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Abstract
The multiple-sets split feasibility problem is the generalization of split feasibility
problem, which has been widely used in fuzzy image reconstruction and sparse
signal processing systems. In this paper, we present an inertial relaxed algorithm to
solve the multiple-sets split feasibility problem by using an alternating inertial step.
The advantage of this algorithm is that the choice of stepsize is determined by
Armijo-type line search, which avoids calculating the norms of operators. The weak
convergence of the sequence obtained by our algorithm is proved under mild
conditions. In addition, the numerical experiments are given to verify the
convergence and validity of the algorithm.

MSC: 65K05; 65K10; 49J52

Keywords: Multiple-sets split feasibility problem; Inertia relaxed algorithm;
Armijo-type line search; Convergence

1 Introduction
Let H1 and H2 be real Hilbert spaces, t ≥ 1 and r ≥ 1 be integers, {Ci}t

i=1 and {Qj}r
j=1 be the

nonempty, closed, and convex subsets of H1 and H2.
In this paper, we study the multiple-sets split feasibility problem (MSSFP). This problem

is to find a point x∗ such that

x∗ ∈ C =
t⋂

i=1

Ci, Ax∗ ∈ Q =
r⋂

j=1

Qj, (1.1)

where A : H1 → H2 is a given bounded linear operator and A∗ is the adjoint operator of A.
Censor et al. [6] first proposed this problem in finite-dimensional Hilbert spaces, mainly
based on the inverse problem modeling in the intensity modulation radiation treatment
modeling, the signal processing, and image reconstruction. Because of these implements,
there are many algorithms that are proposed to work out the multiple-sets split feasibility
problem, such as [24, 25, 28–30]. If t = r = 1, the multiple-sets split feasibility problem
turns into the split feasibility problem, see [5].
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It is well known that the split feasibility problem amounts to the following minimization
problem:

min
1
2
∥∥x – PC(x)

∥∥2 +
1
2
∥∥Ax – PQ(Ax)

∥∥2, (1.2)

where PC is the metric projection on C and PQ is the metric projection on Q. It is impor-
tant to note that since a projection on an ordinary closed convex set has not closed form
method, it is difficult to calculate its projection. Fukushima [11] proposed a new relaxation
projection formula to overcome this difficulty. Specifically, he calculated a projection on
a convex functions level set by calculating a series of projections onto half-spaces con-
taining the general level set. Yang [26] proposed a relaxed CQ algorithm for working out
the split feasibility problem in the context of a finite-dimensional Hilbert space, in which
closed convex subsets C and Q are the level sets of convex functions, which are proposed
as follows:

C =
{

x ∈ H1 : c(x) ≤ 0
}

and Q =
{

y ∈ H2 : q(y) ≤ 0
}

, (1.3)

where c : H1 → R and q : H2 → R are convex functions which are weakly lower semi-
continuous. Meanwhile, they assumed that c is subdifferentiable on H1 and ∂c is a bounded
operator in any bounded subset of H1. Similarly, q is subdifferentiable on H2 and ∂q is also
a bounded operator in any bounded subset of H2. Then two sets are defined at point xn as
follows:

Cn =
{

x ∈ H1 : c(xn) ≤ 〈ξn, xn – x〉}, (1.4)

where ξn ∈ ∂c(xn), and

Qn =
{

y ∈ H2 : q(Axn) ≤ 〈ζn, Axn – y〉}, (1.5)

where ζn ∈ ∂q(Axn). We can easily see that Cn and Qn are half-spaces. For all n ≥ 1, we
easily know that Cn ⊃ C and Qn ⊃ Q. Under this framework, the projection can be sim-
ply computed because of the particular form of the metric projection of the sets Cn and
Qn, for details, please see [18]. Using this framework, Yang [26] built a new relaxed CQ
algorithm, which was used to solve the split feasibility problem by using the semi-spaces
Cn and Qn, rather than the sets C and Q. Whereafter, Shehu [19] came up with a relaxed
CQ method with alternating inertial extrapolation step, which was used to solve the split
feasibility problem by using the half spaces Cn and Qn. At the same time, they verified their
convergence in certain appropriate step size.

In this paper, we consider a class of multiple-sets split feasibility problem (1.1), where
the convex sets are defined by

Ci =
{

x ∈ H1 : ci(x) ≤ 0
}

and Qj =
{

y ∈ H2 : qj(y) ≤ 0
}

, (1.6)

where ci : H1 → R (i = 1, 2, . . . , t) and qj : H2 → R (j = 1, 2, . . . , r) are the convex func-
tions which are weakly lower semi-continuous. Meanwhile, it is assumed that ci (i =
1, 2, . . . , t) are subdifferentiable on H1 and ∂ci (i = 1, 2, . . . , t) are the bounded operators



Chen and Li Journal of Inequalities and Applications        (2021) 2021:190 Page 3 of 18

in any bounded subsets of H1. Similarly, qj (j = 1, 2, . . . , r) are subdifferentiable on H2 and
∂qj (j = 1, 2, . . . , r) are the bounded operators in any bounded subsets of H2. In the whole
study, we represent the solution set of the multiple-sets split feasibility problem (1.1) by
S, when it is consistent. Censor et al. [6] invented the following distance function:

f (x) =
1
2

t∑

i=1

li
∥∥x – PCi (x)

∥∥2 +
1
2

r∑

j=1

λj
∥∥Ax – PQj (Ax)

∥∥2, (1.7)

where li (i = 1, 2, . . . , t) and λj (j = 1, 2, . . . , r) are positive constants such that
∑t

i=1 li +∑r
j=1 λj = 1. Then we know that

∇f (x) =
t∑

i=1

li
(
x – PCi (x)

)
+

r∑

j=1

λjA∗(I – PQj )Ax. (1.8)

They proposed the following algorithm:

xn+1 = P�

(
xn – ρ∇fn(xn)

)
, (1.9)

where � ⊆ RN is the auxiliary brief nonempty closed convex set satisfying � ∩ S = ∅ and
ρ > 0. When L was the Lipschitz constant of ∇f (x) and ρ ∈ (0, 2/L), they proved that the
sequence {xn} produced by (1.9) converged to a solution of the multiple-sets split feasibility
problem.

In order to improve the practicability of the method, in allusion to the split convex pro-
gramming problem, Nesterov [17] proposed the next iterative process.

yn = xn + θn(xn – xn–1),

xn+1 = yn – λn∇f (yn), n ≥ 1,
(1.10)

where λn is a positive array and θn ∈ [0, 1) is an inertial element. Besides that, there are
many other correlative algorithms, for example, the inertial forward-backward splitting
method, the inertial Mann method, and the moving asymptotes method, for details, please
see [1–4, 10, 12, 14–16].

Under the motivation of the above study, we provide a relaxed CQ algorithm to solve
the multiple-sets split feasibility problem by using an alternating inertial step. In this al-
gorithm, the stepsize is determined by line search. Hence, it avoids the calculation of the
operators norms. Furthermore, we prove the weak convergence of the algorithm under
some mild conditions. In addition, the inertial factor of the controlling parameters βn can
be selected as far as possible to close to the one, such as [7–9, 20–23, 27].

The structure of the paper is as follows. The basic concepts, definitions, and related
results are described in Sect. 2. The third section presents the algorithm and its proof,
and the fourth section provides the corresponding numerical experiment, which verifies
the validity and stability of the algorithm. The final summarization is offered in Sect. 5.

2 Preliminaries
In this section, we give some basic concepts and relevant conclusions. Suppose that H is
a Hilbert space.

Look back upon that a mapping T : H → H is called
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(a) nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ H ;
(b) firmly nonexpansive if ‖Tx – Ty‖2 ≤ ‖x – y‖2 – ‖(I – T)x – (I – T)y‖2 for all x, y ∈ H .

Equivalently, for all x, y ∈ H , ‖Tx – Ty‖2 ≤ 〈x – y, Tx – Ty〉.
As we all know, T is firmly nonexpansive if and only if I – T is firmly nonexpansive.
For a point u ∈ H and C is a nonempty, closed, and convex set of H , there is a unique

point PCu ∈ C such that

‖u – PCu‖ ≤ ‖u – y‖, ∀y ∈ C, (2.1)

where PC is the metric projection of H on C. The following is a list of the significant quality
of the metric projection. It is well known that PC is the firmly nonexpansive mapping on
C. Meanwhile, PC possesses

〈x – y, PCx – PCy〉 ≥ ‖PCx – PCy‖2, ∀x, y ∈ H . (2.2)

Moreover, the characteristic of the PCx is

PCx ∈ C and 〈x – PCx, PCx – y〉 ≥ 0, ∀y ∈ C. (2.3)

This representation means that

‖x – y‖2 ≥ ‖x – PCx‖2 + ‖y – PCx‖2, ∀x ∈ H ,∀y ∈ C. (2.4)

Suppose that a function f : H → R, the element g ∈ H is thought to be the subgradient
of f on a point x if

f (y) ≥ f (x) + 〈y – x, g〉, ∀y ∈ H . (2.5)

Besides, ∂f (x) is the subdifferential of f at the point x which is described by

∂f (x) =
{

g ∈ H : f (y) ≥ f (x) + 〈y – x, g〉,∀y ∈ H
}

. (2.6)

The function f : H → R is thought to be weakly lower semi-continuous on a point x if
{xn} converges weakly to x. It means that

f (x) ≤ lim inf
n→∞ f (xn). (2.7)

Lemma 2.1 ([23]) Suppose that {Ci}t
i=1 and {Qj}r

j=1 are the closed and convex subsets of H1

and H2, and A : H1 → H2 is the bounded linear operator. At the same time, suppose that
f (x) is a function described by (1.7). Then ∇f (x) is Lipschitz continuous with L =

∑t
i=1 li +

‖A‖2 ∑r
j=1 λj as a Lipschitz constant.

Lemma 2.2 ([19]) Suppose x, y ∈ H . Then
(i) ‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2;
(ii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
(iii) ‖αx + βy‖2 = α(α + β)‖x‖2 + β(α + β)‖y‖2 – αβ‖x – y‖2,∀α,β ∈ R.
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Lemma 2.3 ([18]) Suppose that the half-spaces Ck and Qk are defined as (1.4) and (1.5).
Then the projections onto them from the points x and y are given as follows, respectively:

PCk (x) =

⎧
⎨

⎩
x – c(xk )+〈ξk ,x–xk〉

‖ξk‖2 ξk if c(xk) + 〈ξ k , x – xk〉 > 0;

x if c(xk) + 〈ξ k , x – xk〉 ≤ 0;

and

PQk (y) =

⎧
⎨

⎩
y – q(yk )+〈ζ k ,y–yk〉

‖ζk‖2 ζk if q(yk) + 〈ζ k , y – yk〉 > 0;

y if q(yk) + 〈ζ k , y – yk〉 ≤ 0.

3 The algorithm and convergence analysis
For n ≥ 1, define

Cn
i =

{
x ∈ H1 : ci(xn) ≤ 〈

ξn
i , xn – x

〉}
, (3.1)

where ξn
i ∈ ∂ci(xn) for i = 1, 2, . . . , t, and

Qn
j =

{
y ∈ H2 : qj(Axn) ≤ 〈

ζ n
j , Axn – y

〉}
, (3.2)

where ζ n
j ∈ ∂qj(Axn) for j = 1, 2, . . . , r. We can easily see that Cn

i (i = 1, 2, . . . , t) and Qn
j (j =

1, 2, . . . , r) are half-spaces. It is easy to see that, for all n ≥ 1, Cn
i ⊃ Ci (i = 1, 2, . . . , t) and

Qn
j ⊃ Qj (j = 1, 2, . . . , r). We define

fn(x) =
1
2

t∑

i=1

li
∥∥x – PCn

i
(x)

∥∥2 +
1
2

r∑

j=1

λj
∥∥Ax – PQn

j
(Ax)

∥∥2, (3.3)

where Cn
i (i = 1, 2, . . . , t) and Qn

j (j = 1, 2, . . . , r) are respectively given by (3.1) and (3.2).
Then we know

∇fn(x) =
t∑

i=1

li
(
x – PCn

i
(x)

)
+

r∑

j=1

λjA∗(I – PQn
j
)Ax, (3.4)

where A∗ denotes the adjoint operator of A. And li (i = 1, 2, . . . , t) and λj (j = 1, 2, . . . , r) are
positive constants such that

∑t
i=1 li +

∑r
j=1 λj = 1.

Now, we propose an algorithm for solving the multiple-sets split feasibility problem
(1.1), where Ci (i = 1, 2, . . . , t) and Qj (j = 1, 2, . . . , r) are as shown in (1.6).

Algorithm 3.1 (The inertial relaxed algorithm with Armijo-type line search) Step 1:
Given γ > 0, l ∈ (0, 1), μ ∈ (0, 1), select the parameter βn such that

0 ≤ βn <
1 – μ

1 + μ
. (3.5)

Select starting points x0, x1 ∈ H1 and set n = 1.
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Step 2: For the iterations xn, xn–1, calculate

yn =

⎧
⎨

⎩
xn n = even,

xn + βn(xn – xn–1) n = odd.
(3.6)

Step 3: Calculate

zn = P�

(
yn – τn∇fn(yn)

)
, (3.7)

where τn = γ lmn and mn is the smallest nonnegative integer such that

τn
∥∥∇fn(yn) – ∇fn(zn)

∥∥ ≤ μ‖yn – zn‖.

Step 4: Compute the new iterate point

xn+1 = P�

(
yn – τn∇fn(zn)

)
. (3.8)

Step 5: Set n ← n + 1, and go to Step 2.

In the following, we prove the convergence of Algorithm 3.1.

Lemma 3.1 Suppose that the solution set of MSSFP is nonempty, that is, S = ∅ and {xn}
is any sequence generated by Algorithm 3.1. Then {x2n} is Fejer monotone with respect to S
(i.e., ‖x2n+2 – z‖ ≤ ‖x2n – z‖,∀z ∈ S).

Proof Choose a point z in S. We have

‖x2n+2 – z‖2

=
∥∥P�

(
y2n+1 – τ2n+1∇f2n+1(z2n+1)

)
– z

∥∥2

≤ ∥∥(y2n+1 – z) – τ2n+1∇f2n+1(z2n+1)
∥∥2

–
∥∥x2n+2 – y2n+1 + τ2n+1∇f2n+1(z2n+1)

∥∥2

= ‖y2n+1 – z‖2 – 2τ2n+1
〈∇f2n+1(z2n+1), y2n+1 – z

〉
– ‖x2n+2 – y2n+1‖2

– 2τ2n+1
〈∇f2n+1(z2n+1), x2n+2 – y2n+1

〉

= ‖y2n+1 – z‖2 – 2τ2n+1
〈∇f2n+1(z2n+1), z2n+1 – z

〉

– 2τ2n+1
〈∇f2n+1(z2n+1), y2n+1 – z2n+1

〉
– ‖x2n+2 – y2n+1‖2

– 2τ2n+1
〈∇f2n+1(z2n+1), x2n+2 – y2n+1

〉

= ‖y2n+1 – z‖2 – 2τ2n+1
〈∇f2n+1(z2n+1), z2n+1 – z

〉 (3.9)

– 2τ2n+1
〈∇f2n+1(z2n+1), x2n+2 – z2n+1

〉

– ‖x2n+2 – z2n+1 + z2n+1 – y2n+1‖2

= ‖y2n+1 – z‖2 – 2τ2n+1
〈∇f2n+1(z2n+1), z2n+1 – z

〉

– 2τ2n+1
〈∇f2n+1(z2n+1), x2n+2 – z2n+1

〉
– ‖x2n+2 – z2n+1‖2
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– 2〈x2n+2 – z2n+1, z2n+1 – y2n+1〉 – ‖z2n+1 – y2n+1‖2

= ‖y2n+1 – z‖2 – ‖x2n+2 – z2n+1‖2 – ‖z2n+1 – y2n+1‖2

– 2
〈
z2n+1 – y2n+1 + τ2n+1∇f2n+1(z2n+1), x2n+2 – z2n+1

〉

– 2τ2n+1
〈∇f2n+1(z2n+1), z2n+1 – z

〉
.

Due to the fact that z2n+1 ∈ �, we have

〈
z2n+1 – y2n+1 + τ2n+1∇f2n+1(y2n+1), x2n+2 – z2n+1

〉

=
〈
P�

(
y2n+1 – τ2n+1∇f2n+1(y2n+1)

)
– y2n+1 + τ2n+1∇f2n+1(y2n+1),

x2n+2 – P�

(
y2n+1 – τ2n+1∇f2n+1(y2n+1)

)〉 ≥ 0.

(3.10)

As a result,

–2
〈
z2n+1 – y2n+1 + τ2n+1∇f2n+1(z2n+1), x2n+2 – z2n+1

〉

≤ 2
〈
y2n+1 – z2n+1 – τ2n+1∇f2n+1(z2n+1), x2n+2 – z2n+1

〉

+ 2
〈
z2n+1 – y2n+1 + τ2n+1∇f2n+1(y2n+1), x2n+2 – z2n+1

〉

= 2
〈
τ2n+1∇f2n+1(y2n+1) – τ2n+1∇f2n+1(z2n+1), x2n+2 – z2n+1

〉

≤ 2τ2n+1
∥∥∇f2n+1(y2n+1) – ∇f2n+1(z2n+1)

∥∥‖x2n+2 – z2n+1‖
≤ τ 2

2n+1
∥∥∇f2n+1(y2n+1) – ∇f2n+1(z2n+1)

∥∥2 + ‖x2n+2 – z2n+1‖2

≤ μ2‖y2n+1 – z2n+1‖2 + ‖x2n+2 – z2n+1‖2.

(3.11)

As I – PC2n+1
i

and I – PQ2n+1
j

are firmly-nonexpansive and ∇f2n+1(z2n+1) = 0, then

2τ2n+1
〈∇f2n+1(z2n+1), z2n+1 – z

〉

= 2τ2n+1
〈∇f2n+1(z2n+1) – ∇f2n+1(z), z2n+1 – z

〉

= 2τ2n+1

〈 t∑

i=1

li(I – PC2n+1
i

)z2n+1 +
r∑

j=1

λjA∗(I – PQ2n+1
j

)Az2n+1

–
t∑

i=1

li(I – PC2n+1
i

)z –
r∑

j=1

λjA∗(I – PQ2n+1
j

)Az, z2n+1 – z

〉

= 2τ2n+1

[〈 t∑

i=1

li(I – PC2n+1
i

)z2n+1 –
t∑

i=1

li(I – PC2n+1
i

)z, z2n+1 – z

〉
(3.12)

+

〈 r∑

j=1

λj(I – PQ2n+1
j

)Az2n+1 –
r∑

j=1

λj(I – PQ2n+1
j

)Az, Az2n+1 – Az

〉]

≥ 2τ2n+1

[ t∑

i=1

li
∥∥(I – PC2n+1

i
)z2n+1 – (I – PC2n+1

i
)z

∥∥2

+
r∑

j=1

λj
∥∥(I – PQ2n+1

j
)Az2n+1 – (I – PQ2n+1

j
)Az

∥∥2
]
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≥ 2μl
‖A‖2

[ t∑

i=1

li
∥∥(I – PC2n+1

i
)z2n+1

∥∥2 +
r∑

j=1

λj
∥∥(I – PQ2n+1

j
)Az2n+1

∥∥2
]

.

Putting (3.10), (3.11), (3.12) into (3.9), one has

‖x2n+2 – z‖2

≤ ‖y2n+1 – z‖2 –
(
1 – μ2)‖y2n+1 – z2n+1‖2

–
2μl
‖A‖2

[ t∑

i=1

li
∥∥(I – PC2n+1

i
)z2n+1

∥∥2 +
r∑

j=1

λj
∥∥(I – PQ2n+1

j
)Az2n+1

∥∥2
]

.

(3.13)

Similar to the discussion of (3.13), we can know

‖x2n+1 – z‖2

≤ ‖y2n – z‖2 –
(
1 – μ2)‖y2n – z2n‖2

–
2μl
‖A‖2

[ t∑

i=1

li
∥∥(I – PC2n

i
)z2n

∥∥2 +
r∑

j=1

λj
∥∥(I – PQ2n

j
)Az2n

∥∥2
]

= ‖x2n – z‖2 –
(
1 – μ2)‖y2n – z2n‖2

–
2μl
‖A‖2

[ t∑

i=1

li
∥∥(I – PC2n

i
)z2n

∥∥2 +
r∑

j=1

λj
∥∥(I – PQ2n

j
)Az2n

∥∥2
]

.

(3.14)

According to (3.6), we obtain

‖y2n+1 – z‖2

=
∥∥x2n+1 + β2n+1(x2n+1 – x2n) – z

∥∥2

=
∥∥x2n+1 – β2n+1z + β2n+1z + β2n+1(x2n+1 – x2n) – z

∥∥2

=
∥∥(1 + β2n+1)(x2n+1 – z) – β2n+1(x2n – z)

∥∥2

= (1 + β2n+1)‖x2n+1 – z‖2 – β2n+1‖x2n – z‖2

+ β2n+1(1 + β2n+1)‖x2n+1 – x2n‖2.

(3.15)

Substituting (3.14) and (3.15) into (3.13), one has

‖x2n+2 – z‖2

≤ ‖x2n – z‖2 – (1 + β2n+1)
(
1 – μ2)‖y2n – z2n‖2

– (1 + β2n+1)
2μl
‖A‖2

[ t∑

i=1

li
∥∥(I – PC2n

i
)z2n

∥∥2 +
r∑

j=1

λj
∥∥(I – PQ2n

j
)Az2n

∥∥2
]

–
(
1 – μ2)‖y2n+1 – z2n+1‖2 + β2n+1(1 + β2n+1)‖x2n+1 – x2n‖2

–
2μl
‖A‖2

[ t∑

i=1

li
∥∥(I – PC2n+1

i
)z2n+1

∥∥2 +
r∑

j=1

λj
∥∥(I – PQ2n+1

j
)Az2n+1

∥∥2
]

.

(3.16)
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Note that

‖x2n+1 – x2n‖
≤ ‖x2n+1 – z2n‖ + ‖z2n – x2n‖
=

∥∥P�

(
y2n – τ2n∇f2n(z2n)

)
– z2n

∥∥ + ‖x2n – z2n‖
≤ ∥∥y2n – τ2n∇f2n(z2n) – y2n + τ2n∇f2n(y2n)

∥∥ + ‖x2n – z2n‖
= τ2n

∥∥∇f2n(y2n) – ∇f2n(z2n)
∥∥ + ‖x2n – z2n‖

≤ (1 + μ)‖x2n – z2n‖.

(3.17)

Combining (3.16) and (3.17), we have

‖x2n+2 – z‖2

≤ ‖x2n – z‖2 –
(
1 – μ2)‖y2n+1 – z2n+1‖2

– (1 + β2n+1)
2μl
‖A‖2

[ t∑

i=1

li
∥∥(I – PC2n

i
)z2n

∥∥2 +
r∑

j=1

λj
∥∥(I – PQ2n

j
)Az2n

∥∥2
]

–
[
(1 + β2n+1)

(
1 – μ2) – β2n+1(1 + β2n+1)(1 + μ)2]‖y2n – z2n‖2

–
2μl
‖A‖2

[ t∑

i=1

li
∥∥(I – PC2n+1

i
)z2n+1

∥∥2 +
r∑

j=1

λj
∥∥(I – PQ2n+1

j
)Az2n+1

∥∥2
]

≤ ‖x2n – z‖2,

(3.18)

where μ ∈ (0, 1), β2n+1 ∈ [0, 1–μ

1+μ
], so (1 – μ2) > 0, (1 + β2n+1)(1 – μ2) – β2n+1(1 + β2n+1)(1 +

μ)2 > 0, 1 + β2n+1 > 0, 2μl
‖A‖2 > 0.

Hence,

‖x2n+2 – z‖ ≤ ‖x2n – z‖. �

Theorem 3.1 Suppose that S = ∅ and {xn} is any sequence generated by Algorithm 3.1.
Then {xn} converges weakly to a point in S.

Proof According to Lemma 3.1, it is easy to know that limn→∞ ‖x2n+2 – z‖ exists. This
means that {x2n} is bounded. In addition, from (3.18), we conclude that

lim
n→∞

[ t∑

i=1

li
∥∥(I – PC2n

i
)z2n

∥∥ +
r∑

j=1

λj
∥∥(I – PQ2n

j
)Az2n

∥∥
]

= 0.

That is to say,

lim
n→∞

∥∥(I – PC2n
i

)z2n
∥∥ = 0 (i = 1, 2, . . . , t) (3.19)

and

lim
n→∞

∥∥(I – PQ2n
j

)Az2n
∥∥ = 0 (j = 1, 2, . . . , r). (3.20)
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Besides,

lim
n→∞‖x2n – z2n‖ = 0. (3.21)

Owing to I – PC2n
i

and I – PQ2n
j

are nonexpansive, then

∥∥(I – PC2n
i

)x2n
∥∥

≤ ∥∥(I – PC2n
i

)x2n – (I – PC2n
i

)z2n
∥∥ +

∥∥(I – PC2n
i

)z2n
∥∥

≤ ‖x2n – z2n‖ +
∥∥(I – PC2n

i
)z2n

∥∥ (i = 1, 2, . . . , t)

(3.22)

and
∥∥(I – PQ2n

j
)Ax2n

∥∥

≤ ∥∥(I – PQ2n
j

)Ax2n – (I – PQ2n
j

)Az2n
∥∥ +

∥∥(I – PQ2n
j

)Az2n
∥∥

≤ ‖Ax2n – Az2n‖ +
∥∥(I – PQ2n

j
)Az2n

∥∥

≤ ‖A‖‖x2n – z2n‖ +
∥∥(I – PQ2n

j
)Az2n

∥∥ (j = 1, 2, . . . , r).

(3.23)

According to (3.19) and (3.21), from (3.22), we conclude that

lim
n→∞

∥∥(I – PC2n
i

)x2n
∥∥ = 0 (i = 1, 2, . . . , t). (3.24)

According to (3.20) and (3.21), from (3.23), we conclude that

lim
n→∞

∥∥(I – PQ2n
j

)Ax2n
∥∥ = 0 (j = 1, 2, . . . , r). (3.25)

Similar to the discussion in (3.24) and (3.25), we know

lim
n→∞

∥∥(I – PC2n+1
i

)x2n+1
∥∥ = 0 (i = 1, 2, . . . , t),

lim
n→∞

∥∥(I – PQ2n+1
j

)Ax2n+1
∥∥ = 0 (j = 1, 2, . . . , r).

(3.26)

As ∂ci for i = 1, 2, . . . , t are bounded on bounded sets, we have a constant ξ > 0 such that
‖ξ 2n

i ‖ ≤ ξ (i = 1, 2, . . . , t). On account of PC2n
i

x2n ∈ C2n
i , we obtain from the algorithm and

(3.24) that

ci(x2n) ≤ 〈
ξ 2n

i , y2n – PC2n
i

x2n
〉

=
〈
ξ 2n

i , (I – PC2n
i

)x2n
〉

≤ ξ
∥∥(I – PC2n

i
)x2n

∥∥ −→ 0, n −→ +∞.
(3.27)

As {x2n} is bounded, there exists a weakly convergent subsequence {x2nk } ⊂ {x2n}, k ∈ N ,
such that x2nk ⇀ x∗, x∗ ∈ H1. According to ci (i = 1, 2, . . . , t) being continuous and (3.27),
we have

ci
(
x∗) ≤ lim inf

k→∞
ci(x2nk ) ≤ 0, i = 1, 2, . . . , t. (3.28)

So x∗ ∈ Ci for i = 1, 2, . . . , t.
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As ∂qj for j = 1, 2, . . . , r are bounded on bounded sets, we have a constant ζ > 0 such that
‖ζ 2n

j ‖ ≤ ζ (j = 1, 2, . . . , r). On account of PQ2n
j

x2n ∈ Q2n
j , we obtain from the algorithm and

(3.25) that

qj(Ax2n) ≤ 〈
ζ 2n

j , Ay2n – PQ2n
j

Ax2n
〉

=
〈
ζ 2n

j , (I – PQ2n
j

)Ax2n
〉

≤ ζ
∥∥(I – PQ2n

j
)Ax2n

∥∥ −→ 0, n −→ +∞.
(3.29)

According to qj for j = 1, 2, . . . , r are continuous and (3.29), we have

qj
(
Ax∗) ≤ lim inf

k→∞
qj(Ax2nk ) ≤ 0, j = 1, 2, . . . , r. (3.30)

So Ax∗ ∈ Qj for j = 1, 2, . . . , r.
Thus, x∗ ∈ S.
Now, we are going to prove that {x2n+1} converges to x∗. Just for the sake of convenience,

we are still going to use {x2n+1} for the proof. According to limn→∞ ‖x2n – x∗‖ exists and
limn→∞ ‖x2nk – x∗‖ = 0, these mean that limn→∞ ‖x2n – x∗‖ = 0. Thus, x∗ is sole.

Using the same discussion in (3.9)–(3.13), we can know that

∥∥x2n+1 – x∗∥∥2

=
∥∥P�

(
y2n – τ2n∇f2n(z2n)

)
– x∗∥∥2

≤ ∥∥y2n – x∗∥∥2 – ‖x2n+1 – z2n‖2 – ‖z2n – y2n‖2

– 2
〈
z2n – y2n + τ2n∇f2n(z2n), x2n+1 – z2n

〉

– 2τ2n
〈∇f2n(z2n), z2n – x∗〉

≤ ∥∥y2n – x∗∥∥2 –
(
1 – μ2)‖y2n – z2n‖2

–
2μl
‖A‖2

[ t∑

i=1

li
∥∥(I – PC2n

i
)z2n

∥∥2 +
r∑

j=1

λj
∥∥(I – PQ2n

j
)Az2n

∥∥2
]

≤ ∥∥y2n – x∗∥∥2.

(3.31)

Thus,

∥∥x2n+1 – x∗∥∥2 ≤ ∥∥y2n – x∗∥∥2 =
∥∥x2n – x∗∥∥2. (3.32)

Consequently,

lim
n→∞

∥∥x2n+1 – x∗∥∥ = 0. (3.33)

To sum up,

lim
n→∞ xn = x∗. �

4 Numerical examples
As in Example 4.1, we will provide the results in this section. The whole codes are written
in Matlab R2012a. All the numerical results are carried out on a personal Lenovo Thinkpad
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Table 1 Algorithm 3.1 in this paper under diverse options of x0 and x1

No. of Iter. Time No. of Iter. Time(s)

Option 1 2 0.005017 Option 5 65 0.12809
Option 2 62 0.162404 Option 6 2 0.003902
Option 3 196 0.427017 Option 7 41 0.074836
Option 4 53 0.095574 Option 8 40 0.052645

Figure 1 Error history in Example 4.1

computer with Intel(R) Core(TM) i7-3517U CPU 2.40 GHz and RAM 8.00GB. Firstly, we
are going to come up with some different x0, x1 in our Algorithm 3.1. These results are
provided in Table 1 and Fig. 1. Secondly, we contrast Algorithm 3.1 in this paper and Al-
gorithm 3.1 in [23]. From the numerical results of Example 1 in [23], it is better than the
results in [13]. So our algorithm is compared to Algorithm 3.1 in [23]. These results are
provided in Table 2. Lastly, we check the stability of the iteration number for Algorithm 3.1
in this paper comparing with Algorithm 3.1 in [23]. These results are provided in Figs. 2–4.
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Table 2 Comparison of Algorithm 3.1 in this paper and Algorithm 3.1 in [23]

Alg 3.1 in this paper Alg 3.1 in [23]

Option 1 x0 = (–4, –2, 3)T No. of Iter. 2 21
x1 = (–1, 2, 0)T cpu(Time) 0.004028 0.004364

Option 4 x0 = (1, –6, –4)T No. of Iter. 53 248
x1 = (–1, 2, 0)T cpu(Time) 0.030029 0.049955

Option 5 x0 = (–4, –2, –3)T No. of Iter. 65 122
x1 = (–5, –2, –3)T cpu(Time) 0.053327 0.023334

Option 6 x0 = (–5.34, –7.36, –3.21)T No. of Iter. 2 29
x1 = (–1.23, –2.13, –3.56)T cpu(Time) 0.003902 0.005509

Example 4.1 ([13]) Suppose that H1 = H2 = R3, r = t = 2, and l1 = l2 = λ1 = λ2 = 1
4 . We give

that

C1 =
{

x = (a, b, c)T ∈ R3 : a + b2 + 2c ≤ 0
}

,

C2 =
{

x = (a, b, c)T ∈ R3 :
a2

16
+

b2

9
+

c2

4
– 1 ≤ 0

}
,

Q1 =
{

x = (a, b, c)T ∈ R3 : a2 + b – c ≤ 0
}

,

Q2 =
{

x = (a, b, c)T ∈ R3 :
a2

4
+

b2

4
+

c2

9
– 1 ≤ 0

}
,

(4.1)

and

A =

⎛

⎜⎝
2 –1 3
4 2 5
2 0 2

⎞

⎟⎠ .

To find x∗ ∈ C1 ∩ C2 such that Ax∗ ∈ Q1 ∩ Q2.

In the first place, let γ = 2, l = 0.5, μ = 0.95, and βn = 1
n+1 . Next, we study the iteration

number required for the convergence of the sequence under different initial values. The
condition for stopping the iteration is

En =
1
2

2∑

i=1

∥∥xn – PCn
i
(xn)

∥∥2 +
1
2

2∑

j=1

∥∥Axn – PQn
j
(Axn)

∥∥2 < 10–4. (4.2)

We select diverse options of x0 and x1 as follows.
Option 1: x0 = (1, 1, 5)T and x1 = (5, –3, 2)T ;
Option 2: x0 = (–4, 3, –2)T and x1 = (–5, 2, 1)T ;
Option 3: x0 = (7, 5, 1)T and x1 = (7, –3, –1)T ;
Option 4: x0 = (1, –6, –4)T and x1 = (–4, 1, 6)T ;
Option 5: x0 = (–4, –2, –3)T and x1 = (–5, –2, –3)T ;
Option 6: x0 = (–5.34, –7.36, –3.21)T and x1 = (0.23, –2.13, 3.56)T ;
Option 7: x0 = (–2.345, 2.431, 1.573)T and x1 = (1.235, –1.756, –4.234)T ;
Option 8: x0 = (5.32, 2.33, 7.75)T and x1 = (3.23, 3.75, –3.86)T .
From Table 1, we can see the iteration number and running time of Algorithm 3.1 in this

paper for diverse options of x0 and x1.
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Figure 2 The iteration number of Algorithm 3.1 in this paper and Algorithm 3.1 in [23]

In Algorithm 3.1, if we choose x0 and x1 as Option 4 and Option 5, the compartment of
the error En is gradually converging, for details, please see Fig. 1. For other options, they
are also gradually converging, which we do not show here.

Now, we compare Algorithm 3.1 in this paper and Algorithm 3.1 in [23]. The results are
as shown in Table 2. Furthermore, in order to test the stability of the iteration number,
500 diverse initial value points are randomly selected for the experiment in the context of
Algorithm 3.1 in this paper, for instance,

x0 = rand(3, 1), x1 = rand(3, 1) ∗ 10,

x0 = rand(3, 1), x1 = rand(3, 1) ∗ 50,

x0 = rand(3, 1), x1 = rand(3, 1) ∗ 100,

the consequences are separately shown in Fig. 2(a), Fig. 3(a), and Fig. 4(a).
In the same way, we also offer 500 experiments for diverse initial value points which

are randomly selected in the context of Algorithm 3.1 in [23]. For ∀n ∈ N , let αn = 1
n+1 ,
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Figure 3 The iteration number of Algorithm 3.1 in this paper and Algorithm 3.1 in [23]

ρn = 3.95, and ωn = 1
1+n1.2 . Suppose β = 0.5 and βn = β , for instance,

u = rand(3, 1), x0 = rand(3, 1), x1 = rand(3, 1) ∗ 10,

u = rand(3, 1), x0 = rand(3, 1), x1 = rand(3, 1) ∗ 50,

u = rand(3, 1), x0 = rand(3, 1), x1 = rand(3, 1) ∗ 100,

the consequences are separately shown in Fig. 2(b), Fig. 3(b), and Fig. 4(b).
From Tables 1–2 and Figs. 1–4, we can obtain the following conclusions.
1. Algorithm 3.1 in this paper is efficient for some different options and has a nice con-

vergence speed and lower iteration number.
2. As you can see, for every option of x0 and x1, there is no important difference in

CPU running times or iteration number. Therefore, our preliminary speculation is that
the different options of x0 and x1 have negligible influence on the convergence of this
algorithm.

3. With regard to Table 2, for some different options of x0 and x1, our Algorithm 3.1
clearly outperforms Algorithm 3.1 in [23].

4. According to Figs. 2–4, we conclude that the iteration number of Algorithm 3.1 in this
paper is stable. Moreover, we can see the iteration number of Algorithm 3.1 in this paper
is lower than that of Algorithm 3.1 in [23]. For example, in Fig. 4, the iteration number of
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Figure 4 The iteration number of Algorithm 3.1 in this paper and Algorithm 3.1 in [23]

Algorithm 3.1 in this paper is basically stable at about 50. However, Algorithm 3.1 in [23]
is basically stable at about 150.

5 Conclusions
In this paper, we propose the inertial relaxed CQ algorithm for solving the convex
multiple-sets split feasibility problem. And the global convergence conclusions are ob-
tained. Our consequences generalize and produce some existing associated outcomes.
Moreover, the preliminary numerical conclusions reveal that our presented algorithm is
superior to some existing relaxed CQ algorithms in some cases about solving the convex
multiple-sets split feasibility problem.
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