ sup

∫ ∞

z
u(t) dt

∫ z

0
(z – t)2v–1(t) dt ≤ 1

162 ,

lim
z→∞ sup

∫ ∞

z
(t – z)2u(t) dt

∫ z

0
v–1(t) dt ≤ 1

162 ,
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then equation (2) is nonoscillatory.
(ii) If

lim
z→∞ sup

∫ ∞

z
u(t) dt

∫ z

0
(z – t)2v–1(t) dt > 1 (40)

or

lim
z→∞ sup

∫ ∞

z
(t – z)2u(t) dt

∫ z

0
v–1(t) dt > 1, (41)

then equation (2) is oscillatory.

Proof The statement of part (i) follows from the statement of Theorem 2 for p = 2. Let us
prove part (ii). Let (40) hold. Then, by the upper limit definition, there exists a sequence
{zn}∞n=1 ⊂ I such that limn→∞ zn = ∞ and

lim
n→∞

∫ ∞

zn

u(t) dt
∫ zn

0
(zn – t)2v–1(t) dt > 1. (42)

It is easy to see that

lim
z→∞

(∫ z

T
(z – t)2v–1(t) dt

)–1 ∫ z

0
(z – t)2v–1(t) dt = 1

for any T > 0. Then from (42) it follows that

1 < lim
n→∞
zn>T

∫ ∞

zn

u(t) dt
∫ zn

T
(zn – t)2v–1(t) dt

≤ sup
z>T

∫ ∞

z
u(t) dt

∫ z

T
(z – t)2v–1(t) dt =

(
B1(T ,∞)

)2, (43)

where B1(T ,∞) is equal to B1(∞) from (12) for p = q = 2 and the interval (T ,∞) instead of
the interval (0,∞). Then from (43) and (12) it follows that CT > 1 for any T > 0. Therefore,
by Lemma 1, equation (2) is oscillatory. If (41) holds, the proof is similar, so we omit the
details. The proof of Theorem 4 is complete. �

Theorem 5 Let (9) hold for p = 2.
(i) If

lim
z→∞ sup

∫ ∞

z
u(t) dt

∫ z

0
s2v–1(s) ds ≤ 1

222 ,

lim
z→∞ sup

∫ z

0
t2u(t) dt

∫ ∞

z
v–1(s) ds ≤ 1

222 ,

then equation (2) is nonoscillatory.
(ii) If

lim
z→∞ sup

∫ ∞

z
u(t) dt

∫ z

0
s2v–1(s) ds > 1 (44)
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or

lim
z→∞ sup

∫ z

0
t2u(t) dt

∫ ∞

z
v–1(s) ds > 1, (45)

then equation (2) is oscillatory.

Proof The statement of part (i) follows from the statement of Theorem 3 for p = 2.
Let us prove part (ii). Let (45) hold. Then there exists a sequence {zn}∞n=1 ⊂ I such that
limn→∞ zn = ∞ and

lim
z→∞ sup

∫ z

0
t2u(t) dt

∫ ∞

z
v–1(s) ds = lim

n→∞

∫ zn

0
t2u(t) dt

∫ ∞

zn

v–1(s) ds. (46)

Since for any τ > 0 we have that

lim
z→∞

(∫ z

τ

(t – τ )2u(t) dt
)–1 ∫ z

0
t2u(t) dt = lim

z→∞
1

1 – τ
z

= 1,

then from (46) it follows that

lim
z→∞ sup

∫ z

0
t2u(t) dt

∫ ∞

z
v–1(s) ds = lim

n→∞
zn>τ

∫ z

τ

(t – τ )2u(t) dt
∫ ∞

z
v–1(s) ds

≤ inf
τ>0

sup
z>τ

∫ z

τ

(t – τ )2u(t) dt
∫ ∞

z
v–1(s) ds

≤ lim
τ→∞ sup

z>τ

∫ z

τ

(t – τ )2u(t) dt
∫ ∞

z
v–1(s) ds

= lim
τ→∞

(
F2(τ )

)2, (47)

where F2(τ ) is equal to F2(τ ) for p = q = 2. Similarly,

lim
z→∞ sup

∫ ∞

z
u(t) dt

∫ z

0
s2v–1(s) ds ≤ lim

τ→∞
(
F1(τ )

)2, (48)

where F1(τ ) is F1(τ ) for p = q = 2.
Consider the interval (T ,∞) for arbitrary T > 0. Then the left-hand side of estimate (16)

for p = q = 2 has the form

sup
τ>T

(
1 + k–1

τ

)–1(F(τ )
)2 ≤ CT , (49)

where F(τ ) = max{F1(τ ), F2(τ )} and kτ is defined on the interval (T ,∞). Since limτ→∞ kτ =
∞, then

sup
τ>T

(
1 + k–1

τ

)–1(F(τ )
)2 ≥ lim

τ→∞
(
1 + k–1

τ

)–1(F(τ )
)2

= lim
τ→∞

(
F(τ )

)2 ≥ lim
τ→∞

(
F2(τ )

)2. (50)
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Hence, from (45), (47), (50), and (49) it follows that CT > 1 for any T > 0. Therefore, by
Lemma 1 equation (2) is oscillatory. If (44) holds, the proof is similar, so we omit the details.
The proof of Theorem 5 is complete. �

5 Strong oscillation and nonoscillation of equation (2)
Let us consider equation (2) with the parameter λ > 0:

(
v(t)y′′(t)

)′′ – λu(t)y(t) = 0, t ∈ I. (51)

By Lemma A, if for some T > 0 the inequality

∫ ∞

T

[
v(t)

∣
∣f ′′(t)

∣
∣p – λ0u(t)

∣
∣f (t)

∣
∣p]dt > 0, f ∈ M̊p(T ,∞), (52)

holds, then equation (51) is nonoscillatory for λ = λ0. It is obvious that if inequality (52)
holds for λ0, then it holds for any λ < λ0, i.e., equation (51) is nonoscillatory for any λ <
λ0. Inversely, if inequality (52) does not hold, then equation (51) is oscillatory for λ = λ0.
Hence, it is oscillatory for any λ > λ0. Therefore, we can find λ0 called the critical constant
of oscillation such that equation (51) is nonoscillatory for any λ < λ0 and oscillatory for
any λ > λ0. In the case when the critical constant does not exist, equation (51) is either
nonoscillatory or oscillatory for all λ > 0. If equation (51) is nonoscillatory for all λ > 0, it
is called strong nonoscillatory. If equation (51) is oscillatory for all λ > 0, it is called strong
oscillatory.

Inequality (3) on the interval (T ,∞) for equation (51) has the form

λ

∫ ∞

T
u(t)

∣∣f (t)
∣∣2 dt ≤ λCT

∫ ∞

T
v(t)

∣∣f ′′(t)
∣∣2 dt, f ∈ W̊ 2

2,v(T ,∞), (53)

with the least constant λCT , where CT is the least constant in (3).

Lemma 3 Let CT be the least constant in (3).
(i) Equation (51) is strong nonoscillatory if and only if limT→∞ CT = 0.

(ii) Equation (51) is strong oscillatory if and only if for any number T > 0 we have that
CT = ∞.

Proof Part (i). Let equation (51) be nonoscillatory for λ > 0. Then, by Lemma 1, there
exists T1 > 0 such that 0 < λCT1 ≤ 1. Moreover, equation (51) has no conjugate points on
the interval (T1,∞). Hence, for any T > T1, equation (51) has no conjugate points on the
interval (T ,∞) and 0 < λCT ≤ 1. Assume that Tλ = inf{T > 0 : λCT ≤ 1}. Then λCTλ

≤ 1.
Let equation (51) be strong nonoscillatory. Then, by Lemma 1, for any λ there exists Tλ > 0
such that 0 < λCTλ

≤ 1 or CTλ
≤ 1

λ
. This gives that limλ→∞ CTλ

= 0. Let 0 < λ1 < λ2 and
λ2CTλ2

≤ 1. Then λ1CTλ2
≤ 1. Therefore, Tλ1 ≤ Tλ2 and Tλ does not decrease in λ > 0.

Hence, there exists limλ→∞ Tλ = T∞. If T∞ < ∞, then limλ→∞ CTλ
= CT∞ = 0. Then, due

to inequality (3), this fact holds if u(t) = 0 for t > T∞. The obtained contradiction yields
that T∞ = ∞. Thus, limλ→∞ CTλ

= limT→∞ CT = 0.
Inversely, let limT→∞ CT = 0. Then, for any λ > 0, there exists T(λ) > 0 such that CT(λ) ≤

1
λ

or λCT(λ) ≤ 1. Therefore, by Lemma 1, equation (51) is nonoscillatory for any λ > 0, i.e.,
it is strong nonoscillatory.
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Part (ii). Let equation (51) be strong oscillatory. Then, by Lemma 1, for any λ > 0 and
T > 0, we have that λCT > 1, which yields CT > 1

λ
and CT ≥ limλ→0+ 1

λ
= ∞ for all T > 0.

Inversely, if CT = ∞ for any T > 0, we have that λCT = ∞ > 1 for any λ > 0 and T > 0.
Then, by Lemma 1, equation (51) is oscillatory for any λ > 0, i.e., it is strong oscillatory.
The proof of Lemma 3 is complete. �

Now, on the basis of Lemma 3, we can establish criteria of strong nonoscillation and
strong oscillation of equation (51).

Criteria of strong nonoscillation and strong oscillation of equation (51) under condi-
tions (7) for p = 2 are corollaries of the results of the work [13]. Therefore, we investigate
equation (51) under conditions (9) for p = 2.

Theorem 6 Let (9) hold for p = 2.
(i) Equation (51) is strong nonoscillatory if and only if

lim
z→∞

∫ ∞

z
u(t) dt

∫ z

0
s2v–1(s) ds = 0, (54)

lim
z→∞

∫ z

0
t2u(t) dt

∫ ∞

z
v–1(s) ds = 0. (55)

(ii) Equation (51) is strong oscillatory if and only if

lim
z→∞ sup

∫ ∞

z
u(t) dt

∫ z

0
s2v–1(s) ds = ∞ (56)

or

lim
z→∞ sup

∫ z

0
t2u(t) dt

∫ ∞

z
v–1(s) ds = ∞. (57)

Proof Part (i). Let equation (51) be strong nonoscillatory. Then, by Lemma 3, we have that
limT→∞ CT = 0. From the left-hand side estimate of (16), for any T > 0 and τ ∈ (T ,∞), we
have

(
1 + k–1

τ

)–1(F(τ )
)2 ≤ CT . (58)

We choose τ = τ1 such that
∫ τ1

T v–1(s) ds =
∫ ∞
τ1

v–1(s) ds. Then kτ1 = 1 and T < τ1 <
∞. Therefore, limT→∞ τ1 = ∞ and from (58) it follows that 0 = limT→∞ CT ≥ 1

2 ×
limτ→∞(F(τ ))2. Hence, limτ→∞ Fi(τ ) = 0, i = 1, 2. Then from (48) and (47) we get that
(54) and (55) hold, respectively.

Inversely, let (54) and (55) hold. Then we have

lim
z→∞ sup

∫ ∞

z
u(t) dt

∫ z

0
s2v–1(s) ds = lim

τ→∞ sup
z>τ

∫ ∞

z
u(t) dt

∫ z

0
s2v–1(s) ds

≥ lim
τ→∞ sup

z>τ

∫ ∞

z
u(t) dt

∫ z

τ

(s – τ )2v–1(s) ds

= lim
τ→∞

(
F1(τ )

)2. (59)
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Similarly, we find that

lim
z→∞ sup

∫ z

0
t2u(t) dt

∫ ∞

z
v–1(s) ds ≥ lim

τ→∞
(
F2(τ )

)2. (60)

Therefore, from (54) and (55) it follows that

lim
τ→∞

(
F(τ )

)2 = 0. (61)

For p = q = 2, from the right-hand side estimate of (16), we have

CT ≤ (
22F(τ0)

)2, (62)

where τ0 is defined by (17) for τ > T and T < τ0 < ∞. Then from (61) and (62) we obtain

lim
T→∞ CT ≤ 222 lim

T→∞
(
F(τ0)

)2 = 222 lim
τ→∞

(
F(τ )

)2 = 0.

Hence, limT→∞ CT = 0, and by Lemma 3 equation (51) is strong nonoscillatory.
Part (ii). Let equation (51) be strong oscillatory. Then, by Lemma 3, we have that CT = ∞

for any T > 0. Therefore, from (62) we derive that F(τ0) = ∞ for any τ0 = τ (T). Since F(τ )
does not increase, then limτ→∞ F(τ ) = ∞.

If limτ→∞ F1(τ ) = ∞, then from (59) we have that (56) holds. If limτ→∞ F2(τ ) = ∞, then
from (60) we have that (57) holds.

Inversely, let (57) hold. Then from (47) it follows that limτ→∞ F2(τ ) = ∞. Then
limτ→∞ F(τ ) = ∞. Since F(τ ) does not increase, then F(τ ) = ∞ for any τ ∈ (T ,∞) and
T > 0. Hence, from (49) we obtain that CT = ∞ for all T > 0. Thus, by Lemma 3, equation
(51) is strong oscillatory. If (56) holds, the proof is similar, so we omit the details. The
proof of Theorem 6 is complete. �

Let positive functions a and b belong to Cn(I). In the oscillation theory of differential
equations there is known the reciprocity principle [2]: the equation (–1)n(a(t)y(n)(t))(n) =
b(t)y(t) is nonoscillatory if and only if the equation (–1)n( 1

b(t) y(n)(t))(n) = 1
a(t) y(t) is nonoscil-

latory.
Now, let us assume that together with the function v the function u is also sufficiently

times continuously differentiable on the interval I . Then, by the reciprocity principle,
equation (51) is nonoscillatory if and only if the equation

(
u–1(t)y′′(t)

)′′ – λv–1(t)y(t) = 0, t ∈ I, (63)

is nonoscillatory. The statement equivalent to the above statement is as follows: equation
(51) is oscillatory if and only if equation (63) is oscillatory. Thus, on the basis of the reci-
procity principle, from Theorem 6 we have the following theorem.

Theorem 7 Let u ∈ L1(I) and t2u(t) /∈ L1(1,∞).
(i) Equation (51) is strong nonoscillatory if and only if

lim
z→∞

∫ ∞

z
v–1(t) dt

∫ z

0
s2u(s) ds = 0,
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lim
z→∞

∫ z

0
t2v–1(t) dt

∫ ∞

z
u(s) ds = 0.

(ii) Equation (51) is strong oscillatory if and only if

lim
z→∞ sup

∫ ∞

z
v–1(t) dt

∫ z

0
s2u(s) ds = ∞

or

lim
z→∞ sup

∫ z

0
t2v–1(t) dt

∫ ∞

z
u(s) ds = ∞.

Remark 2 The oscillatory properties in Sects. 4 and 5 are studied under the assumption
that the function v–1 is nonsingular at zero, i.e., v–1 ∈ L1(0, 1). This assumption is posed
to get simple integral expressions. We consider the oscillatory properties of equations at
infinity. Therefore, the oscillation and nonoscillation of the equations are determined by
the behavior of their coefficients in the neighborhood of infinity so that their changes at
the finite part do not affect the results. For example, if in Theorems 2–5 instead of zero
we put any number greater than zero, then the values of the limits in these theorems do
not change. If we do not pose the above assumption, we can take any other point of the
interval I . For example, if we take 1, then the integral from 0 to z is replaced by the integral
from 1 to z and t2 is replaced by (t – 1)2.
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