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Abstract
This paper is concerned with the finite-time stabilization of a class of switched
nonlinear singular systems under asynchronous control. Asynchronism here refers to
the delays in switching between the controller and the subsystem. First, the dynamic
decomposition technique is used to prove that such a switched singular system is
regular and impulse-free. Secondly, based on the state solutions of the closed-loop
system in the matched time period and the mismatched time period of the system
instead of constructing a Lyapunov function, the sufficient conditions for the
finite-time stability of the asynchronous switched singular system are given, there is
no limit to the stability of subsystems. Then, the mode-dependent state feedback
controller that makes the original system stable is derived in the form of strict linear
matrix inequalities. Finally, numerical examples are given to verify the feasibility and
validity of the results.
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1 Introduction
A switched system is a class of hybrid system consisting of several continuous or dis-
crete dynamic subsystems and a given switching rule. When simulating complex models,
switched systems often have an advantage over a single system, so they are widely used
in many fields such as switching power converters, aircraft and air-traffic control, see [1–
5]. In recent years, many studies on switched systems have emerged, see [6] and [7, 8] and
references therein. Most studies on switched systems are concerned with Lyapunov global
asymptotic stability. However, in practice, we need the system to be stable within a finite-
time interval instead of an infinite interval. The finite-time stability problem of a switched
system has been discussed in [9–12]. Therefore, it is more valuable to study the transient
performance of the system in a finite-time interval than Lyapunov asymptotic stability in
some situations. The difference between the concept of finite-time stability and Lyapunov
stability is mainly manifested in two aspects: one is that finite-time stability analyzes the
system within a limited time interval; the other is that finite-time stability requires preset
boundaries of system variables.
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A switched singular system means that the system contains at least one singular subsys-
tem. These systems widely exist in power systems, networked control systems, robotics
and other practical systems [13–15]. Therefore, the study of switched singular systems
has attracted the attention of many workers, and has achieved rich research results [16–
18]. Compared with general switched systems, the stability analysis and controller design
of switched singular systems are more complicated due to the problems of regularity, uni-
form initial state and impulse-mode cancelation. When more detailed and precise models
are pursued, models of nonlinear rather than linear singular systems are established. It
is inevitable that switching signals will take a certain amount of time in the transmission
process, as even modern technology can not completely eliminate the time delay. Like
the butterfly effect, even a small delay of the controller may have a great influence on the
system. Thus, in order to simulate a more realistic real system, many workers focus their
research on meaningful asynchronous controllers [19–22].

In the previous paper on switched singular systems [23], based on the equivalent
dynamics-decomposition form, the exact description of the state jump is characterized at
the moment of system switching. On the one hand, this state jump comes from the switch-
ing law of piecewise-constant values, and on the other hand, it comes from the constraint
of algebraic equations. On the basis of the refined description for state jumps proposed
above, the finite-time stabilization problem of switched linear singular systems has been
considered in [24] without considering the occurrence of asynchronism. Some conditions
to ensure that the state remains in a bounded region have been derived via the Lyapunov
approach. The finite-time stability problem and finite-time bounded problem of switched
singular systems with unstable subsystems have been presented by the authors in [25].
With the help of illustrative examples, the criterion given in [25] provides less conserva-
tive results than the approach given in [24]. For the vast majority of methods used to solve
the finite-time stability of switched systems, Lyapunov methods have been proven to be
one of the most efficient approaches [5, 26, 27]. Moreover, the Lyapunov function method
is also a very effective tool when studying fractional-order systems, see [28–31]. The effi-
ciency of those methods, however, depends crucially on appropriate construction of the
Lyapunov–Krasovskii (L–K) functions. Since there is no uniform method to construct
L–K functions, it is not easy to construct suitable L–K functions for different systems.
Hence, we are curious about one thing: can we solve the problem of finite-time stabil-
ity of switched singular systems under asynchronous control without using the Lyapunov
function method? This is the first motivation of this research.

In fact, the solution of the state equation of the system is an intuitive and useful tool in
studying the stability of the system, yet few workers use it. There are two main reasons
for this phenomenon. On the one hand, the structure and state equation of the switching
system are complex, the switching signals are constantly changing. Meanwhile, the sub-
systems are alternating so it is difficult to obtain the state solution of the system. On the
other hand, even if the state solution is obtained, it is difficult to find effective analysis tools
and methods. Thus, starting from the original solution of the system and combining the
model with the mode-dependent average dwell time to study the asynchronous problem
of a switched singular system has not been given enough attention, which is the second
motivation of this paper.

The objective of this paper is twofold. The first is to find the appropriate switching law
to make the system stable in finite time. The other is to find the specific form of an asyn-
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chronous controller that can be solved. Based on the problems raised above, the contri-
butions of this paper are as follows.

(i) The regular and impulse-free properties of switched singular systems is proved based
on the dynamic decomposition technique and there is no requirement that all subsystems
must be stable. Then, the finite-time stability (FTS) problem of a switched singular system
is transformed into the FTS problem of reduced-order switched systems.

(ii) In contrast to [24, 25, 32], we do not construct any Lyapunov functions in our re-
search. Starting with the state-equation solution of the switched system with nonlinear
disturbance and taking the switching time point as the boundary, the operation time pe-
riod of each switched system is analyzed, and the state solutions of the closed-loop system
in the matched time period and the mismatched time period are given, and the state so-
lutions of the whole time period are obtained by alternating iterative derivation.

(iii) Based on the mathematical derivation and analysis of the state solution, and com-
bined with the average dwell time method, the sufficient conditions for the FTS of the
closed-loop switched singular system are obtained. Then, sufficient conditions for the sys-
tem to be FTS are given in the form of strict linear matrix inequality and the gain matrix
form of the controller is presented. Compared with [25], sufficient conditions with less
conservatism can be obtained to determine the FTS of a switched singular system.

The rest of this paper is organized as follows. In Sect. 2, definitions and lemmas useful
for the proof of theorems in this paper are listed. Section 3 presents the main results. Based
on the decomposition transformation of the original system and taking the asynchronous
controller into account, sufficient conditions for finite-time stability of switched singular
systems are given. The proof process is concise and to the point. Two specific examples
along with numerical and simulation results are provided in Sect. 4. Section 5 gives the
conclusion of the work of this paper.

Notations: The notations used in this paper are fairly standard. Rn denotes the n-
dimensional Euclidean space over the reals, Rm×n is the set of all m × n real matrices.
N+ represents all positive integer sets. “∗” stands for the symmetric term in a symmetric
matrix. Re(A) represents the real parts of the eigenvalues of matrix A. P > 0 (P < 0) means
that P is real symmetric and positive-definite (negative-definite). Matrix P > Q(P ≥ Q) is
equivalent to P – Q > 0(P – Q ≥ 0). λmax(P)(λmin(P)) denotes the maximum (minimum)
eigenvalue of P, and ‖ · ‖ is the Euclidean norm.

2 Problem statement and preliminaries
Consider a class of nonlinear switched singular systems described by the following equa-
tion:

⎧
⎨

⎩

Eσ (t)ẋ(t) = Aσ (t)x(t) + Bσ (t)u(t) + fσ (t)(t, x(t)),

x(t0) = x0.
(1)

where x(t) ∈R
n, u(t) ∈ R

m are the state vector and control input, the index σ (t) : [0,∞) →
N = {1, 2, . . . , N} is a piecewise right-continuous function of time t or x(t), where N ∈ N+

is the number of subsystems. The switching sequence satisfies t0 < t1 < t2 < · · · , when
t ∈ [ti, ti+1) and σ (t) = li ∈ N , we say that subsystem li is activated. For all σ (t) = li ∈ N ,
Eσ (t), Aσ (t), Bσ (t) are known constant matrices with appropriate dimensions. Meanwhile,
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Eσ (t) is a singular matrix and satisfying rankEσ (t) = r < n. fσ (t)(t, x(t)) is a continuously dif-
ferentiable nonlinear perturbation function on x(t), and fσ (t)(t, 0) = 0 and satisfies the fol-
lowing quadratic constraint

f T
σ (t)

(
t, x(t)

)
fσ (t)

(
t, x(t)

) ≤ ω2xT(t)W T
σ (t)Wσ (t)x(t). (2)

In practical engineering applications, because the sensor identify subsystem and the
corresponding controller will take some time, there will be a switching time delay in the
controller, which results in switching asynchrony between them. Therefore, in this paper,
the following form of controller is considered

u(t) = Kσ (t–τ (t))x(t), (3)

where τ (t) is the switching delay of the controller relative to the subsystem while meeting
0 < τ (ti) ≤ τ̄ ≤ ti+1 – ti. Here, without loss of generality [33, 34], the upper bound of the
switching delay is known in advance. By substituting this expression into formula (1), we
get the following closed-loop system expression

⎧
⎨

⎩

Eσ (t)ẋ(t) = (Aσ (t) + Bσ (t)Kσ (t–τ (t)))x(t) + fσ (t)(t, x(t)),

x(t0) = x0.
(4)

The purpose here is to design a state feedback controller (3) such that the loop-closed
system (4) is admissible. The switching time series of the controller is t0 < t1 + τ (t1) < · · · <
ti + τ (ti) < · · · . Meanwhile, t̃i is defined as ti + τ (ti). Further, system (4) can be written in
the following form

Eσ (t)ẋ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

Āσ (t0)x(t) + fσ (t0)(t, x(t)), t ∈ [t0, t1),

Āσ (ti)σ (ti–1)x(t) + fσ (ti)(t, x(t)), t ∈ [ti, t̃i),

Āσ (ti)x(t) + fσ (ti)(t, x(t)), t ∈ [t̃i, ti+1).

(5)

For simplicity, we use the subscripts li and li–1 to substitute for σ (ti) and σ (ti–1). We use
σ̃ (ti) = σ (ti)σ (ti–1) = lili–1, t ∈ [ti, t̃i), σ̃ (ti) = σ (ti) = li, t ∈ [t̃i, ti+1), thus Ālili–1 = Ali + Bli Kli–1 ,
Āli = Ali + Bli Kli . The above formula can be abbreviated as

Eσ̃ (t)ẋ(t) = Āσ̃ (t)x(t) + fσ (t)
(
t, x(t)

)
. (6)

In order to prove the theorem, we need some definitions and lemmas.

Definition 2.1 ([25]) For the switching signal σ (t) of system (1) and any t2 > t1 ≥ 0, let
Nσ li (t1, t2) denote the switched numbers of the lith subsystem over (t1, t2), Tli (t1, t2) as the
sum of the running time of the lith mode, if

Nσ li (t1, t2) ≤ N0li +
Tli (t1, t2)

τali
, (7)

holds for τali > 0, N0li ≥ 0, then τali is called the mode-dependent average dwell time and
N0li is called a chatter bound of the switching signal σ (t).
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Definition 2.2 ([35]) For every li ∈N , the pair (Eli , Ali ) in (1) is said to be
(1) regular if det(sEli – Ali ) is not identically zero;
(2) impulse-free if deg(det(sEli – Ali )) = rank(Eli ).

Definition 2.3 ([24]) For given three positive numbers c1, c2, T , with c1 < c2, a positive-
definite matrix R > 0 and a given switching signal σ (t) ∈ N , the switched nonlinear sin-
gular system (1) is said to be finite-time stabilized under an appropriate control input u(t)
with respect to (c1, c2, T , R,σ ), if

xT(0)ET
σ (t0)REσ (t0)x(0) ≤ c1 ⇒ xT(t)ET

σ (t)REσ (t)x(t) ≤ c2, ∀t ∈ [0, T]. (8)

Lemma 2.1 Let M =
[A B
C D

]
, where A, B, C and D are any real given matrices with appro-

priate dimensions such that M +MT < 0. Then, D is nonsingular and A +AT –BD–1C –
CTD–TBT < 0.

Lemma 2.2 ([36]) Let u, v and w be nonnegative piecewise-continuous functions on
[0, +∞) for which the inequality

u(t) ≤ c +
∫ t

a

(
u(s)v(s) + w(s)

)
ds, ∀t ≥ a,

holds, where a and c are nonnegative constants. Then,

u(t) ≤ ce
∫ t

a v(s) ds + re
∫ t

a (v(s)+ w(s)
r(s) ) ds, ∀t ≥ a,∀r > 0.

3 Main results
In this section, the decomposition technique and average dwell-time method are com-
bined together to investigate the finite-time stabilization problems for the closed-loop
system (6). Since rankEli = r < n, there exist two invertible matrices Mli and Nli such that

x(t) = Nli

[
x̄1(t)
x̄2(t)

]

, Mli Eli Nli =

[
Ir 0
0 0

]

, Mli Āli Nli =

[
Ali11 Ali12

Ali21 Al222

]

,

Mli fli =

[
fli1

fli2

]

,

(9)

where x̄1(t) ∈R
r , x̄2(t) ∈ R

n–r . Then, equation (6) can be converted into

⎧
⎨

⎩

˙̄x1(t) = Aσ̃11x̄1(t) + Aσ̃12x̄2(t) + fσ1(t, x(t)),

0 = Aσ̃21x̄1(t) + Aσ̃22x̄2(t) + fσ2(t, x(t)).
(10)

Suppose Aσ̃22 is nonsingular, the following formula can be further obtained

⎧
⎨

⎩

˙̄x1(t) = Aσ̃11x̄1(t) + Aσ̃12x̄2(t) + fσ1(t, x(t)),

x̄2(t) = –A–1
σ̃22Aσ̃21x̄1(t) – A–1

σ̃22fσ2(t, x(t)).
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Thus, system (6) can be rewritten as

⎧
⎨

⎩

˙̄x1(t) = Āσ̃1x̄1(t) + hσ1(t, x(t)),

x̄2(t) = Āσ̃2x̄1(t) + hσ2(t, x(t)),
(11)

where Āσ̃1 = Aσ̃11 – Aσ̃12A–1
σ̃22Aσ̃21, Āσ̃2 = –A–1

σ̃22Aσ̃21, hσ1 = –Aσ̃12A–1
σ̃22fσ2(t, x(t)) +

fσ1(t, x(t)), hσ2 = –A–1
σ̃22fσ2(t, x(t)). At the same time, suppose there is a constant δ > 0 such

that hσ (t)1(t, x(t)) satisfies the following inequality

∥
∥hσ (t)1

(
t, x(t)

)∥
∥ ≤ δ

∥
∥x̄1(t)

∥
∥, ∀σ (t) ∈N . (12)

This article follows the previous definition, where x̄1(t) is called the slow system variable
and x̄2(t) is called the fast subsystem variable.

Remark 3.1 It should be noted that the dynamics-decomposition form is not unique be-
cause the choice of matrices Mli , Nli is not unique. According to the proof of Theorem 3.1
in reference [37], it can be seen that the properties of the system solution remain un-
changed after the coefficient matrix of the system is transformed. Therefore, the regular
and impulse-free nature of the solutions of (1) and (11) can be derived from each other.
Some similar definitions about the pair (Eli , Ali ) appear in Theorem 1 in [35] and Defini-
tion 1 in [38].

Remark 3.2 As stated in [39], finite-time stability and Lyapunov stability are two inde-
pendent concepts. The former describes the local properties of the system state, and the
latter describes the global asymptotic behavior of the system solution. These two proper-
ties cannot be deduced from each other. The upper bound T of the system running time
is determined according to the specific situation in a practical application. Therefore, in
this study, T is a known value given in advance. At the same time, the average dwell time
should be as small as possible to reduce conservatism.

The proof will be divided into two steps. Let us start with the observation that system
(6) is regular and impulse free.

Theorem 3.1 Consider the switched singular system (6), given constants αli > 0, if there
exist nonsingular matrices Pli , ∀li ∈N such that

ET
li Pli = PT

li Eli ≥ 0, (13)
⎡

⎢
⎣

�11li PT
li W T

li
∗ –I 0
∗ ∗ –γ I

⎤

⎥
⎦ < 0, (14)

where �11li = ĀT
li Pli + PT

li Āli – 2αli ET
li Pli , γ = ω–2 hold, then the pair (Eli , Ali ) in system (6)

is regular and impulse free and system (6) has a unique solution in the neighborhood of an
equilibrium point.
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Proof From condition (13), we have

NT
li ET

li MT
li

(
MT

li

)–1Pli Nli = NT
li PT

li M–1
li Mli Eli Nli ≥ 0.

Taking P̄li = (MT
li )–1Pli Nli =

[ Pli11 Pli12
Pli21 Pli22

]
. Thus, from

[ Ir 0
0 0

]
P̄li = P̄T

li

[ Ir 0
0 0

]
, we can obtain Pli11 >

0, Pli12 = 0. We can conclude from (14) that

NT
li ĀT

li M
T
li

(
MT

li

)–1Pli Nli + NT
li PT

li M–1
li Mli Āli Nli – 2αli N

T
li ET

li MT
li

(
MT

li

)–1Pli Nli < 0.

Substituting (9) into the above formula, we have

[
Ali11 Ali12

Ali21 Ali22

]T [
Pli11 0
Pli21 Pli22

]

+

[
Pli11 0
Pli21 Pli22

]T [
Ali11 Ali12

Ali21 Ali22

]

– 2αli

[
Ir 0
0 0

][
Pli11 0
Pli21 Pli22

]

< 0,

and finally that

[
Sym(AT

li11Pli11) + Sym(AT
li21Pli21) – 2αli Pli11 AT

li21Pli22 + PT
li21Ali22 + PT

li11Ali12

AT
li22Pli21 + PT

li22Ali21 + AT
li12Pli11 AT

li22Pli22 + PT
li22Ali22

]

< 0.

Let

M =

[
PT

li11Ali11 + PT
li21Ali21 – αli Pli11 AT

li21Pli22

AT
li22Pli21 + AT

li12Pli11 AT
li22Pli22

]

,

according to Lemma 2.1, it follows that

ĀT
li1Pli11 + PT

li11Āli1 – αli Pli11 < 0, (15)

and AT
li22Pli22 is nonsingular. Therefore, Ali22 is nonsingular, by [35] and Definition 2.2,

system (6) is regular and impulse free. In the neighborhood of an equilibrium point x(t) =
0, fσ (t)(t, x(t)) can be written as fσ (t)(t, x(t)) = Wσ (t)0(t)x(t) + li(t, x(t)). Thus, system (6) can
be rewritten as Eσ (t)ẋ(t) = (Āσ (t) + Wσ (t)0(t))x(t) + li(t, x(t)). Then, from [38], we can obtain
that

W T
li0(t)Wli0(t) ≤ ω2W T

li Wli . (16)

From (14), we have

�11li + PT
li Pli + ω2W T

li Wli < 0. (17)

According to (16) and (17), we can obtain �11li + PT
li Pli + W T

li0(t)Wli0(t) < 0. Further, it can
be obtained that

(
ĀT

li + W T
li0(t)

)
Pli + PT

li

(
Āli + Wli0(t)

)
– 2αli E

T
li Pli < 0. (18)
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Therefore, from the proof process of the first half, the approximation system Eσ (t)ẋ(t) =
(Āσ (t) + Wσ (t)0(t))x(t) is regular and impulse free. The rest of the proof is the same as in
reference [38], it can be concluded that system (6) has a unique solution in the neighbor-
hood of an equilibrium point. �

Theorem 3.2 Consider the switched singular system (6), given constants 0 < c1 < c2, αli > 0,
αlili–1 > 0, T > 0, δ > 0, and matrix R > 0, if there exist nonsingular matrices Pli , ∀li ∈N such
that (13), (14) and

⎡

⎢
⎣

�11lili–1 PT
li W T

li
∗ –I 0
∗ ∗ –γ I

⎤

⎥
⎦ < 0, (19)

λmin(R1)c2

λmax(R̄1)c1
> eη+2δT , (20)

where �11lili–1 = ĀT
lili–1

Pli + PT
li Ālili–1 – 2αlili–1 ET

li Pli hold, then the average dwell time of the
switching signal that guarantees the regular, impulse-free nature and stability of system (6)
in finite time satisfies the following formula

τali ≥ τ ∗
ali =

6θT
ln( λmin(R1)c2

λmax(R̄1)c1
) – η – 2δT

, (21)

where η =
∑i

k=0(αlk (tk+1 – tk) + (αlk lk–1 – αlk )Tlk lk–1 (0, t)).

Proof It remains to prove that system (1) is finite-time stabilized. By virtue of (15) and
repeating the previous argument and using (19) leads to

Re(Āli1) <
1
2
αli , Re(Ālili–11) <

1
2
αlili–1 . (22)

By the definition of a matrix eigenvalue, it can be shown that there exist invertible matrices
Sli and Slili–1 such that

S–1
li Āli1Sli = J(Āli1),

S–1
lili–1

Ālili–11Slili–1 = J(Ālili–11),
(23)

where J(Āli1), J(Ālili–11) are the Jordan forms of Āli1 and Ālili–11, respectively, λli1,λli2, . . . ,λlin

are the eigenvalues of the matrix Āli1, λlili–11,λlili–12, . . . ,λlili–1n are the eigenvalues of the
matrix Ālili–11.

Combining (22) with (23), we deduce that

∥
∥eĀli1t∥∥ ≤ eθli + 1

2 αli t ,
∥
∥eĀlili–11t∥∥ ≤ eθli li–1 + 1

2 αlili–1 t , (24)

where θli = ln[λmax(Sli )/λmin(Sli )], θlili–1 = ln[λmax(Slili–1 )/λmin(Slili–1 )], use λmax(Sli ) to repre-
sent the maximum eigenvalue of matrix Sli , λmax(Slili–1 ) denotes the maximum of all eigen-
values of matrix Slili–1 .
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Denoting maxli ,li–1∈N {θli , θlili–1} briefly by θ with the notation α = maxli ,li–1∈N {αli ,αlili–1}
and using equation (24), we obtain

∥
∥eĀli1t∥∥ ≤ eθ+ 1

2 αli t ,
∥
∥eĀlili–11t∥∥ ≤ eθ+ 1

2 αlili–1 t , ∀t ≥ 0. (25)

For any t ∈ [t0, t1), according to the theoretical knowledge of the solution of the differ-
ential equation, when the initial state satisfies x1(t–

0 ) = x1(0), the solution of equation (6)
is

x̄1(t) = eĀσ (t0)1tx1
(
t–
0
)

+
∫ t

0
eĀσ (t0)1(t–s)hσ (t0)1(s) ds. (26)

Furthermore, for any t ∈ [t1, t̃1) and noting x1(t1) = x1(t–
1 ), combined with (26), yields

x̄1(t) = eĀσ (t1)σ (t0)1(t–t1)x1(t1) +
∫ t

t1

eĀσ (t1)σ (t0)1(t–s)hσ (t1)1(s) ds

= eĀσ (t1)σ (t0)1(t–t1)
[

eĀσ (t0)1t1 x1(0) +
∫ t1

0
eĀσ (t0)1(t–s)hσ (t0)1(s) ds

]

+
∫ t

t1

eĀσ (t1)σ (t0)1(t–s)hσ (t1)1(s) ds.

(27)

Similarly, x1(t̃1) = x1(t̃–
1 ) holds, and we have that for any t ∈ [t̃1, t2)

x̄1(t) = eĀσ (t1)1(t–t̃1)x1(t̃1) +
∫ t

t̃1

eĀσ (t1)1(t–s)hσ (t1)1(s) ds

= eĀσ (t1)1(t–t̃1)
[

eĀσ (t1)σ (t0)1τ (t1)
[

eĀσ (t0)1t1 x1(0) +
∫ t1

0
eĀσ (t0)1(t–s)hσ (t0)1(s) ds

]

+
∫ t̃1

t1

eĀσ (t1)σ (t0)1(t–s)hσ (t1)1(s) ds
]

+
∫ t

t̃1

eĀσ (t1)σ (t0)1(t–s)hσ (t1)1(s) ds

= eĀσ (t1)1(t–t̃1)eĀσ (t1)σ (t0)1τ (t1)eĀσ (t0)1t1 x1(0)

+ eĀσ (t1)1(t–t̃1)eĀσ (t1)σ (t0)1τ (t1)
∫ t1

0
eĀσ (t0)1(t–s)hσ (t0)1(s) ds

+ eĀσ (t1)1(t–t̃1)
∫ t̃1

t1

eĀσ (t1)σ (t0)1(t–s)hσ (t1)1(s) ds

+
∫ t

t̃1

eĀσ (t1)σ (t0)1(t–s)hσ (t1)1(s) ds.

(28)

Under the conditions stated above, when t ∈ [ti, t̃i), we infer that

x̄1(t) = eĀσ (ti)σ (ti–1)1(t–ti)eĀσ (ti–1)1(ti–t̃i–1) . . . eĀσ (t0)1t1 x1(0)

+
∫ t1

0
eĀσ (ti)σ (ti–1)1(t–ti)eĀσ (ti–1)1(ti–t̃i–1) . . . eĀσ (t0)1(t1–s)hσ (t0)1(s) ds

+
∫ t̃1

t1

eĀσ (ti)σ (ti–1)1(t–ti)eĀσ (ti–1)1(ti–t̃i–1) . . . eĀσ (t1)σ (t0)1(t̃1–s)hσ (t1)1(s) ds (29)
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+ · · · +
∫ ti

t̃i–1

eĀσ (ti)σ (ti–1)1(t–ti)eĀσ (ti–1)1(ti–s)hσ (ti–1)1(s) ds

+
∫ t

ti

eĀσ (ti)σ (ti–1)1(t–s)hσ (ti)1(s) ds.

Thus, ‖x̄1(t)‖ can be bounded by

∥
∥x̄1(t)

∥
∥ ≤ eθ+ 1

2 αlili–1 (t–ti)eθ+ 1
2 αli–1 (ti–t̃i–1) . . . eθ+ 1

2 αl0 t1
∥
∥x1(0)

∥
∥

+
∫ t1

0
eθ+ 1

2 αlili–1 (t–ti)eθ+ 1
2 αli–1 (ti–t̃i–1) . . . eθ+ 1

2 αl0 (t1–s)∥∥hσ (t0)1(s)
∥
∥ds

+
∫ t̃1

t1

eθ+ 1
2 αlili–1 (t–ti)eθ+ 1

2 αli–1 (ti–t̃i–1) . . . eθ+ 1
2 αl1l0 (t̃1–s)∥∥hσ (t1)1(s)

∥
∥ds

+ · · · +
∫ ti

t̃i–1

eθ+ 1
2 αlili–1 (t–ti)eθ+ 1

2 αli–1 (ti–s)∥∥hσ (ti–1)1(s)
∥
∥ds

+
∫ t

ti

eθ+ 1
2 αlili–1 (t–s)∥∥hσ (tk )1(s)

∥
∥ds.

(30)

Using (12), (30) shows that

∥
∥x̄1(t)

∥
∥ ≤ e2Nσ (0,t)θ+ 1

2
∑i

k=0(αlk Tlk (0,t)+αlk lk–1 Tlk lk–1 (0,t))∥∥x1(0)
∥
∥

+
∫ t

0
e(2Nσ (s,t)+1)θ+ 1

2
∑i

k=0(αlk Tlk (s,t)+αlk lk–1 Tlk lk–1 (s,t))
δ
∥
∥x̄1(s)

∥
∥ds.

(31)

Moreover, for t ∈ [t̃i, ti+1),

x̄1(t) = eĀσ (ti)1(t–t̃i)eĀσ (ti)σ (ti–1)1τ (ti) . . . eĀσ (t0)1t1 x1(0)

+
∫ t1

0
eĀσ (ti)1(t–t̃i)eĀσ (ti)σ (ti–1)1τ (ti) . . . eĀσ (t0)1(t1–s)hσ (t0)1(s) ds

+
∫ t̃1

t1

eĀσ (ti)1(t–t̃i)eĀσ (ti)σ (ti–1)1τ (ti) . . . eĀσ (ti)σ (ti–1)1(t̃1–s)hσ (t1)1(s) ds

+ · · · +
∫ ti

t̃i–1

eĀσ (ti)1(t–t̃i)eĀσ (ti)σ (ti–1)1(t̃i–s)hσ (ti–1)1(s) ds

+
∫ t

ti

eĀσ (ti)1(t–s)hσ (ti)1(s) ds.

(32)

Accordingly, we can obtain

∥
∥x̄1(t)

∥
∥ ≤ eθ+ 1

2 αli (t–t̃i)eθ+ 1
2 αlili–1 (t̃i–ti) . . . eθ+ 1

2 αl0 t1
∥
∥x1(0)

∥
∥

+
∫ t1

0
eθ+ 1

2 αli (t–t̃i)eθ+ 1
2 αlili–1 (t̃i–ti) . . . eθ+ 1

2 αl0 (t1–s)∥∥hσ (t0)1(s)
∥
∥ds

+
∫ t̃1

t1

eθ+ 1
2 αli (t–t̃i)eθ+ 1

2 αlili–1 (t̃i–ti) . . . eθ+ 1
2 αl1l0 (t̃1–s)∥∥hσ (t1)1(s)

∥
∥ds (33)

+ · · · +
∫ ti

t̃i–1

eθ+ 1
2 αli (t–t̃i)eθ+ 1

2 αlili–1 (t̃i–s)∥∥hσ (ti–1)1(s)
∥
∥ds
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+
∫ t

ti

eθ+ 1
2 αli (t–s)∥∥hσ (ti)1(s)

∥
∥ds.

Combining (12) and (33) leads to

∥
∥x̄1(t)

∥
∥ ≤ e(2Nσ (0,t)+1)θ+ 1

2
∑i

k=0(αlk Tlk (0,t)+αlk lk–1 Tlk lk–1 (0,t))∥∥x1(0)
∥
∥

+
∫ t

0
e(2Nσ (s,t)+1)θ+ 1

2
∑i

k=0(αlk Tlk (s,t)+αlk lk–1 Tlk lk–1 (s,t))
δ
∥
∥x̄1(s)

∥
∥ds.

(34)

On account of the above discussion, formula (34) holds for any t ∈ [ti, ti+1). Since 1 ≤
Nσ (0, t) ≤ t

τa
, we have

∥
∥x̄1(t)

∥
∥ ≤ e( 2t

τa +1)θ+ 1
2

∑i
k=0(αlk Tlk (0,t)+αlk lk–1 Tlk lk–1 (0,t))∥∥x1(0)

∥
∥

+
∫ t

0
e( 2(t–s)

τa +1)θ+ 1
2

∑i
k=0(αlk Tlk (s,t)+αlk lk–1 Tlk lk–1 (s,t))

δ
∥
∥x̄1(s)

∥
∥ds

≤ e
3t
τa θ+ 1

2
∑i

k=0(αlk Tlk (0,t)+αlk lk–1 Tlk lk–1 (0,t))∥∥x1(0)
∥
∥

+
∫ t

0
e

3(t–s)
τa θ+ 1

2
∑i

k=0(αlk Tlk (s,t)+αlk lk–1 Tlk lk–1 (s,t))
δ
∥
∥x̄1(s)

∥
∥ds.

(35)

On multiplying both sides of (35) by e– 3t
τa θ– 1

2
∑i

k=0(αlk Tlk (0,t)+αlk lk–1 Tlk lk–1 (0,t)), we obtain

e– 3tθ
τa – 1

2
∑i

k=0(αlk Tlk (0,t)+αlk lk–1 Tlk lk–1 (0,t))∥∥x̄1(t)
∥
∥

≤ ∥
∥x̄1(0)

∥
∥ +

∫ t

0
e– 3sθ

τa – 1
2

∑i
k=0(αlk Tlk (0,s)+αlk lk–1 Tlk lk–1 (0,s))

δ
∥
∥x̄1(s)

∥
∥ds.

(36)

Then, it can be deduced from Lemma 2.2 that

e– 3tθ
τa – 1

2
∑i

k=0(αlk Tlk (0,t)+αlk lk–1 Tlk lk–1 (0,t))∥∥x̄1(t)
∥
∥ ≤ ∥

∥x̄1(0)
∥
∥eδt .

That is,

∥
∥x̄1(t)

∥
∥ ≤ e( 3θ

τa +δ)t+ 1
2

∑i
k=0(αlk Tlk (0,t)+αlk lk–1 Tlk lk–1 (0,t))∥∥x̄1(0)

∥
∥. (37)

Using the expressions of

M–T
σ (0)RM–1

σ (0) =

[
R1 R2

R3 R4

]

, M–T
σ (t)RM–1

σ (t) =

[
R̄1 R̄2

R̄3 R̄4

]

. (38)

Noting that x(t) = Nσ (t)x̄(t), we can show that

xT(0)ET
σ (0)REσ (0)x(0)

= xT(0)N–T
σ (0)N

T
σ (0)E

T
σ (0)M

T
σ (0)M

–T
σ (0)RM–1

σ (0)Mσ (0)Eσ (0)Nσ (0)N–1
σ (0)x(0)

=
[

x̄T
1 (0) x̄T

2 (0)
]
[

Ir 0
0 0

][
R1 R2

R3 R4

][
Ir 0
0 0

][
x̄1(0)
x̄2(0)

]

= x̄T
1 (0)R1x̄1(0) ≤ c1.

(39)
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Similarly, xT(t)ET
σ (t)REσ (t)x(t) ≤ c2 can be derived from x̄T

1 (t)R̄1x̄1(t) ≤ c2. It follows from
(39) that ‖x̄1(0)‖2 ≤ c1

λmin(R1) . By switching signal (21) and (37), it holds that

x̄T
1 (t)R̄1x̄1(t) ≤ λmax(R̄1)x̄T

1 (t)x̄1(t)

≤ λmax(R̄1)e2T( 3θ
τa +δ)+

∑i
k=0(αlk Tlk (0,t)+αlk lk–1 Tlk lk–1 (0,t)) c1

λmin(R1)

= e2T( 3θ
τa +δ)+

∑i
k=0(αlk (tk+1–tk )+(αlk lk–1 –αlk )Tlk lk–1 (0,t)) c1λmax(R̄1)

λmin(R1)

≤ c2.

(40)

Thus, the proof is completed. �

Remark 3.3 In reference [24], the authors’ proof is given on the basis of assuming that
the subsystem is regular, impulse free and stable. The proof in this paper removes this hy-
pothesis and proves the regularity and nonpulsation of the switching system through the
known constraints. It is worth noting that the matrix Eσ (t) in this paper varies with differ-
ent subsystems, so the conclusion has stronger applicability. When Eσ (t) is a nonsingular
matrix, the system studied in this paper degenerates into a general switching system.

Remark 3.4 In the proof of the above theorem, no Lyapunov function is constructed. In-
stead, starting with the state-equation solution of the switched system with nonlinear dis-
turbance and taking the switching time point as the boundary, the operation time period
of each switched system is analyzed. The state solutions of the closed-loop system in the
matched time period and the mismatched time period are given, and the state solutions of
the whole time period are obtained by alternating iterative derivation. The condition that
all subsystems must be stable is removed.

Theorem 3.3 Consider the switched singular system (6), given constants 0 < c1 < c2, α > 0,
T > 0, δ > 0, matrix R > 0 and a full column rank matrix Xli ∈ R

n×(n–r) satisfies Eli Xli = 0,
if there exist matrices Fli > 0, Sli , Gli , ∀li ∈N such that (20) and the following LMIs hold

⎡

⎢
⎣

�11li I T
li W

T
li

∗ –I 0
∗ ∗ –γ I

⎤

⎥
⎦ < 0, (41)

⎡

⎢
⎣

�11lili–1 I T
li W

T
li

∗ –I 0
∗ ∗ –γ I

⎤

⎥
⎦ < 0. (42)

where �11li = Alili +Bli Gli +T
li A

T
li +GT

li B
T
li –2αli

T
li E

T
li , �11lili–1 = Alili +Bli Glili–1 +T

li A
T
li +

GT
lili–1

BT
li –2αlili–1

T
li E

T
li . Then, the average dwell time of the switching signal that guarantees

the finite-time stabilization of system (6) satisfies (21). Moreover, the controller gain is given
by

u(t) = Gli
–1
li x(t),

li = Fli E
T
li + Xli Sli .

(43)
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Proof In order to obtain the controller gain, we denote DT
li = P–T

li , Dli = P–1
li . From (5),

we have Āli = Ali + Bli Kli , Ālili–1 = Ali + Bli Kli–1 . Pre- and postmultiplying (14) and (19)
by diag{DT

li , I, I} and its transpose, respectively, and using the definition of Gli = Kli Dli , it
follows that

⎡

⎢
⎣

�11li I DT
li W

T
li

∗ –I 0
∗ ∗ –γ I

⎤

⎥
⎦ < 0, (44)

where �11li = DT
li A

T
li + GT

li B
T
li + Ali Dli + Bli Gli – 2αli DT

li E
T
li . Similarly, we obtain

⎡

⎢
⎣

�11lili–1 I DT
li W

T
li

∗ –I 0
∗ ∗ –γ I

⎤

⎥
⎦ < 0, (45)

where �11lili–1 = DT
li A

T
li + GT

lili–1
BT

li + Ali Dli + Bli Glili–1 – 2αlili–1 DT
li E

T
li . Substituting Dli = li =

Fli ET + Xli Sli into (44) and (45), respectively, and denoting Gli = Klili , (41)((42)) is equiv-
alent to (44)((45)). �

Remark 3.5 The proof of the theorem does not require the stability of the subsystem and
parameter α can take different values αli for different subsystems so it is less conserva-
tive. Compared with Theorem 3.1 in [25], the constraint conditions of equations (17) and
(18) are discarded. The subsystem and the corresponding controller are one-to-one cor-
responding. Therefore, the design of the controller is only related to the subscript li and
not dependent on li–1.

When the switching delay is not considered, that is, when the operation of the controller
and the corresponding subsystem is synchronous, we can obtain the following corollary.
It is worth noting that the controller of the system becomes

u(t) = Kσ (t)x(t). (46)

Corollary 3.1 Consider the switched singular system (6) with control input (46), given
constants 0 < c1 < c2, α > 0, T > 0, δ > 0, matrix R > 0 and a full column rank matrix
Xli ∈R

n×(n–r) satisfies Eli Xli = 0, if there exist matrices Fli > 0, Sli , Gli , ∀li ∈N such that

λmin(R1)c2

λmax(R̄1)c1
> (α + 2δ)T , (47)

and (41) hold. Then, the average dwell time of the switching signal that guarantees the
finite-time stabilization of system (6) with respect to (c1, c2, T , R,σ ) satisfies

τali ≥ τ ∗
ali =

6θT
ln( λmin(R1)c2

λmax(R̄1)c1
) – (α + 2δ)T

, (48)

where α = maxli ,li–1∈N {αli ,αlili–1}. Moreover, the controller gain is given by (43).



Wang and Wang Journal of Inequalities and Applications        (2021) 2021:191 Page 14 of 18

4 Numerical example
In this section, two numerical examples are provided to demonstrate the validity and fea-
sibility of the above results.

Example 1 Consider the switched nonlinear singular system (1) with two subsystems and
matrix parameters as follows:

Subsystem1:

E1 =

⎡

⎢
⎣

1 1 1
1 0 1
0 0 0

⎤

⎥
⎦ , A1 =

⎡

⎢
⎣

–0.7 –2.6 1
–1.5 0 –1.5

1 –1 –2

⎤

⎥
⎦ ,

B1 =

⎡

⎢
⎣

0 0
1 2
0 1

⎤

⎥
⎦ , f1 =

⎡

⎢
⎣

0.1 sin(x1(t))
0.1 sin(x2(t))

0

⎤

⎥
⎦ ,

Subsystem2:

E2 =

⎡

⎢
⎣

1 0 1
0 1 0
0 0 0

⎤

⎥
⎦ , A2 =

⎡

⎢
⎣

–1.7 0 –1.5
0.8 –2.1 2.2
3 –0.6 –1

⎤

⎥
⎦ ,

B2 =

⎡

⎢
⎣

1 0
1 2
0 1

⎤

⎥
⎦ , f2 =

⎡

⎢
⎣

sin(0.1x1(t))
0

cos(x2(t))

⎤

⎥
⎦ .

Choosing two sets of matrices as follows that can transform matrices E1 and E2 into a unit
matrix, respectively. Selecting X1, X2 that satisfy equation EX1 = EX2 = 0 as follows

M1

⎡

⎢
⎣

0 1 0
1 –1 0
0 0 1

⎤

⎥
⎦ , N1 =

⎡

⎢
⎣

1 0 –1
0 1 0
0 0 1

⎤

⎥
⎦ , M2 = I3,

N2 =

⎡

⎢
⎣

1 0 –1
0 1 0
0 0 1

⎤

⎥
⎦ , X1 = X2 =

⎡

⎢
⎣

–1
0
1

⎤

⎥
⎦ ,

R = I, M–T
1 RM–1

1 =

⎡

⎢
⎣

2 1 0
1 1 0
0 0 1

⎤

⎥
⎦ , M–T

2 RM–1
2 = I3.

Suppose W1 = W2 = [1 1 1], ω = 1, α1 = 0.47, α2 = 0.14, c1 = 0.01, c2 = 1.5 × 1021, T = 10,
θ = 2.4680, δ = 0.1. Then, by solving the linear matrix inequality (41), the corresponding
state feedback controller gains are obtained as follows

K1 =

[
4.4995 –5.2703 –2.7031
3.4235 –9.4527 –4.9857

]

, K2 =

[
–14.7294 1.8166 –0.9038
–2.3569 –0.5674 –3.3576

]

.
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Figure 1 The switching signal

Figure 2 State response of the closed-loop system with τa = 1.2, τ̄t = 0.1

It can be calculated that τa = 1.2. The switching signals of the subsystems and the
controllers are plotted in Fig. 1, respectively. Choose the initial state response as x0 =
[1.2, –0.8, 0.6], then the state response of switched singular system (1) under the action
of asynchronous controller (3) is depicted in Fig. 2. From the curve in this figure, it can be
seen that the three state variables of the system tend to be stable in a finite-time interval
under the action of the switching signal designed by Theorem 3.2.

Example 2 Consider a set of 2-dimensional switched singular systems selected from the
numerical simulation in reference [25]. The corresponding matrix coefficients are shown
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Figure 3 State response of the closed-loop system with τa = 0.3

Table 1 Comparisons of τa1 between [25] and Theorem 3.2

α1 0.17 0.26 0.47 0.52 0.58 0.68

τa1 in [25] 0.3224 0.3357 0.3744 0.3852 0.3991 0.4248
τa1 in this paper 0.2656 0.2782 0.2953 0.3084 0.3365 0.3671

below:

E1

[
1 1
0 0

]

, A1 =

[
–2 1
1 –2

]

, E2 =

[
0 1
0 0

]

, A2 =

[
0 1
1 1

]

.

It is easy to verify that subsystem 1 is a stable system and subsystem 2 is an unstable system.
The authors of [25] investigated the finite-time stabilization of switched singular linear
systems via the Lyapunov approach. In this paper, we study the finite-time stability of linear
switched singular systems based on the form of the initial solution of the equation. We
choose

M1 = M2 = I2, N1 =

[
1 –1
0 1

]

, N2 =

[
1 –1
1 0

]

.

Let α1 = 1.5, α2 = 5, c1 = 1, c2 = 30. The average residence time was calculated to be 0.3,
i.e., less than the time given in [25] of 0.38. The corresponding state responses of the 2-
dimensional linear switched singular system are illustrated in Fig. 3. See Table 1 for more
comparison of calculation results. It can be seen that tighter dwell bounds are obtained as
long as we choose appropriate parameters.

5 Conclusion
Finite-time stabilization problems for a class of switched nonlinear singular systems have
been discussed in this paper. A controller describing asynchronism has been presented
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and considered in the analysis. By decomposing the system, the regular and impulse-
free nature of the switched system is proved to be valid. Without the help of the Lya-
punov method, combining the average dwell-time method with differential equation the-
ory, some necessary conditions for finite-time stabilization of systems are given in the form
of linear matrix inequalities. In addition, the conditions for solving the parameters of the
controller have been obtained. Finally, two numerical examples have been given to verify
the effectiveness and correctness of the method presented in this paper. The extensions of
the derived results to the finite-time stabilization problem of a fractional-order switched
system will be our future investigation.
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