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Abstract
In this paper, we establish Parseval identities and surprising new inequalities for
weaving frames in Hilbert spaces which involve scalar λ ∈R. With suitable choices of
λ, one obtains the previous results as special cases. Our results generalize and
improve the remarkable results obtained by Balan et al. and Găvruţa.
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1 Introduction
Frames in Hilbert spaces were first introduced in 1952 by Duffin and Schaeffer [8] to
study several deep problems in non-harmonic Fourier series and reintroduced in 1986
by Daubechies, Grossmann, and Meyer [6]. Now, frames have been widely used in coding
theory [16], sampling theory [19, 22], quantum field theory [9], filter bank theory [13],
image processing [7], and other areas of mathematics, physics, and engineering.

Let H be a separable space and I be a countable index set. A sequence {φi}i∈I of elements
of H is a frame for H if there exist constants A, B > 0 such that

A‖f ‖2 ≤
∑

i∈I

∣∣〈f ,φi〉
∣∣2 ≤ B‖f ‖2, ∀f ∈H.

The numbers A, B are called lower and upper frame bounds, respectively. If A = B, then
this frame is called an A-tight frame, and if A = B = 1, then it is called a Parseval frame.

Suppose that {φi}i∈I is a frame for H, then the frame operator is a self-adjoint positive
invertible operator, which is given by

S : H →H, Sf =
∑

i∈I

〈f ,φi〉φi.

The following reconstruction formula holds:

f =
∑

i∈I

〈f ,φi〉S–1φi =
∑

i∈I

〈
f , S–1φi

〉
φi,
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where the family {φ̃i}i∈I = {S–1φi}i∈I is also a frame for H, which is called the canonical
dual frame of {φi}i∈I . The frame {ϕi}i∈I for H is called an alternate dual frame of {φi}i∈I if
the following formula holds:

f =
∑

i∈I

〈f ,φi〉ϕi =
∑

i∈I

〈f ,ϕi〉φi

for all f ∈H [11].
Let {φi}i∈I be a frame for H, for every J ⊂ I , we define the operator

SJ =
∑

i∈J

〈f ,φi〉φi,

and denote Jc = I \ J .
First introduced by Bemrose and Casazza et al. [4], the concept of discrete weaving

frames for separable Hilbert space is motivated by distributed signal processing, e.g., wire-
less sensor networks in which frames may be subjected to distributed processing under
different frames. Thus, weaving frames have potential applications in wireless sensor net-
works that require distributed processing under different frames, as well as pre-processing
of signals using Gabor frames. Recently, weaving frames in Hilbert spaces have been stud-
ied intensively; for more details, see [5, 12, 20].

Definition 1 Two frames {φi}i∈I and {ψi}i∈I for a Hilbert space H are said to be woven if
there are universal constants A and B so that for every partition σ ⊂ I the family {φi}i∈σ ∪
{ψi}i∈σ c is a frame for H with lower and upper frame bounds A and B, respectively. The
family {φi}i∈σ ∪ {ψi}i∈σ c is called a weaving.

If A = B, we say that {φi}i∈I and {ψi}i∈I are A-woven, and if A = B = 1, then we call them
1-woven.

Suppose that {φi}i∈I and {ψi}i∈I are woven, the frame operator of {φi}i∈σ ∪ {ψi}i∈σ c is
defined by

SW f =
∑

i∈σ

〈f ,φi〉φi +
∑

i∈σ c

〈f ,ψi〉ψi,

and then SW is a bounded, invertible, self-adjoint positive operator. A frame {ϕi}i∈I is called
an alternate dual frame of {φi}i∈σ ∪ {ψi}i∈σ c if for all f ∈H the following identity holds:

f =
∑

i∈σ

〈f ,φi〉ϕi +
∑

i∈σ c

〈f ,ψi〉ϕi. (1.1)

For every σ ⊂ I , define the bounded linear operators Sσ
W , Sσ c

W : H →H by

Sσ
W f =

∑

i∈σ

〈f ,φi〉φi, Sσ c
W f =

∑

i∈σ c

〈f ,ψi〉ψi.

It is easy to verify that Sσ
W and Sσ c

W are self-adjoint.
In [1], the authors solved a long-standing conjecture of the signal processing commu-

nity. They showed that for suitable frames {φi}i∈I a signal f can (up to a global phase) be
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recovered from the phase-less measurements {|〈f ,φi〉|}i∈I . Note that this only shows that
reconstruction of f is in principle possible, but there is no effective constructive algorithm.
While searching for such an algorithm, the authors of [2] discovered a new identity for
Parseval frames [3]. The authors in [10, 23] generalized these identities to alternate dual
frames and obtained some general results. The study of inequalities has interested many
mathematicians. Some authors have extended the equalities and inequalities for frames in
Hilbert spaces to generalized frames [15, 17, 18, 21]. The following form was given in [3]
(see [2] for a discussion of the origins of this fundamental identity).

Theorem 1 Let {φi}i∈I be a Parseval frame for H. For every J ⊂ I and every f ∈H, we have

∑

i∈J

∣∣〈f ,φi〉
∣∣2 +

∥∥∥∥
∑

i∈Jc

〈f ,φi〉φi

∥∥∥∥
2

=
∑

i∈Jc

∣∣〈f ,φi〉
∣∣2 +

∥∥∥∥
∑

i∈J

〈f ,φi〉φi

∥∥∥∥
2

≥ 3
4
‖f ‖2. (1.2)

Later, the author of [10] generalized Theorem 1 to general frames.

Theorem 2 Let {φi}i∈I be a frame for H with a canonical dual frame {φ̃i}i∈I ; then, for every
J ⊂ I and every f ∈H, we have

∑

i∈J

∣∣〈f ,φi〉
∣∣2 +

∑

i∈I

∣∣〈SJc f , φ̃i〉
∣∣2 =

∑

i∈Jc

∣∣〈f ,φi〉
∣∣2 +

∑

i∈I

∣∣〈SJ f , φ̃i〉
∣∣2 ≥ 3

4
∑

i∈I

∣∣〈f ,φi〉
∣∣2. (1.3)

Theorem 3 Let {φi}i∈I be a frame for H and {ϕi}i∈I be an alternate dual frame of {φi}i∈I ;
then, for every J ⊂ I and every f ∈H, we have

Re
(∑

i∈J

〈f ,ϕi〉〈f ,φi〉
)

+
∥∥∥∥
∑

i∈Jc

〈f ,ϕi〉φi

∥∥∥∥
2

= Re
(∑

i∈Jc

〈f ,ϕi〉〈f ,φi〉
)

+
∥∥∥∥
∑

i∈J

〈f ,ϕi〉φi

∥∥∥∥
2

≥ 3
4
‖f ‖2. (1.4)

Motivated by these interesting results, the authors of [23] generalized Theorem 3 to a
more general form that does not involve the real parts of the complex numbers.

Theorem 4 Let {φi}i∈I be a frame for H and {ϕi}i∈I be an alternate dual frame of {φi}i∈I ;
then, for every J ⊂ I and every f ∈H, we have

(∑

i∈J

〈f ,ϕi〉〈f ,φi〉
)

+
∥∥∥∥
∑

i∈Jc

〈f ,ϕi〉φi

∥∥∥∥
2

=
(∑

i∈Jc

〈f ,ϕi〉〈f ,φi〉
)

+
∥∥∥∥
∑

i∈J

〈f ,ϕi〉φi

∥∥∥∥
2

≥ 3
4
‖f ‖2. (1.5)

In this paper, we generalize the results of the above-mentioned weaving frames in
Hilbert spaces. Then, inspired by [18], we also generalize the previous inequalities from
the scalar λ ∈ [0, 1] to a more general form that involves a scalar λ ∈ R. Since a frame is
woven with itself, we can consider that the above-mentioned equality and inequalities in
frames can be obtained as a special case of the results that we establish on weaving frames.
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2 Results and their proofs
We first state a simple result on operators, which is a distortion of [23, Lemma 2.1].

Lemma 1 If P, Q ∈ L(H) satisfies P + Q = IH, then P + Q∗Q = Q∗ + P∗P.

Proof A simple computation shows that

P + Q∗Q = IH – Q + Q∗Q = IH –
(
IH – Q∗)Q = IH – P∗(IH – P)

= IH – P∗ + P∗P = Q∗ + P∗P. �

Now, we state and prove a Parseval weaving frame identity.

Theorem 5 Suppose that {φi}i∈I and {ψi}i∈I for a Hilbert space H are 1-woven, then, for
all σ ⊂ I and all f ∈H, we have

∑

i∈σ

∣∣〈f ,φi〉
∣∣2 +

∥∥∥∥
∑

i∈σ c

〈f ,ψi〉ψi

∥∥∥∥
2

=
∑

i∈σ c

∣∣〈f ,ψi〉
∣∣2 +

∥∥∥∥
∑

i∈σ

〈f ,φi〉φi

∥∥∥∥
2

≥ 3
4
‖f ‖2. (2.1)

Proof Since {φi}i∈I and {ψi}i∈I are 1-woven, the weaving frame {φi}i∈σ ∪{ψi}i∈σ c is a Parse-
val frame for H. Then the frame operator of {φi}i∈σ ∪ {ψi}i∈σ c is SW = IH. For every σ ⊂ I ,
we have Sσ

W + Sσ c
W = IH. Note that Sσ c

W is a self-adjoint operator, and therefore (Sσ c
W )∗ = Sσ c

W .
By applying Lemma 1 to the operators Sσ

W and Sσ c
W , for all f ∈H, we obtain

〈
Sσ
W f , f

〉
+

〈(
Sσ c
W

)∗Sσ c
W f , f

〉
=

〈(
Sσ c
W

)∗f , f
〉
+

〈(
Sσ
W

)∗Sσ
W f , f

〉
.

Thus,

〈
Sσ
W f , f

〉
+

∥∥Sσ c
W f

∥∥ =
〈
Sσ c
W f , f

〉
+

∥∥Sσ
W f

∥∥.

Hence,

∑

i∈σ

∣∣〈f ,φi〉
∣∣2 +

∥∥∥∥
∑

i∈σ c

〈f ,ψi〉ψi

∥∥∥∥
2

=
∑

i∈σ c

∣∣〈f ,ψi〉
∣∣2 +

∥∥∥∥
∑

i∈σ

〈f ,φi〉φi

∥∥∥∥
2

.

Next, we prove the inequality of (2.1). A simple computation shows that

(
Sσ
W

)2 +
(
Sσ c
W

)2 =
(
Sσ
W

)2 +
(
IH –

(
Sσ
W

))2 = 2
(
Sσ
W

)2 – 2Sσ
W + IH

= 2
(

Sσ
W –

1
2

IH
)2

+
1
2

IH,

and so

(
Sσ
W

)2 +
(
Sσ c
W

)2 ≥ 1
2

IH.

Since Sσ
W + Sσ c

W = IH, it follows that

Sσ
W +

(
Sσ c
W

)2 + Sσ c
W +

(
Sσ
W

)2 ≥ 3
2

IH. (2.2)
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Note that the operator Sσ
W is also self-adjoint, and therefore (Sσ

W )∗ = Sσ
W . Applying

Lemma 1 to the operators P = Sσ
W and Q = Sσ c

W , we obtain

Sσ
W +

(
Sσ c
W

)2 = Sσ c
W +

(
Sσ
W

)2.

Then, equation (2.2) means that

(
Sσ c
W +

(
Sσ
W

)2) ≥ 3
4

IH.

Therefore, for all f ∈H, we have

∑

i∈σ c

∣∣〈f ,ψi〉
∣∣2 +

∥∥∥∥
∑

i∈σ

〈f ,φi〉φi

∥∥∥∥
2

=
〈
Sσ c
W f , f

〉
+

〈
Sσ
W f , Sσ

W f
〉

=
〈(

Sσ c
W +

(
Sσ
W

)2)f , f
〉 ≥ 3

4
‖f ‖2.

This completes the proof. �

Remark 6 If we take φi = ψi for all i ∈ I in Theorem 5, we can obtain Theorem 1.

Lemma 2 Let P, Q ∈ L(H) be two self-adjoint operators such that P + Q = IH, then, for any
λ ∈R and all f ∈H, we have

‖Pf ‖2 + λ〈Qf , f 〉 = ‖Qf ‖2 + (2 – λ)〈Pf , f 〉 + (λ – 1)‖f ‖2

≥
(

λ –
λ2

4

)
‖f ‖2.

Proof For all f ∈H, we have

‖Pf ‖2 + λ〈Qf , f 〉 =
〈
P2f , f

〉
+ λ

〈
(IH – P)f , f

〉

=
〈(

P2 – λP + λIH
)
f , f

〉
(2.3)

=
〈
(IH – P)2f , f

〉
+ (2 – λ)〈Pf , f 〉 + (λ – 1)〈f , f 〉

= ‖Qf ‖2 + (2 – λ)〈Pf , f 〉 + (λ – 1)‖f ‖2.

A simple computation of (2.3) gives

〈(
P2 – λP + λIH

)
f , f

〉
=

〈((
P –

λ

2
IH

)2

–
λ2

4
IH + λIH

)
f , f

〉

=
〈(

(P – λIH)2 +
(

λ –
λ2

4

)
IH

)
f , f

〉

≥
(

λ –
λ2

4

)
‖f ‖2.

This proves the desired result. �

Theorem 7 Suppose that two frames {φi}i∈I and {ψi}i∈I for a Hilbert space H are woven;
then, for any λ ∈R, for all σ ⊂ I and all f ∈H, we have

∑

i∈σ

∣∣〈f ,φi〉
∣∣2 +

∑

i∈σ

∣∣〈Sσ c
W f , S–1

Wφi
〉∣∣2 +

∑

i∈σ c

∣∣〈Sσ c
W f , S–1

Wψi
〉∣∣2
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=
∑

i∈σ c

∣∣〈f ,ψi〉
∣∣2 +

∑

i∈σ

∣∣〈Sσ
W f , S–1

Wφi
〉∣∣2 +

∑

i∈σ c

∣∣〈Sσ
W f , S–1

Wψi
〉∣∣2

≥
(

λ –
λ2

4

)∑

i∈σ

∣∣〈f ,φi〉
∣∣2 +

(
1 –

λ2

4

)∑

i∈σ c

∣∣〈f ,ψi〉
∣∣2.

Proof Since {φi}i∈I and {ψi}i∈I are woven, for all σ ⊂ I , {φi}i∈σ ∪ {ψi}i∈σ c is a frame for H.
Letting SW be the frame operator for {φi}i∈σ ∪ {ψi}i∈σ c , since Sσ

W + Sσ c
W = SW , it follows

that

S–1/2
W Sσ

WS–1/2
W + S–1/2

W Sσ c
WS–1/2

W = IH.

Considering P = S–1/2
W Sσ

WS–1/2
W , Q = S–1/2

W Sσ c
WS–1/2

W , and S1/2
W f instead of f in Lemma 2, we

obtain

∥∥S–1/2
W Sσ

W f
∥∥2 + λ

〈
S–1/2
W Sσ c

W f , S1/2
W f

〉

=
∥∥S–1/2

W Sσ c
W f

∥∥2 + (2 – λ)
〈
S–1/2
W Sσ

W f , S1/2
W f

〉
+ (λ – 1)

∥∥S1/2
W f

∥∥2

≥
(

λ –
λ2

4

)∥∥S1/2
W f

∥∥2,

and thus

〈
S–1
WSσ

W f , Sσ
W f

〉
+ λ

〈
Sσ c
W f , f

〉

=
〈
S–1
WSσ c

W f , Sσ c
W f

〉
+ (2 – λ)

〈
Sσ
W f , f

〉
+ (λ – 1)〈SW f , f 〉

≥
(

λ –
λ2

4

)
〈SW f , f 〉.

Then,

〈
S–1
WSσ

W f , Sσ
W f

〉

=
〈
S–1
WSσ c

W f , Sσ c
W f

〉
+ 2

〈
Sσ
W f , f

〉
– λ

〈(
Sσ
W + Sσ c

W
)
f , f

〉
+ (λ – 1)〈SW f , f 〉

≥
(

λ –
λ2

4

)
〈SW f , f 〉 – λ

〈
Sσ c
W f , f

〉
,

and thus

〈
S–1
WSσ

W f , Sσ
W f

〉
=

〈
S–1
WSσ c

W f , Sσ c
W f

〉
+ 2

〈
Sσ
W f , f

〉
– 〈SW f , f 〉

≥ λ
〈
Sσ
W f , f

〉
–

λ2

4
〈SW f , f 〉. (2.4)

Hence,

〈
S–1
WSσ

W f , Sσ
W f

〉
+

〈
Sσ c
W f , f

〉
=

〈
S–1
WSσ c

W f , Sσ c
W f

〉
+

〈
Sσ
W f , f

〉

≥
(

λ –
λ2

4

)〈
Sσ
W f , f

〉
+

(
1 –

λ2

4

)〈
Sσ c
W f , f

〉
. (2.5)
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We have

〈
S–1
WSσ

W f , Sσ
W f

〉
=

〈
SWS–1

WSσ
W f , S–1

WSσ
W f

〉

=
〈∑

i∈σ

〈
S–1
WSσ

W f ,φi
〉
φi +

∑

i∈σ c

〈
S–1
WSσ

W f ,ψi
〉
ψi, S–1

WSσ
W f

〉

=
〈∑

i∈σ

〈
S–1
WSσ

W f ,φi
〉
φi, S–1

WSσ
W f

〉
+

〈∑

i∈σ

〈
S–1
WSσ

W f ,ψi
〉
ψi, S–1

WSσ
W f

〉

=
∑

i∈σ

∣∣〈Sσ
W f , S–1

Wφi
〉∣∣2 +

∑

i∈σ c

∣∣〈Sσ
W f , S–1

Wψi
〉∣∣2. (2.6)

Similarly,

〈
S–1
WSσ c

W f , Sσ c
W f

〉
=

∑

i∈σ

∣∣〈Sσ c
W f , S–1

Wφi
〉∣∣2 +

∑

i∈σ c

∣∣〈Sσ c
W f , S–1

Wψi
〉∣∣2, (2.7)

〈
Sσ c
W f , f

〉
=

∑

i∈σ c

∣∣〈f ,ψi〉
∣∣2, (2.8)

〈
Sσ
W f , f

〉
=

∑

i∈σ c

∣∣〈f ,φi〉
∣∣2. (2.9)

Using Eqs. (2.5)–(2.9) in inequality (2.3), we obtain

∑

i∈σ

∣∣〈f ,φi〉
∣∣2 +

∑

i∈σ

∣∣〈Sσ c
W f , S–1

Wφi
〉∣∣2 +

∑

i∈σ c

∣∣〈Sσ c
W f , S–1

Wψi
〉∣∣2

=
∑

i∈σ c

∣∣〈f ,ψi〉
∣∣2 +

∑

i∈σ

∣∣〈Sσ
W f , S–1

Wφi
〉∣∣2 +

∑

i∈σ c

∣∣〈Sσ
W f , S–1

Wψi
〉∣∣2

≥
(

λ –
λ2

4

)∑

i∈σ

∣∣〈f ,φi〉
∣∣2 +

(
1 –

λ2

4

)∑

i∈σ c

∣∣〈f ,ψi〉
∣∣2. �

Remark 8 If we take φi = ψi for all i ∈ I and λ = 1 in Theorem 7, we can obtain Theorem 2
with scalar 3/4.

Lemma 3 If P, Q ∈ L(H) satisfy P + Q = IH, then, for any λ ∈R, we have

P∗P + λ
(
Q∗ + Q

)
= Q∗Q + (1 – λ)

(
P∗ + P

)
+ (2λ – 1)IH ≥ (

1 – (λ – 1)2)IH.

Proof

P∗P + λ
(
Q∗ + Q

)
= P∗P + λ

(
IH – P∗ + IP

)
= P∗P – λ

(
P∗ + P

)
+ 2λIH,

and

Q∗Q + (1 – λ)
(
P∗ + P

)
+ (2λ – 1)IH

=
(
IH – P∗)(IH – P) + (1 – λ)

(
P∗ + P

)
+ (2λ – 1)IH

= P∗P – λ
(
P∗ + P

)
+ 2λIH

= (P – λIH)∗(P – λIH) +
(
1 – (λ – 1)2)IH
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≥ (
1 – (λ – 1)2)IH.

Hence, the result follows. �

Theorem 9 Suppose that two frames {φi}i∈I and {ψi}i∈I for a Hilbert space H are woven
and {ϕi}i∈I is an alternate dual frame of the weaving frame {φi}i∈σ ∪ {ψi}i∈σ c . Then, for any
λ ∈R, for all σ ⊂ I , and for all f ∈H, we have

Re
(∑

i∈σ

〈f ,ϕi〉〈f ,φi〉
)

+
∥∥∥∥
∑

i∈σ c

〈f ,ϕi〉ψi

∥∥∥∥
2

= Re
(∑

i∈σ c

〈f ,ϕi〉〈f ,ψi〉
)

+
∥∥∥∥
∑

i∈σ

〈f ,ϕi〉φi

∥∥∥∥
2

≥ (
2λ – λ2)Re

(∑

i∈σ

〈f ,ϕi〉〈f ,φi〉
)

+
(
1 – λ2)Re

(∑

i∈σ c

〈f ,ϕi〉〈f ,ψi〉
)

. (2.10)

Proof For all f ∈H and all σ ⊂ I , we define the operators

Eσ f =
∑

i∈σ

〈f ,ϕi〉φi, Eσ c f =
∑

i∈σ c

〈f ,ϕi〉ψi.

Then the series converge unconditionally and Eσ , Eσ c ∈ L(H). By (1.1), we have Eσ + Eσ c =
IH. Applying Lemma 3 to the operators P = Eσ and Q = Eσ c , for all f ∈H, we obtain

〈
E∗

σ Eσ f , f
〉
+ λ

〈(
E∗

σ c + Eσ c
)
f , f

〉

=
〈
E∗

σ Eσ f , f
〉
+ λ〈Eσ c f , f 〉 + λ〈Eσ f , f 〉 (2.11)

=
〈
E∗

σ c Eσ c f , f
〉
+ (1 – λ)

〈(
E∗

σ + Eσ

)
f , f

〉
+ (2λ – 1)‖f ‖2

=
〈
E∗

σ c Eσ c f , f
〉
+ (1 – λ)

(〈Eσ f , f 〉 + 〈Eσ f , f 〉) + (2λ – 1)〈IHf , f 〉. (2.12)

With a simple computation of (2.11) and (2.12), we have

‖Eσ f ‖2 + 2λRe〈Eσ c f , f 〉 = ‖Eσ c f ‖2 + 2(1 – λ)Re〈Eσ f , f 〉 + (2λ – 1)Re〈IHf , f 〉.

Then

‖Eσ f ‖2 = ‖Eσ c f ‖2 + 2(1 – λ)Re〈Eσ f , f 〉 – 2λRe〈Eσ c f , f 〉 + (2λ – 1)Re〈IHf , f 〉
= ‖Eσ c f ‖2 + 2Re〈Eσ f , f 〉 – 2λRe

〈
(Eσ + Eσ c )f , f

〉
+ (2λ – 1)Re〈IHf , f 〉

= ‖Eσ c f ‖2 + 2Re〈Eσ f , f 〉 – Re〈IHf , f 〉
= ‖Eσ c f ‖2 + 2Re〈Eσ f , f 〉 – Re

〈
(Eσ + Eσ c )f , f

〉

= ‖Eσ c f ‖2 + Re〈Eσ f , f 〉 – Re〈Eσ c f , f 〉.

Hence,

‖Eσ f ‖2 + Re〈Eσ c f , f 〉 = ‖Eσ c f ‖2 + Re〈Eσ f , f 〉. (2.13)
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Since

‖Eσ f ‖2 =
∥∥∥∥
∑

i∈σ

〈f ,ϕi〉φi

∥∥∥∥
2

, (2.14)

Re〈Eσ c f , f 〉 = Re
(∑

i∈σ c

〈f ,ϕi〉〈f ,ψi〉
)

, (2.15)

‖Eσ c f ‖2 =
∥∥∥∥
∑

i∈σ

〈f ,ϕi〉ψi

∥∥∥∥
2

, (2.16)

Re〈Eσ f , f 〉 = Re
(∑

i∈σ

〈f ,ϕi〉〈f ,φi〉
)

. (2.17)

Using equations (2.13)–(2.17), we have

Re
(∑

i∈σ

〈f ,ϕi〉〈f ,φi〉
)

+
∥∥∥∥
∑

i∈σ c

〈f ,ϕi〉ψi

∥∥∥∥
2

= Re
(∑

i∈σ c

〈f ,ϕi〉〈f ,ψi〉
)

+
∥∥∥∥
∑

i∈σ

〈f ,ϕi〉φi

∥∥∥∥
2

.

We now prove the inequality of (2.10). From Lemma 3, we have

〈
E∗

σ Eσ f , f
〉
+ λ〈Eσ c f , f 〉 + λ〈Eσ c f , f 〉 ≥ (

2λ – λ2)〈IHf , f 〉. (2.18)

Then

‖Eσ f ‖2 + 2λRe〈Eσ c f , f 〉 ≥ (
2λ – λ2)Re〈IHf , f 〉,

hence

‖Eσ f ‖2 ≥ (
2λ – λ2)Re〈IHf , f 〉 – 2λRe〈Eσ c f , f 〉

=
(
2λ – λ2)Re

〈
(Eσ + Eσ c )f , f

〉
– 2λRe〈Eσ c f , f 〉

=
(
2λ – λ2)Re〈Eσ f , f 〉 – λ2Re〈Eσ c f , f 〉

=
(
2λ – λ2)Re〈Eσ f , f 〉 +

(
1 – λ2)Re〈Eσ c f , f 〉 – Re〈Eσ c f , f 〉.

Therefore,

‖Eσ f ‖2 + Re〈Eσ c f , f 〉 ≥ (
2λ – λ2)Re〈Eσ f , f 〉 +

(
1 – λ2)Re〈Eσ c f , f 〉. (2.19)

Using Eqs. (2.14)–(2.17) and (2.19), we have

Re
(∑

i∈σ

〈f ,ϕi〉〈f ,φi〉
)

+
∥∥∥∥
∑

i∈σ c

〈f ,ϕi〉ψi

∥∥∥∥
2

≥ (
2λ – λ2)Re

(∑

i∈σ

〈f ,ϕi〉〈f ,φi〉
)

+
(
1 – λ2)Re

(∑

i∈σ c

〈f ,ϕi〉〈f ,ψi〉
)

.

The proof is completed. �
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Remark 10 Theorem 3 can be obtained from Theorem 9 by taking φi = ψi for all i ∈ I and
λ = 1

2 .

Theorem 11 Suppose that � = {φi}i∈I and � = {ψi}i∈I for a Hilbert space H are woven
and {ϕi}i∈I is an alternate dual frame of the weaving frame {φi}i∈σ ∪ {φi}i∈σ c . Then, for any
λ ∈R, for all σ ⊂ I , and for all f ∈H, we have

(∑

i∈σ

〈f ,ϕi〉〈f ,φi〉
)

+
∥∥∥∥
∑

i∈σ c

〈f ,ϕi〉ψi

∥∥∥∥
2

=
(∑

i∈σ c

〈f ,ϕi〉〈f ,ψi〉
)

+
∥∥∥∥
∑

i∈σ

〈f ,ϕ〉φi

∥∥∥∥
2

. (2.20)

Proof For σ ⊂ I and f ∈H, we define the operator Eσ and Eσ c as in Theorem 9. Therefore,
we have Eσ + Eσ c = IH. By Lemma 1, we have

(∑

i∈σ

〈f ,ϕi〉〈f ,φi〉
)

+
∥∥∥∥
∑

i∈σ c

〈f ,ϕi〉ψi

∥∥∥∥
2

= 〈Eσ f , f 〉 +
〈
E∗

σ c Eσ c f , f
〉

=
〈
E∗

σ c f , f
〉
+

〈
E∗

σ Eσ f , f
〉

=
〈
E∗

σ c f , f
〉
+ ‖Eσ f ‖2

=
(∑

i∈σ c

〈f ,ϕi〉〈f ,ψi〉
)

+
∥∥∥∥
∑

i∈σ

〈f ,ϕ〉φi

∥∥∥∥
2

.

Hence, (2.20) holds. The proof is completed. �

Theorem 12 Suppose that two frames {φi}i∈I and {ψi}i∈I for a Hilbert space H are woven
and {ϕi}i∈I is an alternate dual frame of the weaving frame {φi}i∈σ ∪{φi}i∈σ c . Then, for every
bounded sequence {ai}i∈I and every f ∈H, we have

(∑

i∈σ

ai〈f ,ϕi〉〈f ,φi〉
)

+
(∑

i∈σ c

ai〈f ,ϕi〉〈f ,ψi〉
)

+
∥∥∥∥
∑

i∈σ c

(1 – ai)〈f ,ϕi〉ψi +
∑

i∈σ

(1 – ai)〈f ,ϕi〉φi

∥∥∥∥
2

=
∥∥∥∥
∑

i∈σ

ai〈f ,ϕi〉φi +
∑

i∈σ c

ai〈f ,ϕi〉ψi

∥∥∥∥
2

+
(∑

i∈σ

(1 – ai)〈f ,ϕi〉〈f ,φi〉
)

+
(∑

i∈σ c

(1 – ai)〈f ,ϕi〉〈f ,ψi〉
)

.

Proof For all σ ⊂ I and f ∈H, we define the operators

Eσ f =
∑

i∈σ

ai〈f ,ϕi〉φi, Eσ c f =
∑

i∈σ c

ai〈f ,ϕi〉ψi,

and

Fσ f =
∑

i∈σ

(1 – ai)〈f ,ϕi〉φi, Fσ c f =
∑

i∈σ

(1 – ai)〈f ,ϕi〉ψi.
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Note that these series converge unconditionally. We also have Eσ , Eσ c , Fσ , Fσ c ∈ L(H) and
Eσ + Eσ c + Fσ + Fσ c = IH. Applying Lemma 1 to the operators P = Eσ + Eσ c and Q = Fσ + Fσ c ,
and for every f ∈H, we have

(∑

i∈σ

ai〈f ,ϕi〉〈f ,φi〉
)

+
(∑

i∈σ c

ai〈f ,ϕi〉〈f ,ψi〉
)

+
∥∥∥∥
∑

i∈σ c

(1 – ai)〈f ,ϕi〉ψi +
∑

i∈σ

(1 – ai)〈f ,ϕi〉φi

∥∥∥∥
2

= 〈Eσ f , f 〉 + 〈Eσ c f , f 〉 +
〈
(Fσ + Fσ c )∗(Fσ + Fσ c )f , f

〉

=
〈
(Eσ + Eσ c )f , f

〉
+

〈
(Fσ + Fσ c )∗(Fσ + Fσ c )f , f

〉

=
〈
(Fσ + Fσ c )∗f , f

〉
+

〈
(Eσ + Eσ c )∗(Eσ + Eσ c )f , f

〉

=
〈
(Fσ + Fσ c )f , f

〉
+

∥∥(Eσ + Eσ c )f
∥∥2

=
∥∥(Eσ + Eσ c )f

∥∥2 + 〈Fσ f , f 〉 + 〈Fσ c f , f 〉

=
∥∥∥∥
∑

i∈σ

ai〈f ,ϕi〉φi +
∑

i∈σ c

ai〈f ,ϕi〉ψi

∥∥∥∥
2

+
(∑

i∈σ

(1 – ai)〈f ,ϕi〉〈f ,φi〉
)

+
(∑

i∈σ c

(1 – ai)〈f ,ϕi〉〈f ,ψi〉
)

.

Hence, the relation holds. �

Observe that if we consider σ ⊂ I and

ai =

⎧
⎨

⎩
0 if i ∈ σ ,

1 if i ∈ σ c,

then Theorem 11 follows from Theorem 12.

Remark 13 If we take φi = ψi for all i ∈ I in Theorems 11 and 12, we can obtain Theorems
4 and 2.3 of [23].

Theorem 14 Suppose that two frames {φi}i∈I and {ψi}i∈I for a Hilbert space H are woven,
then, for any λ ∈R, σ ⊂ I , and f ∈H, we have

0 ≤
∑

i∈σ

∣∣〈f ,φi〉
∣∣2 –

∑

i∈σ

∣∣〈Sσ
W f , S–1

Wφi
〉∣∣2 –

∑

i∈σ c

∣∣〈Sσ
W f , S–1

Wψi
〉∣∣2

≤λ2

4
∑

i∈σ c

∣∣〈f ,ψi〉
∣∣2 +

(
1 –

λ

2

)2 ∑

i∈σ

∣∣〈f ,φi〉
∣∣2.

Proof Considering positive operators P = S–1/2
W Sσ

WS–1/2
W and Q = S–1/2

W Sσ c
WS–1/2

W , then P +Q =
IH, and

PQ = P(IH – P) = P – P2 = (IH – P)P = QP.
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Then

0 ≤ PQ = P(IH – P) = P – P2 = S–1/2
W

(
Sσ
W – Sσ

WS–1
WSσ

W
)
S–1/2
W ,

from which follows Sσ
W – Sσ

WS–1
WSσ

W ≥ 0. Then, for all f ∈H, we have

∑

i∈σ

∣∣〈f ,φi〉
∣∣2 –

∑

i∈σ

∣∣〈Sσ
W f , S–1

Wφi
〉∣∣2 –

∑

i∈σ c

∣∣〈Sσ
W f , S–1

Wψi
〉∣∣2

=
〈
Sσ
W f , f

〉
–

〈
S–1
WSσ

W f , Sσ
W f

〉

=
〈(

Sσ
W – Sσ

WS–1
WSσ

W
)
f , f

〉 ≥ 0.

By (2.4), we have

〈
S–1
WSσ

W f , Sσ
W f

〉
–

〈
Sσ
W f , f

〉 ≥λ
〈
Sσ
W f , f

〉
–

λ2

4
〈SW f , f 〉 –

〈
Sσ
W f , f

〉
,

and then

∑

i∈σ

∣∣〈f ,φi〉
∣∣2 –

∑

i∈σ

∣∣〈Sσ
W f , S–1

Wφi
〉∣∣2 –

∑

i∈σ c

∣∣〈Sσ
W f , S–1

Wψi
〉∣∣2

=
〈
Sσ
W f , f

〉
–

〈
S–1
WSσ

W f , Sσ
W f

〉

≤ 〈
Sσ
W f , f

〉
– λ

〈
Sσ
W f , f

〉
+

λ2

4
〈SW f , f 〉

= (1 – λ)
〈
Sσ
W f , f

〉
+

λ2

4
〈SW f , f 〉

= (1 – λ)
〈(

SW – Sσ c
W

)
f , f

〉
+

λ2

4
〈SW f , f 〉

= (λ – 1)
〈
Sσ c
W f , f

〉
+

(
1 –

λ

2

)2

〈SW f , f 〉

=
λ2

4
〈
Sσ c
W f , f

〉
+

(
1 –

λ

2

)2〈
Sσ
W f , f

〉

=
λ2

4
∑

i∈σ c

∣∣〈f ,ψi〉
∣∣2 +

(
1 –

λ

2

)2 ∑

i∈σ

∣∣〈f ,φi〉
∣∣2. �

Theorem 15 Suppose that two frames {φi}i∈I and {ψi}i∈I for a Hilbert space H are woven,
then, for any λ ∈R, σ ⊂ I , and f ∈H, we have

(
2λ –

λ2

2
– 1

)∑

i∈σ

∣∣〈f ,φi〉
∣∣2 +

(
1 –

λ2

2

)∑

i∈σ c

∣∣〈f ,ψi〉
∣∣2

≤
∑

i∈σ

∣∣〈Sσ
W f , S–1

Wφi
〉∣∣2 +

∑

i∈σ c

∣∣〈Sσ
W f , S–1

Wψi
〉∣∣2

+
∑

i∈σ

∣∣〈Sσ c
W f , S–1

Wφi
〉∣∣2 +

∑

i∈σ c

∣∣〈Sσ c
W f , S–1

Wψi
〉∣∣2

≤
∑

i∈σ

∣∣〈f ,φi〉
∣∣2 +

∑

i∈σ c

∣∣〈f ,ψi〉
∣∣2.
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Proof By (2.5), we have

〈
S–1
WSσ

W f , Sσ
W f

〉 ≥
(

λ –
λ2

4

)〈
Sσ
W f , f

〉
–

λ2

4
〈
Sσ c
W f , f

〉
, (2.21)

〈
S–1
WSσ c

W f , Sσ c
W f

〉 ≥
(

λ –
λ2

4
– 1

)〈
Sσ
W f , f

〉
+

(
1 –

λ2

4

)〈
Sσ c
W f , f

〉
. (2.22)

From (2.21) and (2.21), we obtain

∑

i∈σ

∣∣〈Sσ
W f , S–1

Wφi
〉∣∣2 +

∑

i∈σ c

∣∣〈Sσ
W f , S–1

Wψi
〉∣∣2 +

∑

i∈σ

∣∣〈Sσ c
W f , S–1

Wφi
〉∣∣2 +

∑

i∈σ c

∣∣〈Sσ c
W f , S–1

Wψi
〉∣∣2

=
〈
S–1
WSσ

W f , Sσ
W f

〉
+

〈
S–1
WSσ c

W f , Sσ c
W f

〉

≥
(

2λ –
λ2

2
– 1

)〈
Sσ
W f , f

〉
+

(
1 –

λ2

2

)〈
Sσ c
W f , f

〉

=
(

2λ –
λ2

2
– 1

)∑

i∈σ

∣∣〈f ,φi〉
∣∣2 +

(
1 –

λ2

2

)∑

i∈σ c

∣∣〈f ,ψi〉
∣∣2.

Next, we prove the last part. Let P = S–1/2
W Sσ

WS–1/2
W , Q = S–1/2

W Sσ c
WS–1/2

W . Since PQ = QP, we
have

P – P2 = P(IH – P) = PQ ≥ 0,

and then, for all f ∈H, ‖Pf ‖2 ≤ 〈Pf , f 〉. Similarly, ‖Qf ‖2 ≤ 〈Qf , f 〉. Hence,

∑

i∈σ

∣∣〈Sσ
W f , S–1

Wφi
〉∣∣2 +

∑

i∈σ c

∣∣〈Sσ
W f , S–1

Wψi
〉∣∣2 +

∑

i∈σ

∣∣〈Sσ c
W f , S–1

Wφi
〉∣∣2 +

∑

i∈σ c

∣∣〈Sσ c
W f , S–1

Wψi
〉∣∣2

=
〈
S–1
WSσ

W f , Sσ
W f

〉
+

〈
S–1
WSσ c

W f , Sσ c
W f

〉

=
〈
S–1/2
W Sσ

W f , S–1/2
W Sσ

W f
〉
+

〈
S–1/2
W Sσ c

W f , S–1/2
W Sσ c

W f
〉

=
〈
S–1/2
W Sσ

WS–1/2
W S1/2

W f , S–1/2
W Sσ

WS–1/2
W S1/2

W f
〉
+

〈
S–1/2
W Sσ c

WS–1/2
W S1/2

W f , S–1/2
W Sσ c

WS–1/2
W S1/2

W f
〉

≤ 〈
S–1/2
W Sσ

WS–1/2
W S1/2

W f , S1/2
W f

〉
+

〈
S–1/2
W Sσ c

WS–1/2
W S1/2

W f , S1/2
W f

〉

=
〈
Sσ
W f , f

〉
+

〈
Sσ c
W f , f

〉

=
∑

i∈σ

∣∣〈f ,φi〉
∣∣2 +

∑

i∈σ c

∣∣〈f ,ψi〉
∣∣2. �

By Theorems 14 and 15, we immediately obtain the following results.

Corollary 1 Suppose that two frames {φi}i∈I and {ψi}i∈I for a Hilbert spaceH are A-woven,
then, for any λ ∈R, σ ⊂ I , and f ∈H, we have

0 ≤ A
∑

i∈σ

∣∣〈f ,φi〉
∣∣2 –

∥∥∥∥
∑

i∈σ

〈f ,φi〉φi

∥∥∥∥
2

≤ Aλ2

4
∑

i∈σ c

∣∣〈f ,ψi〉
∣∣2 +

(
1 –

λ

2

)2

A
∑

i∈σ

∣∣〈f ,φi〉
∣∣2

and
(

2λ –
λ2

2
– 1

)
A

∑

i∈σ

∣∣〈f ,φi〉
∣∣2 +

(
1 –

λ2

2

)
A

∑

i∈σ c

∣∣〈f ,ψi〉
∣∣2
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≤
∥∥∥∥
∑

i∈σ

〈f ,φi〉φi

∥∥∥∥
2

+
∥∥∥∥
∑

i∈σ c

〈f ,ψi〉ψi

∥∥∥∥
2

≤ A‖f ‖2.

Proof Since {φi}i∈I and {ψi}i∈I are A-woven, we have S–1
W = 1

A IH, and then the results hold
by Theorems 14 and 15. �

Remark 16 If we take λ = 1 and φi = ψi for all i ∈ I in Theorems 14 and 15, we obtain the
similar inequalities in Theorems 5 and 6 of [14].
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