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Abstract
In this paper, we study the duality theorems of a nondifferentiable semi-infinite
interval-valued optimization problem with vanishing constraints (IOPVC). By
constructing the Wolfe and Mond–Weir type dual models, we give the weak duality,
strong duality, converse duality, restricted converse duality, and strict converse duality
theorems between IOPVC and its corresponding dual models under the assumptions
of generalized convexity.
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1 Introduction
In recent years, the mathematical programming problems with vanishing constraints
(MPVCs) have been studied extensively by many scholars. Achtziger and Kanzow [1]
first proposed an optimization problem with vanishing constraints (MPVCs) and gave the
strong stationary point theorem and VC-stationary point theorem of MPVCs under ACQ
and improved ACQ assumptions. Under the inspiration of [1], Hoheisel and Kanzow [2]
gave the M-stationary point theorem of MPVCs by using the MPVCs-GCQ. Guu et al. [3]
studied the strong KKT type optimality conditions for nonsmooth multiobjective semi-
infinite programming problems with vanishing constraints by the generalized S-stationary
and M-stationary point conditions. Tung [4] studied the necessary and sufficient KKT type
optimality conditions for continuously differentiable multiobjective semi-infinite MPVCs
by using the ACQ and VC-ACQ in [1].

Accordingly, the study of dual problems related to MPVCs has also been used as a tool to
solve optimization problems in various fields in the past decades, such as variational prob-
lems, fractional programming problems, semi-infinite programming problems, complex
minimax problems, and so on. Tung [4] presented Wolfe and Mond–Weir type dual mod-
els for differentiable multiobjective semi-infinite programming with vanishing constraints
and discussed the weak and strong duality theorems. Mishra and Singh [5] studied the con-
tinuously differentiable MPVCs and gave the weak, strong, converse, restricted converse,
and strict converse duality theorems between MPVCs and the corresponding Wolfe and
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Mond–Weir type dual models under the assumptions of convexity and strict convexity.
Hu and Wang et al. [6] proposed a new Wolfe and Mond–Weir type dual models related
to continuously differentiable MPVCs and studied the weak, strong, converse, restricted
converse, and strict converse duality theorems between them under the assumptions of
convexity and generalized convexity.

With the development of mathematics, there are more and more researchers paying
their attention to interval-valued optimization problems. Wu [7] studied the Wolfe type
dual problem for continuously differentiable interval-valued optimization problems. Sun
and Wang [8] gave the optimality conditions and duality for nondifferentiable interval-
valued optimization problems. Tung [9] studied the optimality conditions and duality for
convex semi-infinite multiobjective interval-valued optimization problems. Ahmad et al.
[10] studied continuously differentiable interval-valued variational problem and gave the
sufficient optimality condition and Mond–Weir type duality of the original problem by
using the invexity conditions. Kummari and Ahmad [11] discussed the optimality condi-
tions and duality for nonsmooth interval-valued optimization problems with equality and
inequality constraints via the L-invex-infine functions. Jayswal et al. [12, 13] gave the opti-
mality conditions and duality for nonsmooth interval-valued optimization problems with
inequality constraints by using generalized convexity. Su and Dinh [14] studied the duality
for interval-valued pseudoconvex optimization problem with equilibrium constraints by
using the notion of contingent epiderivatives. Recently, Ahmad et al. [15] studied the op-
timality conditions and Mond–Weir type dual problems for differentiable interval-valued
optimization problems with vanishing constraints.

Inspired by the literatures mentioned above, in this paper, we study the duality theo-
rems for nondifferentiable semi-infinite interval-valued optimization problem with van-
ishing constraints(IOPVC) and explore the dual relationships between IOPVC and its
corresponding Wolfe and Mond–Weir type dual models. The paper is organized as fol-
lows. In Sect. 2, we introduce some known concepts and formulas; In Sect. 3, we study the
weak, strong, converse, restricted converse, and strict converse duality theorems between
IOPVC and the Wolfe type dual model; In Sect. 4, we study the weak, strong, converse,
restricted converse, and strict converse duality theorems between IOPVC and the Mond–
Weir type dual model. Some examples are given to illustrate our conclusions.

2 Preliminary
Let X be a finite-dimensional Euclidean space. The notation 〈·, ·〉 denotes the inner product
in X. For a point x̄ ∈ X, B(x̄; δ) := {x ∈ X : ‖x – x̄‖ < δ} denotes the open ball of radius δ

around x̄. For a set C ⊂ X, span C, cone C stand for the linear hull and convex cone of C,
respectively. Let C �= ∅, the contingent cone of set C at the point x is defined by

T(C, x) := {v ∈ X | ∃tn → 0,∃vn → v,∀n ∈ N , x + tnvn ∈ C}.

Let D be the set of all closed intervals in R. For any A = [a1, a2] ∈D, B = [b1, b2] ∈D, one
has (see Moore [16])

A + B = [a1 + b1, a2 + b2], –B = [–b2, –b1],

A – B = [a1 – b2, a2 – b1], A + k = [a1 + k, a2 + k],
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where k is any real number. A partial ordering for intervals can be formulated as follows:

A ≤LU B ⇐⇒ a1 ≤ b1, a2 ≤ b2,

A <LU B ⇐⇒ A ≤LU B, A �= B,

A ≮LU B is the negation of A <LU B,

A <s
LU B ⇐⇒ a1 < b1, a2 < b2,

A ≮s
LU B is the negation of A <s

LU B.

Let F : X →D be a mapping on X defined as

F(x) =
[
FL(x), FU (x)

]
(∀x ∈ X),

where FL, FU are the locally Lipschitz functions on X with FL(x) ≤ FU (x).
Now, we consider the following semi-infinite interval-valued optimization problem with

vanishing constraints(IOPVC):

LU- min F(x),

s.t. gj(x) ≤ 0, j ∈ J ,

hk(x) = 0, k = 1, . . . , n,

Hi(x) ≥ 0, i = 1, . . . , l,

Gi(x)Hi(x) ≤ 0, i = 1, . . . , l,

where gj : X → R ∪ {+∞}, hk : X → R, Hi : X → R, Gi : X → R are the locally Lipschitz
functions on X and the index set J is arbitrary(possibly infinite). Let In := {1, . . . , n}, Il :=
{1, . . . , l}. The feasible set of problem (IOPVC) is

E :=
{

x ∈ X : gj(x) ≤ 0(j ∈ J), hk(x) = 0(k ∈ In), Hi(x) ≥ 0, Gi(x)Hi(x) ≤ 0(i ∈ Il)
}

.

Let R|J|
+ denote the collection of all the functions λ : J → R taking values λj > 0 only at

finitely many points of J and equal to zero at the other points. For any x̄ ∈ E, Ig(x̄) := {j ∈ J :
gj(x̄) = 0} signifies the index set of all active constraints at x̄, and κ(x̄) := {λj ∈ R|J|

+ : λjgj(x̄) =
0,∀j ∈ J} signifies the active constraint multipliers at x̄.

We give the following definitions of optimal solutions of (IOPVC).

Definition 2.1 ([9]) Let x̄ ∈ E,
(i) x̄ is said to be a locally LU optimal solution of (IOPVC) if there exists an open ball

B(x̄; δ) such that there is no x ∈ E ∩ B(x̄; δ) satisfying

F(x) <LU F(x̄).

(ii) x̄ is said to be a locally weakly LU optimal solution of (IOPVC) if there exists an
open ball B(x̄; δ) such that there is no x ∈ E ∩ B(x̄; δ) satisfying

F(x) <s
LU F(x̄).
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Let f : X → R be a locally Lipschitz function around x̄. The Clarke directional derivative
of f around x̄ in the direction v ∈ X and the Clarke subdifferential of f at x̄ are, respectively,
given by (see Clarke [17])

f ′
c (x̄; v) := lim sup

x→x̄,t↓0

f (x + tv) – f (x)
t

,

∂cf (x̄) :=
{
ξ ∈ X : 〈ξ , v〉 ≤ f ′

c (x̄; v),∀v ∈ X
}

.

Definition 2.2 ([3]) Let f : X → R be a locally Lipschitz function around x̄. Then
(i) f is said to be ∂c-pseudoconvex at x̄ if, for each x ∈ X and any ξ ∈ ∂cf (x̄),

f (x) – f (x̄) < 0 ⇒ 〈ξ , x – x̄〉 < 0;

(ii) f is said to be strictly ∂c-pseudoconvex at x̄ if, for each x ∈ X , x �= x̄ and any
ξ ∈ ∂cf (x̄),

f (x) – f (x̄) ≤ 0 ⇒ 〈ξ , x – x̄〉 < 0;

(iii) f is said to be ∂c-quasiconvex at x̄ if, for each x ∈ X and any ξ ∈ ∂cf (x̄),

f (x) – f (x̄) ≤ 0 ⇒ 〈ξ , x – x̄〉 ≤ 0.

The following sets of indicators, which will be used in the sequel, are given. Let x ∈ E,

I+(x) :=
{

i ∈ Il | Hi(x) > 0
}

, I0(x) :=
{

i ∈ Il | Hi(x) = 0
}

,

I+0(x) :=
{

i ∈ Il | Hi(x) > 0, Gi(x) = 0
}

,

I+–(x) :=
{

i ∈ Il | Hi(x) > 0, Gi(x) < 0
}

,

I0+(x) :=
{

i ∈ Il | Hi(x) = 0, Gi(x) > 0
}

,

I00(x) :=
{

i ∈ Il | Hi(x) = 0, Gi(x) = 0
}

,

I0–(x) :=
{

i ∈ Il | Hi(x) = 0, Gi(x) < 0
}

.

Referring to Definition 4 in [4], we give the following definition.

Definition 2.3 Let x̄ ∈ E be a feasible point of (IOPVC).
(i) The Abadie constraint qualification (ACQ) is said to hold at x̄ iff T(E, x̄) = L(x̄),

where L(x̄) is the linearized cone of (IOPVC) at x̄, and

L(x̄) :=
{

v ∈ X | 〈ξ g
j , v

〉 ≤ 0,∀ξ
g
j ∈ ∂cgj(x̄), j ∈ Ig(x̄);

〈
ξh

k , v
〉

= 0,∀ξh
k ∈ ∂chk(x̄),

k ∈ In;
〈
ξH

i , v
〉

= 0,∀ξH
i ∈ ∂cHi(x̄), i ∈ I0+;

〈
ξH

i , v
〉 ≥ 0,∀ξH

i ∈ ∂cHi(x̄),

i ∈ I00 ∪ I0–;
〈
ξG

i , v
〉 ≤ 0,∀ξG

i ∈ ∂cGi(x̄), i ∈ I+0
}

. (2.1)
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(ii) The VC-ACQ is said to hold at x̄ iff LVC(x̄) ⊆ T(E, x̄), where LVC(x̄) is the
corresponding VC-linearized cone of (IOPVC) at x̄, and

LVC(x̄) :=
{

v ∈ X | 〈ξ g
j , v

〉 ≤ 0,∀ξ
g
j ∈ ∂cgj(x̄), j ∈ Ig(x̄);

〈
ξh

k , v
〉

= 0,∀ξh
k ∈ ∂chk(x̄), k ∈ In;

〈
ξH

i , v
〉

= 0,∀ξH
i ∈ ∂cHi(x̄), i ∈ I0+;

〈
ξH

i , v
〉 ≥ 0,∀ξH

i ∈ ∂cHi(x̄), i ∈ I00 ∪ I0–;
〈
ξG

i , v
〉 ≤ 0,∀ξG

i ∈ ∂cGi(x̄), i ∈ I+0 ∪ I00
}

. (2.2)

Remark 2.1 If the functions gj, hk , Hi, Gi are continuously differentiable, then the lin-
earized cone and VC-linearized cone given in Definition 2.3 are the same as the linearized
cones given in [4].

Now, we give the following theorem, the proof of which is similar to Proposition 1(ii) in
[4].

Theorem 2.1 Let x̄ ∈ E be a locally weakly LU optimal solution of (IOPVC) such that
(VC-ACQ) holds at x̄ and

� := cone

( ⋃

j∈Ig (x̄)

∂cgj(x̄) ∪
⋃

i∈I00∪I0–

–∂cHi(x̄) ∪
⋃

i∈I+0∪I00

∂cGi(x̄)
)

+ span

(⋃

k∈In

∂chk(x̄) ∪
⋃

i∈I0+

∂cHi(x̄)
)

is closed. Then there exist Lagrange multipliers αL,αU ∈ R+, λg ∈ κ(x̄), λh ∈ Rn, λH ,λG ∈ Rl

such that

0 ∈ αL∂cFL(x̄) + αU∂cFU (x̄) +
∑

j∈J

λ
g
j ∂cgj(x̄) +

n∑

k=1

λh
k∂chk(x̄)

–
l∑

i=1

λH
i ∂cHi(x̄) +

l∑

i=1

λG
i ∂cGi(x̄) (2.3)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αL + αU = 1, hk(x̄) = 0 (k ∈ In),

λ
g
j ≥ 0, gj(x̄) ≤ 0, λ

g
j gj(x̄) = 0 (j ∈ J),

λH
i = 0 (i ∈ I+(x̄)), λH

i ≥ 0 (i ∈ I00(x̄) ∪ I0–(x̄)),

λH
i ∈ R (i ∈ I0+(x̄)),

λG
i = 0 (i ∈ I0+(x̄) ∪ I0–(x̄) ∪ I+–(x̄)), λG

i ≥ 0 (i ∈ I00(x̄) ∪ I+0(x̄)).

(2.4)

Definition 2.4 ([4]) The point x is said to be a VC-stationary point of (IOPVC) if there
exist Lagrange multipliers αL,αU ∈ R+, λg ∈ κ(x), λh ∈ Rn, λH ,λG ∈ Rl such that (2.3) and
(2.4) hold.



Wang and Wang Journal of Inequalities and Applications        (2021) 2021:182 Page 6 of 19

Now, let x be a VC-stationary point of (IOPVC) with corresponding multipliers λg ∈ R|J|
+ ,

λh ∈ Rn, λH ,λG ∈ Rl , we give the following index sets:

I+
g (x) :=

{
j ∈ Ig(x) | λg

j > 0
}

,

I+
h (x) :=

{
k ∈ In(x) | λh

k > 0
}

, I–
h (x) :=

{
k ∈ In(x) | λh

k < 0
}

,

I+
00(x) :=

{
i ∈ I00(x) | λH

i > 0
}

, I+
0–(x) :=

{
i ∈ I0–(x) | λH

i > 0
}

,

I+
0+(x) :=

{
i ∈ I0+(x) | λH

i > 0
}

, I–
0+(x) :=

{
i ∈ I0+(x) | λH

i < 0
}

,

I+
+ (x) :=

{
i ∈ I+(x) | λH

i > 0
}

, Ĩ+
+ (x) :=

{
i ∈ I+(x) | λG

i > 0
}

.

3 Wolfe type duality
In this section, we refer to [6] to give the following Wolfe type dual models. First of all, let
λg ∈ R|J|

+ , λh ∈ Rn, λH ,λG ∈ Rl ,

�
(·,αL,αU ,λg ,λh,λH ,λG)

= F(·) +
∑

j∈J

λ
g
j gj(·) +

n∑

k=1

λh
khk(·)

–
l∑

i=1

λH
i Hi(·) +

l∑

i=1

λG
i Gi(·)

is an interval-valued function, and

	(·) := αL∂cFL(·) + αU∂cFU (·) +
∑

j∈J

λ
g
j ∂cgj(·) +

n∑

k=1

λh
k∂chk(·)

–
l∑

i=1

λH
i ∂cHi(·) +

l∑

i=1

λG
i ∂cGi(·).

Now, we give the Wolfe type dual model of (IOPVC). For x ∈ E,

(
DW (x)

)
LU- max �

(
y,αL,αU ,λg ,λh,λH ,λG)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

s.t. 0 ∈ 	(y)

αL,αU ∈ R+, αL + αU = 1,

λ
g
j ≥ 0, ∀j ∈ J ,

λG
i = viHi(x), vi ≥ 0, ∀i ∈ Il,

λH
i = 
i – viGi(x), 
i ≥ 0,∀i ∈ Il.

(3.1)

EW (x) :=
{(

y,αL,αU ,λg ,λh,λH ,λG,
, v
)

:

0 ∈ 	(y), y ∈ X,αL,αU ∈ R+,αL + αU = 1,

λ
g
j ≥ 0,∀j ∈ J ,λG

i = viHi(x), vi ≥ 0,∀i ∈ Il

λH
i = 
i – viGi(x),
i ≥ 0,∀i ∈ Il

}

denotes the feasible set of (DW (x)). prEW (x) := {y ∈ X : (y,αL,αU ,λg ,λh,λH ,λG,
, v) ∈
EW (x)} represents the projection of the set EW (x) on X.
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In order to be independent of (IOPVC), we give another Wolfe type dual model:

(DW )LU- max �
(
y,αL,αU ,λg ,λh,λH ,λG)

s.t.
(
y,αL,αU ,λg ,λh,λH ,λG,
, v

) ∈ EW :=
⋂

x∈E

EW (x),

where EW denotes the set of all feasible points of (DW ) and prEW denotes the projection
of the set EW on X.

Definition 3.1 ([4]) Let x ∈ E.
(i) (ȳ,αL,αU ,λg ,λh,λH ,λG,
, v) ∈ EW (x) is said to be a locally LU optimal solution of

(DW (x)) if there exists B(ȳ; δ) such that there is no y ∈ EW (x) ∩ B(ȳ; δ) satisfying

�
(
ȳ,αL,αU ,λg ,λh,λH ,λG)

<LU �
(
y,αL,αU ,λg ,λh,λH ,λG)

.

(ii) (ȳ,αL,αU ,λg ,λh,λH ,λG,
, v) ∈ EW (x) is said to be a locally weakly LU optimal
solution of (DW (x)) if there exists B(ȳ; δ) such that there is no y ∈ EW (x) ∩ B(ȳ; δ)
satisfying

�
(
ȳ,αL,αU ,λg ,λh,λH ,λG)

<s
LU �

(
y,αL,αU ,λg ,λh,λH ,λG)

.

Theorem 3.1 (Weak duality) Let x ∈ E, (y,αL,αU ,λg ,λh,λH ,λG,
, v) ∈ EW be feasible
points for the (IOPVC) and the (DW ), respectively. If �L(·,αL,λg ,λh,λH ,λG), �U (·,αU ,λg ,
λh,λH ,λG) are ∂c-pseudoconvex at y ∈ E ∪ prEW , then

F(x) ≮s
LU �

(
y,αL,αU ,λg ,λh,λH ,λG)

.

Proof Suppose F(x) <s
LU �(y,αL,αU ,λg ,λh,λH ,λG), then

F(x) <s
LU F(y) +

∑

j∈J

λ
g
j gj(y) +

n∑

k=1

λh
khk(y) –

l∑

i=1

λH
i Hi(y) +

l∑

i=1

λG
i Gi(y). (3.2)

Since x ∈ E and (y,αL,αU ,λg ,λh,λH ,λG,
, v) ∈ EW , it follows that

gj(x) < 0, λ
g
j ≥ 0, j /∈ Ig(x),

gj(x) = 0, λ
g
j ≥ 0, j ∈ Ig(x),

hk(x) = 0, λh
k ∈ R, k ∈ In,

–Hi(x) < 0, λH
i ≥ 0, i ∈ I+(x),

–Hi(x) = 0, λH
i ∈ R, i ∈ I0(x),

Gi(x) > 0, λG
i = 0, i ∈ I0+(x),

Gi(x) = 0, λG
i ≥ 0, i ∈ I00(x) ∪ I+0(x),

Gi(x) < 0, λG
i ≥ 0, i ∈ I0–(x) ∪ I+–(x).

(3.3)
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The above formulas imply that

∑

j∈J

λ
g
j gj(x) +

n∑

k=1

λh
khk(x) –

l∑

i=1

λH
i Hi(x) +

l∑

i=1

λG
i Gi(x) ≤ 0. (3.4)

Equation (3.4) together with (3.2) proves that

�
(
x,αL,αU ,λg ,λh,λH ,λG)

<s
LU �

(
y,αL,αU ,λg ,λh,λH ,λG)

.

By the ∂c-pseudoconvexity of �L(·,αL,λg ,λh,λH ,λG), �U (·,αU ,λg ,λh,λH ,λG) at y ∈ E ∪
prEW , it follows that

〈

ξL +
∑

j∈J

λ
g
j ξ

g
j +

n∑

k=1

λh
kξ

h
k –

l∑

i=1

λH
i ξH

i +
l∑

i=1

λG
i ξG

i , x – y

〉

< 0,

〈

ξU +
∑

j∈J

λ
g
j ξ

g
j +

n∑

k=1

λh
kξ

h
k –

l∑

i=1

λH
i ξH

i +
l∑

i=1

λG
i ξG

i , x – y

〉

< 0,

(3.5)

where ξL ∈ ∂cFL(y), ξU ∈ ∂cFU (y), ξ g
j ∈ ∂cgj(y), j ∈ J , ξh

k ∈ ∂chk(y), k ∈ In, ξH
i ∈ ∂cHi(y), i ∈ Il ,

ξG
i ∈ ∂cGi(y), i ∈ Il . Add αL and αU to both sides of inequations (3.5)

〈ξ , x – y〉 < 0, ∀ξ ∈ 	(y),

contradicting 0 ∈ 	(y), the result is proved. �

Theorem 3.2 (Weak duality) Let x ∈ E, (y,αL,αU ,λg ,λh,λH ,λG,
, v) ∈ EW be feasible
points for the (IOPVC) and the (DW ), respectively. If �L(·,αL,λg ,λh,λH ,λG), �U (·,αU ,λg ,
λh,λH ,λG) are strictly ∂c-pseudoconvex at y ∈ E ∪ prEW , then

F(x) ≮LU �
(
y,αL,αU ,λg ,λh,λH ,λG)

.

Proof The proof is similar to Theorem 3.1. �

Theorem 3.3 (Strong duality) Let x̄ ∈ E be a locally weakly LU optimal solution of
(IOPVC) such that the (VC-ACQ) holds at x̄ and � is closed. Then there exist Lagrange mul-
tipliers ᾱL, ᾱU ∈ R+, λ̄g ∈ R|J|

+ , λ̄h ∈ Rn, λ̄H , λ̄G, 
̄, v̄ ∈ Rl such that (x̄, ᾱL, ᾱU , λ̄g , λ̄h, λ̄H , λ̄G,

̄, v̄) is a feasible point of (DW (x̄)), and

F(x̄) = �
(
x̄, ᾱL, ᾱU , λ̄g , λ̄h, λ̄H , λ̄G)

.

Moreover, if �L(·,αL,λg ,λh,λH ,λG), �U (·,αU ,λg ,λh,λH ,λG) are ∂c-pseudoconvex at y ∈
E ∪ prEW (x̄), then (x̄, ᾱL, ᾱU , λ̄g , λ̄h, λ̄H , λ̄G, 
̄, v̄) is a locally weakly LU optimal solution of
(DW (x̄)).

Proof By Theorem 2.1, it follows that there exist Lagrange multipliers ᾱL, ᾱU ∈ R+, λ̄g ∈
κ(x̄), λ̄h ∈ Rn, λ̄H , λ̄G, 
̄, v̄ ∈ Rl such that (2.3) and (2.4) are satisfied. Combined with the def-
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inition of (DW (x̄)), one has that (x̄, ᾱL, ᾱU , λ̄g , λ̄h, λ̄H , λ̄G, 
̄, v̄) is a feasible point of (DW (x̄)),

∑

j∈J

λ̄
g
j gj(x̄) +

n∑

k=1

λ̄h
khk(x̄) –

l∑

i=1

λ̄H
i Hi(x̄) +

l∑

i=1

λ̄G
i Gi(x̄) = 0

and

F(x̄) = �
(
x̄, ᾱL, ᾱU , λ̄g , λ̄h, λ̄H , λ̄G)

.

Then, from Theorem 3.1 one has, for any (y,αL,αU ,λg ,λh,λH ,λG,
, v) ∈ EW (x̄),

�
(
x̄, ᾱL, ᾱU , λ̄g , λ̄h, λ̄H , λ̄G)

= F(x̄) ≮s
LU �

(
y,αL,αU ,λg ,λh,λH ,λG)

.

Therefore, (x̄, ᾱL, ᾱU , λ̄g , λ̄h, λ̄H , λ̄G, 
̄, v̄) is a locally weakly LU optimal solution of
(DW (x̄)). �

Theorem 3.4 (Converse duality) Let x ∈ E be any feasible point of (IOPVC), and let
(ȳ,αL,αU ,λg ,λh,λH ,λG,
, v) ∈ EW be a feasible point of (DW ) such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ
g
j gj(ȳ) ≥ 0, ∀j ∈ J ,

λh
khk(ȳ) = 0, ∀k ∈ In,

–λH
i Hi(ȳ) ≥ 0, ∀i ∈ Il,

λG
i Gi(ȳ) ≥ 0, ∀i ∈ Im.

(3.6)

If one of the following conditions holds:
(i) �L(·,αL,αU ,λg ,λh,λH ,λG), �U (·,αL,αU ,λg ,λh,λH ,λG) are ∂c-pseudoconvex at

ȳ ∈ E ∪ prEW ;
(ii) FL(·), FU (·) are ∂c-pseudoconvex at ȳ ∈ E ∪ prEW (x), gj (j ∈ I+

g (x)), hk (k ∈ I+
h (x)), –hk

(k ∈ I–
h (x)), –Hi (i ∈ I+

+ (x) ∪ I+
00(x) ∪ I+

0–(x) ∪ I+
0+(x)), Hi (i ∈ I–

0+(x)), Gi (i ∈ Ĩ+
+ (x)) are

∂c-quasiconvex at ȳ ∈ E ∪ prEW ;
Then ȳ is the locally weakly LU optimal solution of (IOPVC).

Proof Suppose to the contrary that ȳ is not a locally weakly LU optimal solution of
(IOPVC), then there exists x̄ ∈ E ∩ B(ȳ; δ) such that

F(x̄) <s
LU F(ȳ). (3.7)

(i) Since x̄ ∈ E and (ȳ,αL,αU ,λg ,λh,λH ,λG,
, v) are feasible points for the (IOPVC) and
the (DW ), respectively. Therefore, combined with (3.3) and (3.6), one gets

∑

j∈J

λ
g
j gj(x̄) +

n∑

k=1

λh
khk(x̄) –

l∑

i=1

λH
i Hi(x̄) +

l∑

i=1

λG
i Gi(x̄)

≤ 0 ≤
∑

j∈J

λ
g
j gj(ȳ) +

n∑

k=1

λh
khk(ȳ) –

l∑

i=1

λH
i Hi(ȳ) +

l∑

i=1

λG
i Gi(ȳ). (3.8)
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By (3.7) and (3.8), one has

�
(
x̄,αL,αU ,λg ,λh,λH ,λG)

<s
LU �

(
ȳ,αL,αU ,λg ,λh,λH ,λG)

.

And by the ∂c-pseudoconvexity of �L(·,αL,αUλg ,λh,λH ,λG), �U (·,αL,αU ,λg ,λh,λH ,λG)
at ȳ ∈ E ∪ prEW , one has

⎧
⎨

⎩
〈ξL +

∑
j∈J λ

g
j ξ

g
j +

∑n
k=1 λh

kξ
h
k –

∑l
i=1 λH

i ξH
i +

∑l
i=1 λG

i ξG
i , x̄ – ȳ〉 < 0,

〈ξU +
∑

j∈J λ
g
j ξ

g
j +

∑n
k=1 λh

kξ
h
k –

∑l
i=1 λH

i ξH
i +

∑l
i=1 λG

i ξG
i , x̄ – ȳ〉 < 0,

(3.9)

where ξL ∈ ∂cFL(ȳ), ξU ∈ ∂cFU (ȳ), ξ g
j ∈ ∂cgj(ȳ), j ∈ J , ξh

k ∈ ∂chk(ȳ), k ∈ In, ξH
i ∈ ∂cHi(ȳ), i ∈ Il ,

ξG
i ∈ ∂cGi(ȳ), i ∈ Il . Combining (3.9) with αL and αU , we get

〈ξ , x̄ – ȳ〉 < 0, ∀ξ ∈ 	(ȳ),

which contradicts 0 ∈ 	(ȳ), hence the result holds.
(ii) Since x̄ ∈ E and (ȳ,αL,αU ,λg ,λh,λH ,λG,
, v) ∈ EW , by (3.3) and (3.6), one has

λ
g
j gj(x̄) ≤ λ

g
j gj(ȳ), ∀j ∈ J ,

λh
khk(x̄) = λh

khk(ȳ), ∀k ∈ In,

λH
i Hi(x̄) ≤ λH

i Hi(ȳ), ∀i ∈ Il,

λG
i Gi(x̄) ≤ λG

i Gi(ȳ), ∀i ∈ Il

and by the definition of the index sets above, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

gj(x̄) ≤ gj(ȳ), ∀j ∈ I+
g (x̄),

hk(x̄) = hk(ȳ), ∀k ∈ I+
h (x̄) ∪ I–

h (x̄),

–Hi(x̄) ≤ –Hi(ȳ), ∀i ∈ I+
+ (x̄) ∪ I+

00(x̄) ∪ I+
0–(x̄) ∪ I+

0+(x̄),

–Hi(x̄) ≥ –Hi(ȳ), ∀i ∈ I–
0+(x̄),

Gi(x̄) ≤ Gi(ȳ), ∀i ∈ Ĩ+
+ (x̄).

(3.10)

By the ∂c-quasiconvexity of the functions in assumption(ii) and (3.10), it follows that

〈
ξ

g
j , x̄ – ȳ

〉 ≤ 0, λ
g
j > 0, ∀ξ

g
j ∈ ∂cgj(ȳ), j ∈ I+

g (x̄),
〈
ξh

k , x̄ – ȳ
〉 ≤ 0, λh

k > 0, ∀ξh
k ∈ ∂chk(ȳ), k ∈ I+

h (x̄),
〈
ξh

k , x̄ – ȳ
〉 ≥ 0, λh

k < 0, ∀ξh
k ∈ ∂chk(ȳ), k ∈ I–

h (x̄),
〈
–ξH

i , x̄ – ȳ
〉 ≤ 0, λH

i ≥ 0, ∀ξH
i ∈ ∂cHi(ȳ), i ∈ I+

+ (x̄) ∪ I+
00(x̄) ∪ I+

0–(x̄) ∪ I+
0+(x̄),

〈
–ξH

i , x̄ – ȳ
〉 ≥ 0, λH

i ≤ 0, ∀ξH
i ∈ ∂cHi(ȳ), i ∈ I–

0+(x̄),
〈
ξG

i , x̄ – ȳ
〉 ≤ 0, λG

i ≥ 0, ∀ξG
i ∈ ∂cGi(ȳ), i ∈ Ĩ+

+ (x̄)
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that is,

〈
∑

j∈J

λ
g
j ξ

g
j +

n∑

k=1

λh
kξ

h
k –

l∑

i=1

λH
i ξH

i +
l∑

i=1

λG
i ξG

i , x̄ – ȳ

〉

≤ 0.

By the above inequality and 0 ∈ 	(ȳ), there exist ξL ∈ ∂cFL(ȳ) and ξU ∈ ∂cFU (ȳ) such that

〈
αLξL + αUξU , x̄ – ȳ

〉 ≥ 0. (3.11)

By (3.7) and the ∂c-pseudoconvexity of FL(·) and FU (·), it follows that

〈
ξL, x̄ – ȳ

〉
< 0, ∀ξL ∈ ∂cFL(ȳ),

〈
ξU , x̄ – ȳ

〉
< 0, ∀ξU ∈ ∂cFU (ȳ),

then 〈αLξL + αUξU , x̄ – ȳ〉 < 0, αL,αU ∈ R+, αL + αU = 1, contradicting (3.11), so the result
also holds. �

Theorem 3.5 (Restricted converse duality) Let x̄ ∈ E be a feasible point of (IOPVC),
and let (y,αL,αU ,λg ,λh,λH ,λG,
, v) ∈ EW be a feasible point of (DW ) such that F(x̄) =
�(y,αL,αU ,λg ,λh,λH ,λG). If �L(·,αL,αU ,λg ,λh,λH ,λG), �U (·,αL,αU ,λg ,λh,λH ,λG) are ∂c-
pseudoconvex at y ∈ E ∪prEW , then x̄ is the locally weakly LU optimal solution of (IOPVC).

Proof Suppose that x̄ is not a locally weakly LU optimal solution of (IOPVC), then there
exists x̃ ∈ E ∩ B(x̄; δ) such that F(x̃) <s

LU F(x̄). By F(x̄) = �(y,αL,αU ,λg ,λh,λH ,λG), we get
F(x̃) <s

LU �(y,αL,αU ,λg ,λh,λH ,λG), contradicting Theorem 3.1. So, x̄ is the locally weakly
LU optimal solution of (IOPVC). �

The following example shows that the conclusion of Theorem 3.5 holds.

Example 3.1 Let X = R2, n = 0, J = l = 1, consider the following question:

(IOPVC1) min F(x) =
[
FL(x), FU(x)

]
=

[
x2

1 – x2
2, x2

1
]

s.t. g1(x) = –x1 ≤ 0,

H1(x) = x1 – x2 ≥ 0,

G1(x)H1(x) = x1(x1 – x2) ≤ 0.

The feasible set of problem (IOPVC1) is given by

E1 := {x ∈ R | x1 > 0, x1 – x2 = 0} ∪ {x ∈ R | x1 = 0, x2 ≤ 0}.

For any x ∈ E1, the Wolfe type dual model to (IOPVC1) is given by

(
DW (x)

)
max �

(
y,αL,αU ,λg

1,λH
1 ,λG

1
)

s.t. αL(2y1, –2y2) + αU (2y1, 0) + λ
g
1(–1, 0) – λH

1 (1, –1) + λG
1 (1, 0) = (0, 0),
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λH
1 ≥ 0, if 1 ∈ I+(x) ∪ I0–(x) ∪ I00(x);

λH
1 ∈ R, if 1 ∈ I0+(x),

λG
1 ≥ 0, if 1 ∈ I+(x); λG

1 = 0 if 1 ∈ I0(x),

where �(y,αL,αU ,λg
1,λH

1 ,λG
1 ) = [y2

1 – y2
2 – λ

g
1y1 – λH

1 (y1 – y2) + λG
1 y1, y2

1 – λ
g
1y1 – λH

1 (y1 – y2) +
λG

1 y1]. Therefore, we can get the feasible set of problem (DW ), which is not dependent on x,

E2 :=
{(

y1, y2,αL,αU ,λg
1,λH

1 ,λG
1
)

: 2y1 – λ
g
1 – λH

1 + λG
1 = 0, –2αLy2 + λH

1 = 0,

y1, y2 ∈ X,αL,αU ∈ R+,αL + αU = 1,λg
1 ≥ 0,λG

1 = 0,λH
1 ≥ 0

}
.

Let αL = αU = 1
2 , λg

1 = λH
1 = β (β ≥ 0), one has y1 = β , y2 = β .

And by F(x) = �(y,αL,αU ,λg
1,λH

1 ,λG
1 ), we get

FL(x) = �L(y,αL,αU ,λg
1,λH

1 ,λG
1
)

= –β2 ≤ 0 ⇒ x2
1 – x2

2 ≤ 0,

FU (x) = �U(
y,αL,αU ,λg

1,λH
1 ,λG

1
)

= 0 ⇒ x2
2 = 0,

that is, x = (0, 0). By λ
g
1g1(x) ≤ 0, λG

1 G1(x) = 0, –λH
1 H1(x) ≤ 0, and the ∂c-pseudoconvexity

of �L(·,αL,αU ,λg
1,λH

1 ,λG
1 ) and �U (·,αL,αU ,λg

1,λH
1 ,λG

1 ) at y ∈ E1 ∪ prE2, we get x = (0, 0) is
the locally weakly LU optimal solution of (IOPVC1).

Theorem 3.6 (Strict converse duality) Let x̄ ∈ E be the locally weakly LU optimal solution
of (IOPVC) such that the (VC-ACQ) holds at x̄ and � is closed. Assume that the condi-
tions of Theorem 3.3 hold and (ȳ,αL,αU ,λg ,λh,λH ,λG,
, v) ∈ EW (x̄) is the locally weakly
LU optimal solution of (DW (x̄)). If �L(·,αL,αU ,λg ,λh,λH ,λG), �U (·,αL,αU ,λg ,λh,λH ,λG)
are strictly ∂c-pseudoconvex at y ∈ E ∪ prEW (x̄), then x̄ = ȳ.

Proof Suppose that x̄ �= ȳ. By Theorem 3.3, there exist Lagrange multipliers ᾱL, ᾱU ∈ R+,
λ̄g ∈ κ(x̄), λ̄h ∈ Rn, λ̄H , λ̄G, 
̄, v̄ ∈ Rl such that (x̄, ᾱL, ᾱU , λ̄g , λ̄h, λ̄H , λ̄G, 
̄, v̄) is the locally LU
optimal solution of (DW (x̄)), that is,

F(x̄) = �
(
x̄, ᾱL, ᾱU , λ̄g , λ̄h, λ̄H , λ̄G)

= �
(
ȳ,αL,αU ,λg ,λh,λH ,λG)

.

Since x̄ ∈ E, (ȳ,αL,αU ,λg ,λh,λH ,λG,
, v) ∈ EW (x̄), one has

gj(x̄) < 0, λ
g
j ≥ 0, j /∈ Ig(x̄),

gj(x̄) = 0, λ
g
j ≥ 0, j ∈ Ig(x̄),

hk(x̄) = 0, λh
k ∈ R, k ∈ In,

–Hi(x̄) < 0, λH
i ≥ 0, i ∈ I+(x̄),

–Hi(x̄) = 0, λH
i ∈ R, i ∈ I0(x̄),

Gi(x̄) > 0, λG
i = 0, i ∈ I0+(x̄),

Gi(x̄) = 0, λG
i ≥ 0, i ∈ I00(x̄) ∪ I+0(x̄),

Gi(x̄) < 0, λG
i ≥ 0, i ∈ I0–(x̄) ∪ I+–(x̄),
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and

∑

j∈J

λ
g
j gj(x̄) +

n∑

k=1

λh
khk(x̄) –

l∑

i=1

λH
i Hi(x̄) +

l∑

i=1

λG
i Gi(x̄) ≤ 0.

And then we get

�L(x̄,αL,αU ,λg ,λh,λH ,λG) ≤ �L(ȳ,αL,αU ,λg ,λh,λH ,λG)
,

�U(
x̄,αL,αU ,λg ,λh,λH ,λG) ≤ �U(

ȳ,αL,αU ,λg ,λh,λH ,λG)
.

By the strict ∂c-pseudoconvexity of �L(·,αL,αU ,λg ,λh,λH ,λG) and �U (·,αL,αU ,λg ,λh,
λH ,λG) at ȳ ∈ E ∪ prEW (x̄), we get (3.9), where ξL ∈ ∂cFL(ȳ), ξU ∈ ∂cFU (ȳ), ξ

g
j ∈ ∂cgj(ȳ),

j ∈ J , ξh
k ∈ ∂chk(ȳ), k ∈ In, ξH

i ∈ ∂cHi(ȳ), i ∈ Il , ξG
i ∈ ∂cGi(ȳ), i ∈ Il .

Combining (3.9) with αL and αU , one has

〈ξ , x̄ – ȳ〉 < 0, ∀ξ ∈ 	(ȳ),

contradicting 0 ∈ 	(ȳ). �

4 Mond–Weir type duality
In this section, we give the Mond–Weir type dual model of (IOPVC) by referring to the
new Mond–Weir type dual model(VC – MWD(x)) in [6]: for x ∈ E,

(
DMW (x)

)
LU – max F(y)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ∈ 	(y)

αL,αU ∈ R+, αL + αU = 1,

λ
g
j ≥ 0, λ

g
j gj(y) ≥ 0, ∀j ∈ J ,

λh
k ∈ R, λh

khk(y) = 0, ∀k ∈ In,

λG
i Gi(y) ≥ 0, λG

i = viHi(x), vi ≥ 0,∀i ∈ Il,

–λH
i Hi(y) ≥ 0, λH

i = 
i – viGi(x), 
i ≥ 0,∀i ∈ Il.

(4.1)

Let EMW (x) denote the feasible set of (DMW (x)), prEMW (x) := {y ∈ X : (y,αL,αU ,λg ,λh,λH ,
λG,
, v) ∈ EMW (x)} represents the projection of the set EMW (x) on X.

In order to be independent of (IOPVC), we give the another Mond–Weir type dual
model:

(DMW ) LU- max F(y)

s.t.
(
y,αL,αU ,λg ,λh,λH ,λG,
, v

) ∈ EMW :=
⋂

x∈E

EMW (x),

where EMW denotes the set of all feasible points of (DMW ) and prEMW denotes the projec-
tion of the set EMW on X.

Definition 4.1 ([4]) Let x ∈ E,
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(i) (ȳ,αL,αU ,λg ,λh,λH ,λG,
, v) ∈ EMW (x) is said to be a locally LU optimal solution of
(DMW (x)) if there exists B(ȳ; δ) such that there is no y ∈ EMW (x) ∩ B(ȳ; δ) satisfying

F(ȳ) <LU F(y).

(ii) (ȳ,αL,αU ,λg ,λh,λH ,λG,
, v) ∈ EMW (x)is said to be a locally weakly LU optimal
solution of (DMW (x)) if there exists B(ȳ; δ) such that there is no y ∈ EMW (x) ∩ B(ȳ; δ)
satisfying

F(ȳ) <s
LU F(y).

Theorem 4.1 (Weak duality) Let x ∈ E, (y,αL,αU ,λg ,λh,λH ,λG,
, v) ∈ EMW be feasible
points for the (IOPVC) and the (DMW ), respectively. If one of the following conditions holds:

(i) FL(·), FU (·) are ∂c-pseudoconvex at y ∈ E ∪ prEMW ,
∑

j∈J λ
g
j gj(·) +

∑n
k=1 λh

khk(·) –
∑l

i=1 λH
i Hi(·) +

∑l
i=1 λG

i Gi(·) is ∂c-quasiconvex at
y ∈ E ∪ prEMW ;

(ii) FL(·), FU (·) are ∂c-pseudoconvex at y ∈ E ∪ prEMW , gj (j ∈ I+
g (x)), hk (k ∈ I+

h (x)), –hk

(k ∈ I–
h (x)), –Hi (i ∈ I+

+ (x) ∪ I+
00(x) ∪ I+

0–(x) ∪ I+
0+(x)), Hi (i ∈ I–

0+(x)), Gi (i ∈ Ĩ+
+ (x)) are

∂c-quasiconvex at y ∈ E ∪ prEMW ;
Then

F(x) ≮s
LU F(y).

Proof Suppose that F(x) <s
LU F(y), there exists

[
FL(x), FU (x)

]
<s

LU
[
FL(y), FU (y)

]
. (4.2)

(i) Since x ∈ E, (y,αL,αU ,λg ,λh,λH ,λG,
, v) ∈ EMW , one has (3.3). By (4.1) and (3.3), we
get

∑

j∈J

λ
g
j gj(x) +

n∑

k=1

λh
khk(x) –

l∑

i=1

λH
i Hi(x) +

l∑

i=1

λG
i Gi(x)

≤
∑

j∈J

λ
g
i gi(y) +

n∑

k=1

λh
khk(y) –

l∑

i=1

λH
i Hi(y) +

l∑

i=1

λG
i Gi(y),

and by the ∂c-quasiconvexity of the above functions, one has

〈
∑

j∈J

λ
g
j ξ

g
j +

n∑

k=1

λh
kξ

h
k –

l∑

i=1

λH
i ξH

i +
l∑

i=1

λG
i ξG

i , x – y

〉

≤ 0,

where ξ
g
j ∈ ∂cgj(y), ξh

k ∈ ∂chk(y), ξH
i ∈ ∂cHi(y), ξG

i ∈ ∂cGi(y). Using the above inequality and
0 ∈ 	(y), there exist ξL ∈ ∂cFL(y) and ξU ∈ ∂cFU (y) such that

〈
αLξL + αUξU , x – y

〉 ≥ 0. (4.3)
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By (4.2) and the ∂c-pseudoconvexity of FL(·) and FU (·), it follows that

〈
ξL, x – y

〉
< 0, ∀ξL ∈ ∂cFL(y),

〈
ξU , x – y

〉
< 0, ∀ξU ∈ ∂cFU (y).

Then 〈αLξL + αUξU , x – y〉 < 0, αL,αU ∈ R+, αL + αU = 1, which contradicts (4.3).
(ii) By (4.1) and (3.3), one has

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

gj(x) ≤ gj(y), ∀j ∈ I+
g (x),

hk(x) = hk(y), ∀k ∈ I+
h (x) ∪ I–

h (x),

–Hi(x) ≤ –Hi(y), ∀i ∈ I+
+ (x) ∪ I+

00(x) ∪ I+
0–(x) ∪ I+

0+(x),

–Hi(x) ≥ –Hi(y), ∀i ∈ I–
0+(x),

Gi(x) ≤ Gi(y), ∀i ∈ Ĩ+
+ (x).

(4.4)

Combining (4.4) with the ∂c-quasiconvexity of the above functions, we get

〈
ξ

g
j , x – y

〉 ≤ 0, λ
g
j > 0, ∀ξ

g
j ∈ ∂cgj(y), j ∈ I+

g (x),
〈
ξh

k , x – y
〉 ≤ 0, λh

k > 0, ∀ξh
k ∈ ∂chk(y), k ∈ I+

h (x),
〈
ξh

k , x – y
〉 ≥ 0, λh

k < 0, ∀ξh
k ∈ ∂chk(y), k ∈ I–

h (x),
〈
–ξH

i , x – y
〉 ≤ 0, λH

i ≥ 0, ∀ξH
i ∈ ∂cHi(y), i ∈ I+

+ (x) ∪ I+
00(x) ∪ I+

0–(x) ∪ I+
0+(x),

〈
–ξH

i , x – y
〉 ≥ 0, λH

i ≤ 0, ∀ξH
i ∈ ∂cHi(y), i ∈ I–

0+(x),
〈
ξG

i , x – y
〉 ≤ 0, λG

i ≥ 0, ∀ξG
i ∈ ∂cGi(y), i ∈ Ĩ+

+ (x)

that is,

〈
∑

j∈J

λ
g
j ξ

g
j +

n∑

k=1

λh
kξ

h
k –

l∑

i=1

λH
i ξH

i +
l∑

i=1

λG
i ξG

i , x – y

〉

≤ 0.

The rest is proved to be the same as the latter part of (i). �

Theorem 4.2 (Weak duality) Let x ∈ E, (y,αL,αU ,λg ,λh,λH ,λG,
, v) ∈ EMW be feasible
points for the (IOPVC) and the (DMW ), respectively. If one of the following conditions holds:

(i) FL(·), FU (·) are strictly ∂c-pseudoconvex at y ∈ E ∪ prEMW ,
∑

j∈J λ
g
j gj(·) +

∑n
k=1 λh

khk(·) –
∑l

i=1 λH
i Hi(·) +

∑l
i=1 λG

i Gi(·) is ∂c-quasiconvex at
y ∈ E ∪ prEMW ;

(ii) FL(·), FU (·) are strictly ∂c-pseudoconvex at y ∈ E ∪ prEMW , gj (j ∈ I+
g (x)), hk

(k ∈ I+
h (x)), –hk (k ∈ I–

h (x)), –Hi (i ∈ I+
+ (x) ∪ I+

00(x) ∪ I+
0–(x) ∪ I+

0+(x)), Hi (i ∈ I–
0+(x)), Gi

(i ∈ Ĩ+
+ (x)) are ∂c-quasiconvex at y ∈ E ∪ prEMW ;

Then

F(x) ≮LU F(y).

Proof The proof is similar to Theorem 4.1. �
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Theorem 4.3 (Strong duality) Let x̄ ∈ E be the locally weakly LU optimal solution of
(IOPVC), and the condition (VC-ACQ) holds at x̄ and � is closed. Then there exist
ᾱL, ᾱU ∈ R+, λ̄g ∈ R|J|

+ , λ̄h ∈ Rn, λ̄H , λ̄G, 
̄, v̄ ∈ Rl such that (x̄, ᾱL, ᾱU , λ̄g , λ̄h, λ̄H , λ̄G, 
̄, v̄)
is a feasible point of (DMW (x̄)). Moreover, if the hypotheses of Theorem 4.1 hold, then
(x̄, ᾱL, ᾱU , λ̄g , λ̄h, λ̄H , λ̄G, 
̄, v̄) is the locally weakly LU optimal solution of (DMW (x̄)).

Proof Since x̄ is the locally weakly LU optimal solution of (IOPVC) and (VC-ACQ) holds
at x̄, so by Theorem 2.1, there exist ᾱL, ᾱU ∈ R+, λ̄g ∈ κ(x̄), λ̄h ∈ Rn, λ̄H , λ̄G, 
̄, v̄ ∈ Rl such
that (2.3) and (2.4) hold. From this together with the definition of (DMW (x̄)), one has
(x̄, ᾱL, ᾱU , λ̄g , λ̄h, λ̄H , λ̄G, 
̄, v̄) is a feasible point of (DMW (x̄)). By Theorem 4.1, we know

F(x̄) ≮s
LU F(y),∀(

y,αL,αU ,λg ,λh,λH ,λG,
, v
) ∈ EMW (x̄),

so (x̄, ᾱL, ᾱU , λ̄g , λ̄h, λ̄H , λ̄G, 
̄, v̄) is the locally weakly LU optimal solution of (DMW (x̄)). �

Theorem 4.4 (Converse duality) Let x ∈ E be any feasible point of (IOPVC) and (ȳ,αL,αU ,
λg ,λh,λH ,λG,
, v) ∈ EMW be a feasible point of (DMW ). If one of the following conditions
holds:

(i) FL(·), FU (·) are ∂c-pseudoconvex at ȳ ∈ E ∪ prEMW ,
∑

j∈J λ
g
j gj(·) +

∑n
k=1 λh

khk(·) –
∑l

i=1 λH
i Hi(·) +

∑l
i=1 λG

i Gi(·) is ∂c-quasiconvex at
ȳ ∈ E ∪ prEMW ;

(ii) FL(·), FU (·) are ∂c-pseudoconvex at ȳ ∈ E ∪ prEMW , gj (j ∈ I+
g (x)), hk (k ∈ I+

h (x)), –hk

(k ∈ I–
h (x)), –Hi (i ∈ I+

+ (x) ∪ I+
00(x) ∪ I+

0–(x) ∪ I+
0+(x)), Hi (i ∈ I–

0+(x)), Gi (Ĩ+
+ (x)) are

∂c-quasiconvex at ȳ ∈ E ∪ prEMW ;
Then ȳ is the locally weakly LU optimal solution of (IOPVC).

Proof Suppose to the contrary that ȳ is not the locally weakly LU optimal solution of
(IOPVC), then one has (3.7).

(i) Since x̄ ∈ E and (ȳ,αL,αU ,λg ,λh,λH ,λG,
, v) are feasible points for the (IOPVC)
and the (DMW ), by (4.1) and (3.3), we know that (3.8) holds. By the ∂c-quasiconvexity of
∑

j∈J λ
g
j gj(·) +

∑n
k=1 λh

khk(·) –
∑l

i=1 λH
i Hi(·) +

∑l
i=1 λG

i Gi(·) at ȳ ∈ E ∪ prEMW , we get

〈
∑

j∈J

λ
g
j ξ

g
j +

n∑

k=1

λh
kξ

h
k –

l∑

i=1

λH
i ξH

i +
l∑

i=1

λG
i ξG

i , x̄ – ȳ

〉

≤ 0,

where ξ
g
j ∈ ∂cgj(ȳ), ξh

k ∈ ∂chk(ȳ), ξH
i ∈ ∂cHi(ȳ), ξG

i ∈ ∂cGi(ȳ).
Combining this with 0 ∈ 	(ȳ), one has (3.11). And by (3.7) and the ∂c-pseudoconvexity

of FL(·) and FU (·), one has

〈
ξL, x̄ – ȳ

〉
< 0, ∀ξL ∈ ∂cFL(ȳ),

〈
ξU , x̄ – ȳ

〉
< 0, ∀ξU ∈ ∂cFU (ȳ)

and 〈αLξL + αUξU , x̄ – ȳ〉 < 0, αL,αU ∈ R+, αL + αU = 1. This is a contradiction to (3.11),
and hence the result is proved.

(ii) The proof of (ii) is similar to the proof of Theorem 3.4(ii), so it is omitted. �
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Theorem 4.5 (Restricted converse duality) Let x̄ ∈ E be a feasible point of (IOPVC), and
let (y,αL,αU ,λg ,λh,λH ,λG,
, v) ∈ EMW be a feasible point of (DMW ) such that F(x̄) = F(y).
If the hypotheses of Theorem 4.1 hold, then x̄ is the locally weakly LU optimal solution of
(IOPVC).

Proof Suppose that x̄ is not a locally weakly LU optimal solution of (IOPVC). Then there
exist x̃ ∈ E ∩ B(x̄; δ) such that F(x̃) <s

LU F(x̄). By F(x̄) = F(y), one has F(x̃) <s
LU F(y), contra-

dicting Theorem 4.1. �

Let us use the following example to show that the conclusion of Theorem 4.5 holds.

Example 4.1 Let X = R2, n = 0, J = l = 1, we give the following problem:

(IOPVC2) min F(x) =
[
FL(x), FU(x)

]
=

[
x2

1 – x2
2, x2

1
]

s.t. g1(x) = –x1 ≤ 0,

H1(x) = x1 – x2 ≥ 0,

G1(x)H1(x) = x1(x1 – x2) ≤ 0.

It is easy to know that

E3 = {x ∈ R | x1 > 0, x1 – x2 = 0} ∪ {x ∈ R | x1 = 0, x2 ≤ 0}

is the feasible set of (IOPVC2). For any x ∈ E3, the Mond–Weir type dual model to
(IOPVC2) is given by

(
DMW (x)

)
max F(y) =

[
FL(y), FU (y)

]
=

[
y2

1 – y2
2, y2

1
]

s.t. αL(2y1, –2y2) + αU (2y1, 0) + λ
g
1(–1, 0)

– λH
1 (1, –1) + λG

1 (1, 0) = (0, 0),

λ
g
1 ≥ 0, λ

g
1g1(y) ≥ 0,

λH
1 ≥ 0, if 1 ∈ I+(x) ∪ I0–(x) ∪ I00(x),

λH
1 ∈ R, if 1 ∈ I0+(x), –λH

1 H1(y) ≥ 0,

λG
1 ≥ 0, if 1 ∈ I+(x), λG

1 = 0, if 1 ∈ I0(x), λG
1 G1(y) ≥ 0.

Therefore, we can get the feasible set of problem (DMW ), which is not dependent on x,

E4 :=
{(

y1, y2,αL,αU ,λg
1,λH

1 ,λG
1
)

:

2y1 – λ
g
1 – λH

1 + λG
1 = 0, –2αLy2 + λH

1 = 0,

y1, y2 ∈ X,αL,αU ∈ R+,αL + αU = 1, –λ
g
1y1 ≥ 0,

λG
1 y1 ≥ 0, –λH

1 (y1 – y2) ≥ 0,λH
1 ≥ 0,λG

1 = 0
}

.

Let αL = αU = 1
2 , λg

1 = λH
1 = β (β ≥ 0), one has y1 = β , y2 = β .
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By F(x) = F(y), one has

FL(x) = FL(y) = 0 ⇒ x2
1 – x2

2 = 0,

FU (x) = FU (y) = β2 ≥ 0 ⇒ x2
1 ≥ 0.

Then we get λ
g
1g1(x) ≤ 0, λG

1 G1(x) = 0, –λH
1 H1(x) ≤ 0. Finally, by the ∂c-pseudoconvexity of

FL(·) and FU (·) at y ∈ E3 ∪ prE4 and the ∂c-quasiconvexity of λ
g
1g1(·) – λH

1 H1(·) + λG
1 G1(·),

we get x = (0, 0) is the locally weakly LU optimal solution of (IOPVC2).

Theorem 4.6 (Strict converse duality) Let x̄ ∈ E be a locally weakly LU optimal solution
of (IOPVC) such that the (VC-ACQ) holds at x̄ and � is closed. Assume that the conditions
of Theorem 4.3 hold and (ȳ,αL,αU ,λg ,λh,λH ,λG,
, v) ∈ EMW (x̄) is the locally weakly LU
optimal solution of (DMW (x̄)). If one of the following conditions holds:

(i) FL(·), FU (·) are strictly ∂c-pseudoconvex at ȳ ∈ E ∪ prEMW (x̄),
∑

j∈J λ
g
j gj(·) +

∑n
k=1 λh

khk(·) –
∑l

i=1 λH
i Hi(·) +

∑l
i=1 λG

i Gi(·) is ∂c-quasiconvex at
ȳ ∈ E ∪ prEMW (x̄);

(ii) FL(·), FU (·) are strictly ∂c-pseudoconvex at ȳ ∈ E ∪ prEMW (x̄), gj (j ∈ I+
g (x̄)), hk

(k ∈ I+
h (x̄)), –hk (k ∈ I–

h (x̄)), –Hi (i ∈ I+
+ (x) ∪ I+

00(x̄) ∪ I+
0–(x̄) ∪ I+

0+(x̄)), Hi (i ∈ I–
0+(x̄)), Gi

(Ĩ+
+ (x̄)) are ∂c-quasiconvex at ȳ ∈ E ∪ prEMW (x̄); then x̄ = ȳ.

Proof Suppose that x̄ �= ȳ. By Theorem 4.3, there exist Lagrange multipliers ᾱL, ᾱU ∈ R+,
λ̄g ∈ κ(x̄), λ̄h ∈ Rn, λ̄H , λ̄G, 
̄, v̄ ∈ Rl such that (x̄, ᾱL, ᾱU , λ̄g , λ̄h, λ̄H , λ̄G, 
̄, v̄) is the locally
weakly LU optimal solution of (DMW (x̄)), it follows that

F(x̄) = F(ȳ). (4.5)

The remaining parts are similar to (i) and (ii) of Theorem 4.4, so they are omitted. �

5 Concluding remarks
In this paper, we study the duality theorems of nondifferentiable semi-infinite interval-
valued optimization problem with vanishing constraints. The weak duality, strong duality,
converse duality, restricted converse duality, and strict converse duality theorems between
(IOPVC) and its corresponding Wolfe and Mond–Weir type dual models are given under
the conditions of ∂c-pseudoconvex, strictly ∂c-pseudoconvex, and ∂c-quasiconvex.
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