
Serag et al. Journal of Inequalities and Applications        (2021) 2021:196 
https://doi.org/10.1186/s13660-021-02727-3

R E S E A R C H Open Access

Optimal control for cooperative systems
involving fractional Laplace operators
H.M. Serag1, Abd-Allah Hyder2,3 and M. El-Badawy1*

*Correspondence:
mathscimahmoud@gmail.com
1Department of Mathematics,
Faculty of Sciences, Al-Azhar
University, Cairo 71524, Egypt
Full list of author information is
available at the end of the article

Abstract
In this work, the elliptic 2× 2 cooperative systems involving fractional Laplace
operators are studied. Due to the nonlocality of the fractional Laplace operator, we
reformulate the problem into a local problem by an extension problem. Then, the
existence and uniqueness of the weak solution for these systems are proved. Hence,
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1 Introduction
Nonlocal operators have been a useful area of investigation in different branches of math-
ematics such as operator theory and harmonic analysis. Also, they have gained vital at-
tention because of their strong connection with real-world problems since they form a
fundamental part of the modeling and simulation of complex phenomena that span vastly
different length scales.

Nonlocal operators appear in several applications such as image processing, boundary-
control problems, electromagnetic fluids, materials science, porous-media flow, turbu-
lence, optimization, nonlocal continuum field theories, and others. Consequently, the do-
main of definition � may be in its general form.

In this paper, we discuss the elliptic 2 × 2 cooperative system containing one of the
nonlocal operators namely the fractional Laplace operator (–�)s.

Let � ⊂R
N , N ≥ 2s, be an open, bounded and connected domain with Lipschitz bound-

ary ∂�. Then, we shall study the following system:

⎧
⎪⎪⎨

⎪⎪⎩

(–�)sy1 = ay1 + by2 + f1 in �,

(–�)sy2 = cy1 + dy2 + f2 in �,

y1 = y2 = 0 in R
N\�,

(1.1)
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where y = {y1, y2} are the states of the system, f = {f1, f2} are the external sources. The
fractional Laplace operator (–�)s is defined by Fourier transform as follows:

(–�)sy(x) = cN ,s P.V.
∫

RN

y(x) – y(t)
|x – t|N+2s dt, cN ,s > 0. (1.2)

From (1.2), it becomes clear that the fractional laplace operator (–�)s is a nonlocal oper-
ator.

Definition 1.1 For given numbers a, b, c and d the system

⎧
⎨

⎩

(–�)sy1 = ay1 + by2 + f1 in �,

(–�)sy2 = cy1 + dy2 + f2 in �,
(1.3)

is called cooperative if b, c > 0; otherwise, the system (1.3) is said to be noncooperative.

Optimal control for partial differential equations (PDEs) has been widely studied in
many fields such as biology, ecology, economics, engineering, and finance [5–10, 18, 22,
24, 25, 30, 34, 37]. These results have been expanded in [12, 14, 15, 29, 31–33] to co-
operative and noncooperative systems. The fractional optimal control problems are the
generalization of standard optimal control problems. Hence, it allows treatment of more
general applications in physics, chemistry, and engineering [13, 17, 20, 21, 23, 39]. Sev-
eral papers discuss time-fractional optimal control. In [27, 28], the distributed optimal
control problem for a time-fractional diffusion equation is discussed. Moreover, the opti-
mality conditions are derived. In [19], the distributed control for a time-fractional differ-
ential system involving a Schrödinger operator is studied, and the optimality conditions
are derived. Furthermore, space-fractional optimal control is introduced. In [1, 2, 11], the
nonlocal system is reformulated to a local system by an extension problem. Hence, the
optimality conditions are achieved.

Henceforth, to treat with the nonlocality of the fractional Laplace operator, in [4], Caf-
farelli and Silvestre proved that the fractional Laplace operator can be characterized as an
operator that maps a Dirichlet boundary condition to a Neumann-type condition via an
extension problem as follows:

Let D+ ⊂R
N+1 be a semi-infinite cylinder as

D+ =
{

(x, t) : x ∈R
N , t ∈ (0,∞)

} ⊂R
N+1, (1.4)

where t is a new extended variable. Therefore, the nonlocal problem (1.1) is reformulated
locally as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (t1–2s∇Y1) = 0 in D+,

∇ · (t1–2s∇Y2) = 0 in D+,

Y1(x, 0) = Y2(x, 0) = 0 in R
N\�,

1
ks

∂Y1
∂ν

= (f1 + a Tr� Y1 + b Tr� Y2) on � × {0},
1
ks

∂Y2
∂ν

= (f2 + c Tr� Y1 + d Tr� Y2) on � × {0},

(1.5)
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where ∂Y
∂ν

= – limt→0+ t1–2s ∂Y (x,t)
∂t , ν is the unit outer normal to D+ at � × {0}, limt→∞ Y (x,

t) = 0 and ks = 21–2s �(1–s)
�(s) > 0.

In this paper, we generalize some previous results obtained for the classical cooperative
systems. Indeed, we consider the elliptic 2 × 2 cooperative system involving one of the
nonlocal operators called the fractional Laplace operator. The nonlocality of the fractional
Laplace operator creates some difficulties. To overcome these, we transform the nonlocal
system into a local system via an extension problem. Hence, via the Lax–Milgram lemma,
we are able to prove the existence and uniqueness of the weak solution for the local system.
Moreover, for both local and nonlocal systems, the optimality conditions are derived via
the Lions technique. The results obtained tend to the classical results if s → 1. This article
is organized as follows. In Sect. 2, we introduce some functional spaces to represent the
fractional cooperative systems and their extension, and also furnish the existence results.
In Sect. 3, the weak solution and the optimality condition are established for the scalar
case. In Sect. 4, we can generalize our results to a 2 × 2 cooperative system involving the
fractional Laplace operator. Section 5 is devoted to a summary and discussion.

2 Preliminaries
In our work, the optimal control of the cooperative system depends on the variational for-
mulation. Hence, we introduce the Sobolev spaces, which are the solution spaces for our
problem. This section includes three subsections. Section 2.1 provides a short overview
of classical fractional Sobolev spaces. In Sect. 2.2, we recollect the idea of the weighted
Sobolev spaces and their embedding properties. The characterization of the principal
eigenvalue problem is presented in Sect. 2.3.

2.1 Fractional Sobolev spaces
For 0 < s < 1, define the fractional-order Sobolev space [3, 35]

Hs(�) =
{

y ∈ L2(�) :
∫

�

∫

�

|y(x1) – y(x2)|2
|x1 – x2|N+2s dx1 dx2 < ∞

}

, (2.1)

which is a Hilbert space endowed with the norm

‖u‖Hs(�) :=
(∫

�

|y|2 dx +
∫

�

∫

�

|y(x1) – y(x2)|2
|x1 – x2|N+2s dx1 dx2

) 1
2

. (2.2)

Also, define the space Hs
0(�) as:

Hs
0(�) =

{
y ∈ Hs(�) : y = 0 on ∂�

}
, (2.3)

which can be endowed with norm

‖u‖Hs
0(�) :=

(∫

�

∫

�

|y(x1) – y(x2)|2
|x1 – x2|N+2s dx1 dx2

) 1
2

. (2.4)

Moreover, the Lions–Magenes space is given by [26]

H
1
2

00(�) =
{

u ∈ H
1
2 (�) :

∫

�

u2(x)
d(x, ∂�)

dx < ∞
}

, (2.5)
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where d(x, ∂�) is the distance from x to ∂�. Combining (2.1), (2.3) and (2.5) we have for
any s ∈ (0, 1), the following fractional Sobolev space:

Hs(�) =

⎧
⎪⎪⎨

⎪⎪⎩

Hs(�); s ∈ (0, 1
2 ),

H1/2
00 (�); s = 1

2 ,

Hs
0(�); s ∈ ( 1

2 , 1).

(2.6)

Moreover, we denote by H–s(�) the dual space of Hs(�) such that

(–�)s : Hs(�) →H–s(�). (2.7)

Also, we have the following embedding

Hs(�) ↪→ L2(�) ↪→H–s(�). (2.8)

By a Cartesian product, we have the following chain of Sobolev spaces

(
Hs(�)

)2
↪→ (

L2(�)
)2

↪→ (
H–s(�)

)2. (2.9)

2.2 Weighted Sobolev spaces
To set the weak solution for problem (1.5), it is useful to establish the following weighted
space [16]

Xs(D+)
=

{

Y ∈ H1
loc

(
D+)

:
∫

D+
t1–2s∣∣∇Y (x, t)

∣
∣2 dx dt < +∞

}

, (2.10)

equipped with the norm

‖Y‖Xs(D+) :=
(∫

D+
t1–2s∣∣∇Y (x, t)

∣
∣2 dx dt

) 1
2

. (2.11)

Hence, the space of all functions in Xs(D+), whose trace over RN vanishes outside of �, is
given by

Xs
�

(
D+)

=
{

Y ∈ Xs(D+)
: Y |RN ×{0} = 0 in R

N\�}
, (2.12)

which furnishes a precise meaning of the solutions to problem (1.5) in a bounded domain
�. It is clear that Hs(�) = {Y |�×{0} : Y ∈ Xs

�(D+)}. In addition, we have the following com-
pact embedding.

Lemma 2.1 Let 1 ≤ p < 2#
s = 2N

N–2s . Then, Tr�(Xs
�(D+)) is compactly embedded in Lp(�).

Remark 2.1 For a function Y ∈ Xs
�(D+), the operator Tr� : Xs

�(D+) → Hs(�) is called the
trace operator and satisfies

‖Tr� Y‖Hs(�) ≤ δ‖Y‖Xs
�(D+), δ > 0. (2.13)

Furthermore, Tr�Y = Y (x, 0) = y(x) is the trace of Y onto � × {0}.
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2.3 Eigenvalue problem
In this subsection, we state some results given in [36] concerning the eigenvalue problem
for the following fractional elliptic equation

⎧
⎨

⎩

(–�)sy = λy in �,

y = 0 in R
N\�.

(2.14)

Theorem 2.1 ([36]) The first eigenvalue of problem (2.14) is positive and can be charac-
terized as follows:

λ = min
Y∈Xs

�(D+)

∫

D+
t1–2s∇Y · ∇Y dx dt,

∥
∥Y (x, 0)

∥
∥

L2(�) = 1, (2.15)

or equivalently,

λ = min
Y∈Xs

�(D+)

∫

D+ t1–2s∇Y · ∇Y dx dt
∫

�
|Y (x, 0)|2 dx

, Y (x, 0) 
= 0. (2.16)

3 Scalar case
For a > 0, consider the following system:

⎧
⎨

⎩

(–�)sy(x) = ay(x) + f (x) in �,

y(x) = 0 on R
N\�.

(3.1)

Using the extension problem, the nonlocal problem (3.1) is reformulated in a local way as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

∇(t1–2s∇Y (x, t)) = 0 in D+,

Y (x, 0) = 0 x ∈R
N\�,

– 1
ks

limt→0+ t1–2s ∂Y
∂t (x, t) = a Tr� Y (x, t) + f (x) x ∈ �.

(3.2)

3.1 Weak solution
Multiplying the first equation in (3.2) by a test function φ(x, t) ∈ Xs

�(D+) and integrating
over D+ we obtain

∫

D+
∇ · (t1–2s∇Y

)
φ(x, t) dx dt = 0. (3.3)

Applying Green’s formula, we have

∫

D+

(
t1–2s∇Y

)∇φ(x, t) dx dt =
∫

�×{0}
∂Y
∂ν

Tr� φ(x, t) dx (3.4)

= ks

∫

�×{0}

(
a Tr� Y (x, t) + f (x)

)
Tr� φ(x, t) dx. (3.5)

Take the bilinear form a(Y ,φ) as follows:

a(Y ,φ) =
1
ks

∫

D+
t1–2s∇Y∇φ(x, t) dx dt – a

∫

�×{0}

(
Tr� Y (x, t)

)
Tr� φ(x, t) dx. (3.6)
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Also, take the linear form F(φ) as follows:

F(φ) =
∫

�×{0}
f (x) Tr� φ(x, t) dx. (3.7)

Lemma 3.1 If λ > a ks, the bilinear form a(Y ,φ) defined in (3.6) is coercive.

Proof Replacing φ(x, t) by Y (x, t) in (3.6) we obtain

a(Y , Y ) =
1
ks

∫

D+
t1–2s|∇Y |2 dx dt – a

∫

�×{0}

∣
∣Tr� Y (x, t)

∣
∣2 dx. (3.8)

Hence, using (2.16) we obtain

a(Y , Y ) ≥ 1
ks

(

1 –
a ks

λ

)∫

D+
t1–2s|∇Y |2 dx dt. (3.9)

Then, for λ > a ks the coerciveness condition is satisfied, i.e.,

a(Y , Y ) ≥ C1‖Y‖2, C1 > 0. (3.10)

�

Remark 3.1 ([38]) If Y (x, t) is a solution of the extended problem (3.2), then the trace
function y(x) = Tr� Y (x, t) = Y (x, 0) will be called a weak solution to problem (3.1).

3.2 The optimality condition
Consider L2(�) as the space of controls. For a control u ∈ L2(�), the state Y (u) solves the
systems

⎧
⎪⎪⎨

⎪⎪⎩

∇(t1–2s∇Y (u)) = 0 in D+,

Y (u; x, 0) = 0 x ∈ R
N\�,

1
ks

∂Y
∂ν

(u) = a Tr� Y (u) + u x ∈ �.

(3.11)

For a given zd ∈ L2(�) and v ∈ L2(�), the cost-functional subject to the systems (3.11) is
given by

min J(v) =
1
2
∥
∥Tr� Y (v) – zd

∥
∥2

L2(�) + (N v, v)L2(�), ∀v ∈ Uad,

where N ∈L(L2(�))1 is a positive-definite Hermitian operator satisfying

(N v, v) ≥ α‖v‖2
L2(�), α > 0. (3.12)

1L(X) is the space of all bounded and linear operators from X into itself.
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Let v belong to a subset Uad of L2(�) (the set of admissable controls); we assume Uad is
a closed nonempty subset of L2(�). Then, the optimal control problem is now

⎧
⎨

⎩

Finding u ∈ Uad,

such that J(u) ≤ J(v), ∀v ∈ Uad.
(3.13)

Theorem 3.1 If the cost functional is given by (3.12) and the condition (3.13) is satisfied,
then there exists a unique optimal control u ∈ Uad . Moreover, this control is characterized
by the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

∇ · (t1–2s∇P) = 0 in D+,

P(x, 0) = 0 x ∈R
N\�,

( ∂P
∂ν

, Tr� Y ) = (Tr� P, ∂Y
∂ν

) on � × {0},
(3.14)

together with

(Tr� P + N u, v – u) ≥ 0, ∀v ∈ Uad, (3.15)

where P ∈ Xs
�(D+) is the adjoint state.

Proof The control u ∈ Uad is optimal, if and only if

J ′(u) · (v – u) ≥ 0, ∀v ∈ Uad, (3.16)

and hence, via an explicit computation of J ′(u), (3.17) is equivalent to [24]

(
Tr� Y (u) – zd, T� Y (v) – Tr� Y (u)

)
+ (N u, v – u) ≥ 0, ∀v ∈ Uad. (3.17)

In order to transform (3.18) into a more convenient form, we introduce the adjoint state
P defined by (A Y , P) = (Y , A∗ P), where A∗ is the adjoint of A. Now

(A Y , P) =
(∇ · (t1–2s∇Y

)
, P

)
=

∫

D+
∇ · (t1–2s∇Y

)
P(x, t) dx dt. (3.18)

By applying Green’s formula, (3.19) is transformed to

(A Y , P) =
∫

D+
∇ · (t1–2s∇P

)
Y (x, t) dx dt –

∫

�×{0}
Tr� Y

∂P
∂ν

dx +
∫

�×{0}
Tr� P

∂Y
∂ν

dx

=
(
Y , A∗ P

)
,

and hence (3.15) is satisfied.
Take the adjoint systems as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∇ · (t1–2s∇P) = 0 in D+,

P(x, 0) = 0 x ∈ R
N\�,

1
ks

∂P(u)
∂ν

– a Tr� P(u) = Tr� Y (u) – zd on � × {0}.
(3.19)
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Remark 3.2 The variational form of (3.21) is

a∗(P,φ) =
(
Tr� Y (u) – zd, Tr� φ

)
, (3.20)

where we define

a∗(ψ ,φ) = a(φ,ψ). (3.21)

Then, (3.18) is equivalent to

(
1
ks

∂P
∂ν

– a Tr� P, Tr� Y (v) – Tr� Y (u)
)

+ (N u, v – u) ≥ 0, ∀v ∈ Uad.

Hence, using the last condition in (3.15), we obtain

1
ks

(

Tr� P,
∂Y (v)
∂ν

–
∂Y (u)

∂ν

)

– a
(
Tr� P, Tr� Y (v) – Tr� Y (u)

)

+ (N u, v – u) ≥ 0, ∀v ∈ Uad.

By using (3.11), we have

(
Tr� P, a Tr� Y (v) + v – a Tr� Y (u) – u

)
– a

(
Tr� P, Tr� Y (v) – Tr� Y (u)

)

+ (N u, v – u) ≥ 0, ∀v ∈ Uad,

and hence, the optimality condition becomes

(Tr� P, v – u) + (N u, v – u) ≥ 0, ∀v ∈ Uad. (3.22)

Thereby, the proof is completed. �

4 2 × 2 cooperative system
In this section, we generalize the results obtained in the previous section to a 2 × 2 co-
operative system. This section is divided into two subsections. In Sect. 4.1, we prove the
existence and uniqueness of the weak solution by using the Lax–Miligram Lemma. The
optimality condition is obtained in Sect. 4.2.

4.1 The weak solution
To obtain a weak solution of the systems (1.5), we first transform (1.5) into a weak form.
Indeed, multiplying the first and second equations in (1.5) by a test function φ(x, t) =
{φ1(x, t),φ2(x, t)} ∈ (Xs

�(D+))2 and integrating over D+ we obtain

∫

D+
∇ · (t1–2s∇Y1

)
φ1(x, t) dx dt = 0, (4.1)

∫

D+
∇ · (t1–2s∇Y2

)
φ2(x, t) dx dt = 0. (4.2)
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Applying Green’s formula, we have

∫

D+
t1–2s∇Y1∇φ1(x, t) dx dt = –

∫

�×{0}
Tr� φ1(x, t) lim

t→0+
t1–2s ∂Y1

∂t
dx, (4.3)

∫

D+
t1–2s∇Y2∇φ2(x, t) dx dt = –

∫

�×{0}
Tr� φ2(x, t) lim

t→0+
t1–2s ∂Y2

∂t
dx. (4.4)

Then, we obtain
∫

D+
t1–2s∇Y1∇φ1(x, t) dx dt =

∫

�×{0}
Tr� φ1(x, t)

∂Y1

∂ν
dx, (4.5)

∫

D+
t1–2s∇Y2∇φ2(x, t) dx dt =

∫

�×{0}
Tr� φ2(x, t)

∂Y2

∂ν
dx, (4.6)

By using the systems (1.5), Eqs. (4.5) and (4.6) are equivalent to

1
ksb

∫

D+
t1–2s∇Y1∇φ1(x, t) dx dt =

∫

�×{0}

(

f1 +
a
b

y1 + y2

)

Tr� φ1(x, t) dx, (4.7)

1
ksc

∫

D+
t1–2s∇Y2∇φ2(x, t) dx dt =

∫

�×{0}

(

f1 + y1 +
d
c

y2

)

Tr� φ2(x, t) dx. (4.8)

To this end, we can define a bilinear form on (Xs
�(D+))2 as follows:

a(Y ,φ) =
1

ksb

∫

D+
t1–2s∇Y1∇φ1(x, t) dx dt +

1
ksc

∫

D+
t1–2s∇Y1∇φ1(x, t) dx dt

–
∫

�×{0}

(
a
b

y1 + y2

)

Tr� φ1(x, t) dx –
∫

�×{0}

(

y1 +
c
d

y2

)

Tr� φ2(x, t) dx.

Also, we can define a linear form as follows:

F(φ) =
∫

�×{0}

(
f1(x) Tr� φ1(x, t) + f2(x) Tr� φ2(x, t)

)
dx, ∀φ ∈ (

Xs
�

(
D+))2. (4.9)

Lemma 4.1 The bilinear form (4.9) is coercive and bounded.

Proof Replacing φ = {φ1,φ2} by Y = {Y1, Y2} in (3.9) yields

a(Y , Y ) =
1

ksb

∫

D+
t1–2s|∇Y1|2 dx dt +

1
ksc

∫

D+
t1–2s|∇Y2|2 dx dt

–
a
b

∫

�×{0}
|Tr� Y1|2 dx –

d
c

∫

�×{0}
|Tr� Y2|2 dx

– 2
∫

�×{0}
Tr� Y1 Tr� Y2 dx.

By using the Cauchy–Schwarz inequality, we have

a(Y , Y ) ≥ 1
ksb

∫

D+
t1–2s|∇Y1|2 dx dt +

1
ksc

∫

D+
t1–2s|∇Y2|2 dx dt

–
a
b

∫

�×{0}
|Tr� Y1|2 dx –

d
c

∫

�×{0}
|Tr� Y2|2 dx
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– 2
(∫

�×{0}
|Tr� Y1|2 dx

) 1
2
(∫

�×{0}
|Tr� Y1|2 dx

) 1
2

,

from (2.15), we deduce

a(Y , Y ) ≥ 1
ksb

(

1 –
aks

λ

)

‖∇Y1‖2 +
1

ksc

(

1 –
dks

λ

)

‖∇Y2‖2 –
2
λ

‖Y1‖‖Y2‖

=
1
λ

[(
1

ksb
(λ – aks) –

‖Y2‖
‖Y1‖

)

‖∇Y1‖2 +
(

1
ksc

(λ – dks) –
‖Y1‖
‖Y2‖

)

‖∇Y2‖2
]

.

Take

C2 =
(

1
ksb

(λ – aks) –
‖Y2‖
‖Y1‖

)

,

and

C3 =
(

1
ksc

(λ – dks) –
‖Y1‖
‖Y2‖

)

.

Then, if C2, C3 ≥ 0,we have

a(Y , Y ) ≥ min{C2, C3}
[‖Y1‖2

Xs
�(D+) + ‖Y2‖2

Xs
�(D+)

]
, (4.10)

or

a(Y , Y ) ≥ C‖Y‖2
(Xs

�(D+))2 , C = min{C2, C3}. (4.11)

Hence, the bilinear form a(Y , Y ) is coercive, if and only if the following conditions are
satisfied

⎧
⎨

⎩

(λ > aks, λ > dks,

(λ – aks)(λ – dks) ≥ (ks)2bc.
(4.12)

�

4.2 The optimality conditions
The control-problem formulation is the main target of this work. For the control problem,
we construct the adjoint state. Furthermore, we originate the conditions of optimality via
the Lions technique [24, 25]. This subsection consists of two parts. Section 4.2.1 contains
the derivation of the necessary and sufficient conditions for fractional optimal control.
Meanwhile, the equivalence extended optimal control is obtained in Sect. 4.2.2.

4.2.1 Fractional optimal control
Consider (L2(�))2 as the space of controls. For a control u = {u1, u2} ∈ (L2(�))2, the state
y(u) = {y1(u), y2(u)} solves the following system:

⎧
⎪⎪⎨

⎪⎪⎩

(–�)sy1(u) = ay1(u) + by2(u) + u1 in �,

(–�)sy2(u) = cy1(u) + dy2(u) + u2 in �,

y1(u) = y2(u) = 0 in R
N\�.

(4.13)
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The observation equations are given by

yi(u) = yi(u), i = 1, 2. (4.14)

For a given zd = {z1d, z2d} ∈ (L2(�))2 and v = {v1, v2} ∈ (L2(�))2, the cost-functional sub-
ject to the systems (4.1) is given by

J(v) =
1
2
∥
∥y1(v) – z1d

∥
∥2

L2(�) +
1
2
∥
∥y2(v) – z2d

∥
∥2

L2(�) + (N v, v)(L2(�))2 , (4.15)

where N ∈L((L2(�))2) is a positive-definite Hermitian operator satisfying

(N v, v) ≥ α‖v‖2
(L2(�))2 , α > 0. (4.16)

Let Uad be a closed and convex subset of L2(�). Then, the control problem is given as
follows:

⎧
⎨

⎩

Finding u ∈ (Uad)2,

such that J(u) ≤ J(v), ∀v ∈ (Uad)2.
(4.17)

Theorem 4.1 If the cost functional is given by (4.3), and the condition (4.4) is satisfied, then
there exists a unique optimal control u ∈ (Uad)2. Moreover, this control is characterized by
the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

(–�)sp1(u) – ap1(u) – cp2(u) = y1(u) – z1d in �,

(–�)sp2(u) – bp1(u) – dp2(u) = y2(u) – z2d in �,

p1(u) = p2(u) = 0 on R
N\�.

(4.18)

In addition,

(p1, v1 – u1) + (p2, v2 – u2) + (N u, v – u)(L2(�)2 ≥ 0, ∀v ∈ (Uad)2, (4.19)

where p = {p1, p2} ∈ (Hs(�))2 is the adjoint state.

Proof Since N > 0, then the cost functional (4.3) is strictly convex. Furthermore, the setUad

is nonempty, closed, bounded and convex in L2(�). Therefore, the existence and unique-
ness of the optimal control is proved.

The control u = {u1, u2} ∈ (Uad)2 is optimal, if and only if

J ′(u) · (v – u) ≥ 0, ∀v ∈ (Uad)2, (4.20)

which is equivalent to [24]

(
y1(u) – z1d, y1(v) – y1(u)

)
+

(
y2(u) – z2d, y2(v) – y2(u)

)

+ (N u1, v1 – u1) + (N u2, v2 – u2) ≥ 0, ∀v ∈ (Uad)2. (4.21)
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Now, since (A y, p) = (y, A∗ p), where

A
(
y = {y1, y2}

)
=

{
(–�)sy1 – ay1 – by2, (–�)sy2 – cy1 – dy2

}
, (4.22)

then

(A y, p) =
(
(–�)sy1 – ay1 – by2, p1

)
+

(
(–�)sy2 – cy1 – dy2, p2

)

=
(
(–�)sy1, p1

)
– a(y1, p1) – b(y2, p1) +

(
(–�)sy2, p2

)
– c(y1, p2)

– b(y2, p2)

=
(
y1, (–�)sp1

)
– a(y1, p1) – b(y2, p1) +

(
y2, (–�)sp2

)
– c(y1, p2)

– b(y2, p2)

= (
(
y1, (–�)sp1 – ap1 – cp2

)
+ (

(
y2, (–�)sp2 – bp1 – dp2

)

=
(
y, A∗ p

)
,

where A∗ is the adjoint operator of A, p is the adjoint state.
Take the adjoint system as follows:

⎧
⎪⎪⎨

⎪⎪⎩

(–�)sp1(u) – ap1(u) – cp2(u) = y1(u) – z1d in �,

(–�)sp2(u) – bp1(u) – dp2(u) = y2(u) – z2d in �,

p1(u) = p2(u) = 0 on R
N\�.

(4.23)

By using Eqs. (4.1) and (4.12), we deduce

(p1, v1 – u1) + (p2, v2 – u2) + (N u1, v1 – u1)L2(�)

+ (N u2, v2 – u2)L2(�) ≥ 0, ∀v ∈ (Uad)2. (4.24)

Thus, the proof is completed. �

4.2.2 Extended optimal control
If y(v) ∈ (Hs(�))2 is a solution of (4.1) with v = {v1, v2} ∈ (H–s(�))2 and Y (v) ∈ (Xs

�(D+))2

solves the following systems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (t1–2s∇Y1(u)) = 0 in D+,

∇ · (t1–2s∇Y2(u)) = 0 in D+,

Y1(x, 0) = Y2(x, 0) = 0 in R
N\�,

1
ks

∂Y1(u)
∂ν

= (u1 + ay1(u) + by2(u)) on � × {0},
1
ks

∂Y2(u)
∂ν

= (u2 + cy1(u) + dy2(u)) on � × {0},

(4.25)

then, we have

Tr� Y (v) = y(v). (4.26)
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Hence, the equivalence extended optimal control problem is given by

min J(v) =
1
2
∥
∥Tr� Y1(v) – z1d

∥
∥2

L2(�) +
1
2
∥
∥Tr� Y2(v) – z2d

∥
∥2

L2(B)

+ (N v, v)(L2(�))2 , ∀v ∈ (Uad)2.

Theorem 4.2 If the cost functional is given by (4.16) and the condition (4.4) is satisfied,
then there exists a unique optimal control u = {u1, u2} ∈ (Uad)2. Moreover, this control is
characterized by the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (t1–2s∇P1) = 0 in D+,

∇ · (t1–2s∇P2) = 0 in D+,

P1(x, 0) = P2(x, 0) = 0 in R
N\�,

( ∂P1
∂ν

, Tr� Y1) = (Tr� P1, ∂Y1
∂ν

) on � × {0},
( ∂P2

∂ν
, Tr� Y2) = (Tr� P2, ∂Y2

∂ν
) on � × {0}.

(4.27)

In addition,

(Tr� P1, v1 – u1) + (Tr� P2, v2 – u2) + (N u, v – u) ≥ 0, ∀v ∈ (Uad)2, (4.28)

where P = {P1, P2} ∈ (Xs
�(D+))2 is the adjoint state.

Proof The control u ∈ (Uad)2 is optimal, if and only if

J
′(u) · (v – u) ≥ 0, ∀v ∈ (Uad)2, (4.29)

which is again equivalent to [24]

(
Tr� Y1(v) – z1d, Tr� Y1(v) – Tr� Y1(u)

)
+

(
Tr� Y2(v) – z2d, Tr� Y2(v) – Tr� Y2(u)

)

+ (N u1, v1 – u1) + (N u2, v2 – u2) ≥ 0, ∀v ∈ (Uad)2. (4.30)

Now, since (A Y , P) = (Y , A∗ P), then

(A Y , P) =
(∇ · (t1–2s∇Y1

)
, P1

)
+

(∇ · (t1–2s∇Y2
)
, P2

)

=
∫

D+
∇ · (t1–2s∇Y1

)
P1 dx dt +

∫

D+
∇ · (t1–2s∇Y2

)
P2 dx dt

=
∫

D+
∇ · (t1–2s∇P1

)
Y1(x, t) dx dt –

∫

�

Tr� Y1
∂P1

∂ν
+

∫

�

Tr� P1
∂Y1

∂ν

+
∫

D+
∇ · (t1–2s∇P2

)
Y2(x, t) dx dt –

∫

�

Tr� Y2
∂P2

∂ν
+

∫

�

Tr� P2
∂Y2

∂ν

=
(
Y , A∗ P

)
,

and hence, (4.17) is satisfied.
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Take the adjoint systems as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (t1–2s∇P1) = 0 in D+,

∇ · (t1–2s∇P2) = 0 in D+,

P1(x, 0) = P2(x, 0) = 0 in R
N\�,

1
ks

∂P1
∂ν

– a Tr� P1 – c Tr� P2 = Tr� Y1(v) – z1d on � × {0}
1
ks

∂P2
∂ν

– b Tr� P1 – d Tr� P2 = Tr� Y2(v) – z2d on � × {0}.

(4.31)

Then, (4.20) is equivalent to

(
1
ks

∂P1

∂ν
– a Tr� P1 – c Tr� P2, Tr� Y1(v) – Tr� Y1(u)

)

+
(

1
ks

∂P2

∂ν
– b Tr� P1 – d Tr� P2, Tr� Y2(v) – Tr� Y2(u)

)

+ (N u1, v1 – u1) + (N u2, v2 – u2) ≥ 0, ∀v ∈ (Uad)2.

Hence, using the last two conditions in (4.17), the optimality condition becomes

(Tr� P1, v1 – u1) + (Tr� P2, v2 – u2) + (N u, v – u) ≥ 0, ∀v ∈ (Uad)2, (4.32)

which completes the proof. �

5 Summary and conclusion
In the present work, we investigate the optimal control problem for 2 × 2 cooperative
systems involving the fractional Laplace operator, wherein these systems are subject to the
zero Dirichlet condition. Due to the difficulty arising from the nonlocality of the fractional
Laplace operator, we follow the Caffarelli and Silvestre technique to extend our problem
to local cooperative systems. With the aid of the Lax–Milgram lemma, the existence and
uniqueness of the solution to the extended problem are proved. Moreover, the conditions
of optimality are proved by the Lions technique for both fractional and extended optimal
control. If s → 1, the obtained results are similar to the classical results.
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