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Abstract
In this article, we introduce a new concept of quantum integrals which is called
κ2Tq-integral. Then we prove several properties of this concept of quantum integrals.
Moreover, we present several Hermite–Hadamard type inequalities for κ2Tq-integral
by utilizing differentiable convex functions. The results presented in this article are
unification and generalization of the comparable results in the literature.
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1 Introduction
In mathematics, the quantum calculus is equivalent to the usual infinitesimal calculus
without the concept of limits or the investigation of calculus without limits (quantum is
from the Latin word “quantus” and literally it means how much, in Swedish “Kvant”). It
has two major branches, q-calculus and h-calculus. And both of them were worked out
by P. Cheung and V. Kac [13] in the early twentieth century. In the same era F.H. Jack-
son started working on quantum calculus or q-calculus, but Euler and Jacobi had already
figured out this type of calculus. A number of studies have recently been widely used in
the field of q-analysis, beginning with Euler, due to the vast necessity for mathematics
that models of quantum computing q-calculus exist in the framework between physics
and mathematics. Tariboon and Ntouyas [19] proposed the quantum calculus concepts
on finite intervals and obtained several q-analogues of classical mathematical objects.
This inspired other researchers and, as a consequence, numerous novel results concern-
ing quantum analogues of classical mathematical results have already been launched in
the literature. Noor et al. [14] obtained new q-analogues of inequality utilizing first or-
der q-differentiable convex function. In [3], Alp et al. acquired some bonds for left-hand
side of q-Hermite–Hadamard inequalities and quantum calculations by using convex and
quasi-convex functions for midpoint form inequalities. For more details, see [13–18, 20]
and the references cited therein.

In various mathematical fields, it has many applications, like number theory, combi-
natorics, orthogonal polynomials, simple hyper-geometric functions, and other sciences,
quantum theory, physics and relativity theory; many of the fundamental aspects of quan-
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tum calculus. It has been shown that quantum calculus is a subfield of the more gen-
eral mathematical field of time scales calculus. New developments have recently been
made in the research and methodology of dynamic derivatives on time scales. The re-
search offers a consolidation and application of traditional differential and difference
equations. Moreover, it is a unification of the discrete theory with the continuous the-
ory from a theoretical perspective. Time scales provide a unified framework for study-
ing dynamic equations on both discrete and continuous domains. In studying quantum
calculus, we are concerned with a specific time scale, called the q-time scale, defined as
follows: T := qN0 := {qt : t ∈ N0}, see [1–10] and the references cited therein. The Hermite–
Hadamard inequality was introduced by Hermite and Hadamard, see [11]. It is one of the
most recognized inequalities in the theory of convex functional analysis, which is stated
as follows:

Let F : [κ1,κ2] →R be a convex mapping and κ1 < κ2. Then

F
(

κ1 + κ2

2

)
≤ 1

κ2 – κ1

∫ κ2

κ1

F (κ) dκ ≤ F (κ1) + F (κ2)
2

. (1.1)

If F is concave, both inequalities hold in the reverse direction.
The important purpose of this article is to derive some new quantum integral inequali-

ties of the convex function for a midpoint formula. Moreover, when q → 1, several exam-
ples of Hermite–Hadamard form inequalities are derived as special cases.

2 Preliminaries of q-calculus and some inequalities
Several fundamental inequalities are well known in classical analysis, like Hölder in-
equality, Ostrowski inequality, Cauchy–Schwarz inequality, Grüss–Chebyshev inequality,
Grüss inequality. Using classical convexity, other basic inequalities have been proven and
applied to q-calculus. For more details, please see [2, 3, 7, 9, 14, 16, 18, 21].

In this section, we discuss some required definitions of quantum calculus and important
quantum integral inequalities for Hermite–Hadamard on left and right sides bonds.

[n]q =
1 – qn

1 – q
= 1 + q + q2 + · · · + qn–1, q ∈ (0, 1).

Jackson derived the q-Jackson integral in [12] from 0 to κ2 for 0 < q < 1 as follows:

∫ κ2

0
F (κ) dqκ = (1 – q)κ2

∞∑
n=0

qnF
(
κ2qn) (2.1)

provided the sum converges absolutely.
The q-Jackson integral in a generic interval [κ1,κ2] was given by in [12] and defined as

follows:
∫ κ2

κ1

F (κ) dqκ =
∫ κ2

0
F (κ) dqκ –

∫ κ1

0
F (κ) dqκ.

Definition 1 ([19]) We suppose that a function F : [κ1,κ2] → R is continuous. Then the
qκ1 -derivative of F at κ ∈ [κ1,κ2] is defined as follows:

κ1 DqF (κ) =
F (κ) – F (qκ + (1 – q)κ1)

(1 – q)(κ – κ1)
, κ �= κ1. (2.2)
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Since F is a continuous function from [κ1,κ2] to R, so κ1 DqF (κ1) = limκ→κ1 κ1 DqF (x). The
function F is said to be q- differentiable on [κ1,κ2] if κ1 DqF (t) exists for all κ ∈ [κ1,κ2]. If
κ1 = 0 in (2.2), then 0DqF (κ) = DqF (κ), where DqF (κ) is a familiar q-derivative of F at
κ ∈ [κ1,κ2] defined by the expression (see [13])

DqF (κ) =
F (κ) – F (qκ)

(1 – q)κ
, κ �= 0.

Definition 2 ([5]) We suppose that a function F : [κ1,κ2] → R is continuous, then the
qκ2 -derivative of F at κ ∈ [κ1,κ2] is defined as follows:

κ2 DqF (κ) =
F (qκ + (1 – q)κ2) – F (κ)

(1 – q)(κ2 – κ)
, κ �= κ2.

Definition 3 ([19]) We suppose that a function F : [κ1,κ2] → R is continuous, then the
qκ1 -definite integral on [κ1,κ2] is defined as follows:

∫ κ2

κ1

F (κ) κ1 dqκ = (1 – q)(κ2 – κ1)
∞∑

n=0

qnF
(
qnκ2 +

(
1 – qn)κ1

)

= (κ2 – κ1)
∫ 1

0
F

(
(1 – t)κ1 + tκ2

)
dqt.

In [3], Alp et al. established the qκ1 -Hermite–Hadamard inequalities for convexity,
which is defined as follows.

Theorem 1 Let F : [κ1,κ2] → R be a convex differentiable function on [κ1,κ2] and
0 < q < 1. Then q-Hermite–Hadamard inequalities are as follows:

F
(

qκ1 + κ2

1 + q

)
≤ 1

κ2 – κ1

∫ κ2

κ1

F (κ) κ1 dqκ ≤ qF (κ1) + F (κ2)
1 + q

. (2.3)

The authors of [15] and [3] have set certain boundaries for the left and right sides of
inequality (2.3).

On the other hand, the following new description and related Hermite–Hadamard form
inequalities were given by Bermudo et al.

Definition 4 ([5]) Let F : [κ1,κ2] → R be a continuous function. Then the qκ2 -definite
integral on [κ1,κ2] is defined as

∫ κ2

κ1

F (κ) κ2 dqκ = (1 – q)(κ2 – κ1)
∞∑

n=0

qnF
(
qnκ1 +

(
1 – qn)κ2

)

= (κ2 – κ1)
∫ 1

0
F

(
tκ1 + (1 – t)κ2

)
dqt.

Theorem 2 ([5]) Let F : [κ1,κ2] → R be a convex function on [κ1,κ2] and 0 < q < 1. Then
q-Hermite–Hadamard inequalities are as follows:

F
(

κ1 + qκ2

1 + q

)
≤ 1

κ2 – κ1

∫ κ2

κ1

F (κ) κ2 dqκ ≤ F (κ1) + qF (κ2)
1 + q

. (2.4)
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From Theorem 1 and Theorem 2, one can have the following inequalities.

Corollary 1 ([5]) For any convex function F : [κ1,κ2] →R and 0 < q < 1, we have

F
(

qκ1 + κ2

1 + q

)
+ F

(
κ1 + qκ2

1 + q

)
≤ 1

κ2 – κ1

{∫ κ2

κ1

F (κ) κ1 dqκ +
∫ κ2

κ1

F (κ) κ2 dqκ

}
(2.5)

≤F (κ1) + F (κ2)

and

F
(

κ1 + κ2

2

)
≤ 1

2(κ2 – κ1)

{∫ κ2

κ1

F (κ) κ1 dqκ +
∫ κ2

κ1

F (κ) κ2 dqκ

}
(2.6)

≤ F (κ1) + F (κ2)
2

.

Alp and Sarikaya, by using the area of trapezoids, introduced the following generalized
quantum integral which we will call κ1 Tq-integral.

Definition 5 ([1]) Let F : [κ1,κ2] →R be a continuous function. For κ ∈ [κ1,κ2],

∫ κ2

κ1

F (ξ ) κ1 dT
q ξ =

(1 – q)(κ2 – κ1)
2q

[
(1 + q)

∞∑
n=0

qnF
(
qnκ2 +

(
1 – qn)κ1

)
–F (κ2)

]
, (2.7)

where 0 < q < 1.

Theorem 3 (κ1 Tq-Hermite–Hadamard, [1]) Let F : [κ1,κ2] → R be a convex continuous
function on [κ1,κ2] and 0 < q < 1. Then we have

F
(

κ1 + κ2

2

)
≤ 1

κ2 – κ1

∫ κ2

κ1

F (κ) κ1 dT
q κ ≤ F (κ1) + F (κ2)

2
. (2.8)

3 New generalized quantum integrals
In this section, we introduce a new generalized quantum integral which is called κ2 Tq-
integral. We also prove several properties of this integral.

As can be seen from Fig. 1, the area of nth-trapezoid is

Bn = (1 – q)qn(κ2 – κ1)
F (qn+1κ1 + (1 – qn+1)κ2) + F (qnκ1 + (1 – qn)κ2)

2
.

By summing all the area of Bn, n = 1, 2, . . . , we have

∞∑
n=0

Bn =
(1 – q)(κ2 – κ1)

2

[ ∞∑
n=0

qnF
(
qn+1κ1 +

(
1 – qn+1)κ2

)

+
∞∑

n=0

qnF
(
qnκ1 +

(
1 – qn)κ2

)]
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Figure 1 Areas of trapezoids

=
(1 – q)(κ2 – κ1)

2

[
1
q

∞∑
n=0

qn+1F
(
qn+1κ1 +

(
1 – qn+1)κ2

)

+
∞∑

n=0

qnF
(
qnκ1 +

(
1 – qn)κ2

)]

=
(1 – q)(κ2 – κ1)

2

[
1
q

∞∑
n=1

qnF
(
qnκ1 +

(
1 – qn)κ2

)

+
∞∑

n=0

qnF
(
qnκ1 +

(
1 – qn)κ2

)]

=
(1 – q)(κ2 – κ1)

2

[
1
q

{
F (κ1) – F (κ1) +

∞∑
n=1

qnF
(
qnκ1 +

(
1 – qn)κ2

)}

+
∞∑

n=0

qnF
(
qnκ1 +

(
1 – qn)κ2

)]

=
(1 – q)(κ2 – κ1)

2

[
1
q

{
–F (κ1) +

∞∑
n=0

qnF
(
qnκ1 +

(
1 – qn)κ2

)}

+
∞∑

n=0

qnF
(
qnκ1 +

(
1 – qn)κ2

)]

=
(1 – q)(κ2 – κ1)

2q

[
(1 + q)

∞∑
n=0

qnF
(
qnκ1 +

(
1 – qn)κ2

)
– F (κ1)

]

=
∫ κ2

κ1

F (ξ ) κ2 dT
q ξ .

Now we can give the following definition.
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Definition 6 Let F : [κ1,κ2] →R be a continuous function. For κ ∈ [κ1,κ2],

∫ κ2

κ1

F (ξ ) κ2 dT
q ξ =

(1 – q)(κ2 – κ1)
2q

[
(1 + q)

∞∑
n=0

qnF
(
qnκ1 +

(
1 – qn)κ2

)
–F (κ1)

]
, (3.1)

where 0 < q < 1. This integral is called κ2 Tq-integral.

Theorem 4 Let F : [κ1,κ2] →R be a continuous function. Then we have

κ2 Dq

∫ κ2

κ

F (ξ ) κ2 dT
q ξ = –

F (κ) + F (qκ + (1 – q)κ2)
2

(3.2)

for κ ∈ [κ1,κ2].

Proof From the definition of κ2 Tq-integral, we have

∫ κ2

κ

F (ξ ) κ2 dT
q ξ =

(1 – q)(κ2 – κ)
2q

[
(1 + q)

∞∑
n=0

qnF
(
qn
κ +

(
1 – qn)κ2

)
– F (κ)

]
.

From Definition 2, we obtain

κ2 Dq

∫ κ2

κ

F (ξ ) κ2 dT
q ξ

= κ2 Dq

{
(1 – q)(κ2 – κ)

2q

[
(1 + q)

∞∑
n=0

qnF
(
qn
κ +

(
1 – qn)κ2

)
– F (κ)

]}

=
1

(1 – q)(κ2 – κ)

{
(1 – q)(κ2 – κ)q

2q

×
[

(1 + q)
∞∑

n=0

qnF
(
qn+1

κ +
(
1 – qn+1)κ2

)
– F

(
qκ + (1 – q)κ2

)]

–
(1 – q)(κ2 – κ)

2q

[
(1 + q)

∞∑
n=0

qnF
(
qn
κ +

(
1 – qn)κ2

)
– F (κ)

]}

=
1

2q

[
(1 + q)

(
q

∞∑
n=0

qnF
(
qn+1

κ +
(
1 – qn+1)κ2

)
–

∞∑
n=0

qnF
(
qn
κ +

(
1 – qn)κ2

))

×F (κ) – qF
(
qκ + (1 – q)κ2

)]

= –
F (κ) + F (qκ + (1 – q)κ2)

2
.

The proof is completed. �

Theorem 5 Let F : [κ1,κ2] →R be a function and 0 < q < 1. Then we have

∫ 1

0
F

(
ξκ2 + (1 – ξ )κ1

) 1dT
q ξ =

1
κ2 – κ1

∫ κ2

κ1

F (t) κ2 dT
q t. (3.3)



Kara et al. Journal of Inequalities and Applications        (2021) 2021:180 Page 7 of 15

Proof From the definition of κ2 Tq-integral, we have

∫ 1

0
F

(
ξκ2 + (1 – ξ )κ1

) 1dT
q ξ

=
(1 – q)(1 – 0)

2q

[
(1 + q)

∞∑
n=0

qnF
([

qn0 +
(
1 – qn)1

]
κ2 +

(
1 –

[
qn0 +

(
1 – qn)1

])
κ1

)

– F
(
0b + (1 – 0)κ1

)]

=
(1 – q)

2q

[
(1 + q)

∞∑
n=0

qnF
(
qnκ1 +

(
1 – qn)κ2

)
– F (κ1)

]

=
1

κ2 – κ1

∫ κ2

κ1

F (t) κ2 dT
q t.

The proof is completed. �

Theorem 6 Let F : [κ1,κ2] →R be a continuous function. Then we have

∫ κ2

κ

κ2 DqF (ξ ) κ2 dT
q ξ =

(1 + q)F (κ2) – qF (κ) – F (qκ + (1 – q)κ2)
2q

(3.4)

for κ ∈ (κ1,κ2).

Proof From Definition 2, we have

κ2 DqF (ξ ) =
F (qξ + (1 – q)κ2) – F (ξ )

(1 – q)(κ2 – ξ )
.

By using Definition 6, we have

∫ κ2

κ

κ2 DqF (ξ ) κ2 dT
q ξ

=
∫ κ2

κ

F (qξ + (1 – q)κ2) – F (ξ )
(1 – q)(κ2 – ξ )

κ2 dT
q ξ

=
(1 – q)(κ2 – κ)

2q

[
(1 + q)

∞∑
n=0

qnF (qn+1
κ + (1 – qn+1)κ2)

(1 – q)qn(κ2 – κ)
–
F (qκ + (1 – q)κ2)

(1 – q)(κ2 – κ)

]

–
(1 – q)(κ2 – κ)

2q

[
(1 + q)

∞∑
n=0

qnF (qn
κ + (1 – qn)κ2)

(1 – q)qn(κ2 – κ)
–

F (κ)
(1 – q)(κ2 – κ)

]

=
1 + q

2q

∞∑
n=0

[
F

(
qn+1

κ +
(
1 – qn+1)κ2

)
– F

(
qn
κ +

(
1 – qn)κ2

)]

+
1

2q
[
F

(
qκ + (1 – q)κ2

)
+ F (κ)

]

=
(1 + q)F (κ2) – qF (κ) – F (qκ + (1 – q)κ2)

2q
.

The proof is completed. �
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Theorem 7 Assume that F , g : [κ1,κ2] →R are continuous functions. Then we have

∫ κ2

κ

[
F (ξ ) + g(ξ )

]
κ2 dT

q ξ =
∫ κ2

κ

F (ξ ) κ2 dT
q ξ +

∫ κ2

κ

g(ξ ) κ2 dT
q ξ (3.5)

for κ ∈ [κ1,κ2].

Proof Using the definition of κ2 Tq-integral, we can write that

∫ κ2

κ

[
F (ξ ) + g(ξ )

]
κ2 dT

q ξ

=
(1 – q)(κ2 – κ)

2q

{
(1 + q)

∞∑
n=0

qn[F(
qn
κ +

(
1 – qn)κ2

)
+ g

(
qn
κ +

(
1 – qn)κ2

)]

– F (κ) – g(κ)

}

=
(1 – q)(κ2 – κ)

2q

[
(1 + q)

∞∑
n=0

qnF
(
qn
κ +

(
1 – qn)κ2

)
– F (κ)

]

+
(1 – q)(κ2 – κ)

2q

[
(1 + q)

∞∑
n=0

qng
(
qn
κ +

(
1 – qn)κ2

)
– g(κ)

]

=
∫ κ2

κ

F (ξ ) κ2 dT
q ξ +

∫ κ2

κ

g(ξ ) κ2 dT
q ξ ,

which finishes proof. �

Theorem 8 Assume that F : [κ1,κ2] → R is a continuous function and α ∈R. Then

∫ κ2

κ

(αF )(ξ ) κ2 dT
q ξ = α

∫ κ2

κ

F (ξ ) κ2 dT
q ξ (3.6)

for κ ∈ [κ1,κ2].

Proof By the definition of κ2 Tq-integral, we have

∫ κ2

κ

(αF )(ξ ) κ2 dT
q ξ

=
(1 – q)(κ2 – κ)

2q

[
(1 + q)

∞∑
n=0

qn(αF )
(
qn
κ +

(
1 – qn)κ2

)
– (αF )(κ)

]

= α
(1 – q)(κ2 – κ)

2q

[
(1 + q)

∞∑
n=0

qnF
(
qn
κ +

(
1 – qn)κ2

)
– F (κ)

]

= α

∫ κ2

κ

F (ξ ) κ2 dT
q ξ .

�
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Theorem 9 Assume that F , g : [κ1,κ2] →R are continuous functions. Then we have

∫ κ2

κ

F (ξ ) κ2 Dqg(ξ ) κ2 dT
q ξ (3.7)

=
qF (ξ )g(ξ ) + F (qξ + (1 – q)κ2)g(qξ + (1 – q)κ2)

2q

∣∣∣∣
κ2

κ

–
∫ κ2

κ

g
(
qξ + (1 – q)κ2

)
κ2 DqF (ξ ) κ2 dT

q ξ

for κ ∈ [κ1,κ2].

Proof Using Definition 2, we get

κ2 Dq
(
F (ξ )g(ξ )

)
(3.8)

=
F (qξ + (1 – q)κ2)g(qξ + (1 – q)κ2) – F (ξ )g(ξ )

(1 – q)(κ2 – ξ )

= F (ξ )
g(qξ + (1 – q)κ2) – g(ξ )

(1 – q)(κ2 – ξ )
+ g

(
qξ + (1 – q)κ2

)F (qξ + (1 – q)κ2) – F (ξ )
(1 – q)(κ2 – ξ )

= F (ξ ) κ2 Dqg(ξ ) + g
(
qξ + (1 – q)κ2

)
κ2 DqF (ξ ).

By taking the κ2 Tq-integral of equality (3.8), we get

∫ κ2

κ

κ2 Dq
(
F (ξ )g(ξ )

)
κ2 dT

q ξ (3.9)

=
∫ κ2

κ

F (ξ ) κ2 Dqg(ξ ) κ2 dT
q ξ +

∫ κ2

κ

g
(
qξ + (1 – q)κ2

)
κ2 DqF (ξ ) κ2 dT

q ξ .

By applying Theorem 6, we have

∫ κ2

κ

κ2 Dq
(
F (ξ )g(ξ )

)
κ2 dT

q ξ (3.10)

=
(1 + q)F (κ2)g(κ2) – qF (ξ )g(ξ ) – F (qξ + (1 – q)κ2)g(qξ + (1 – q)κ2)

2q

=
qF (ξ )g(ξ ) + F (qξ + (1 – q)κ2)g(qξ + (1 – q)κ2)

2q

∣∣∣∣
κ2

κ

.

From equalities (3.9) and (3.10), we obtain

∫ κ2

κ

F (ξ ) κ2 Dqg(ξ ) κ2 dT
q ξ =

qF (ξ )g(ξ ) + F (qξ + (1 – q)κ2)g(qξ + (1 – q)κ2)
2q

∣∣∣∣
κ2

κ

–
∫ κ2

κ

g
(
qξ + (1 – q)κ2

)
κ2 DqF (ξ ) κ2 dT

q ξ .

This completes the proof. �
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Theorem 10 Assume that F , g : [κ1,κ2] → R are continuous functions and F (ξ ) ≤ g(ξ )
for all ξ ∈ [κ,κ2]. Then we have

∫ κ2

κ

F (ξ ) κ2 dT
q ξ ≤

∫ κ2

κ

g(ξ ) κ2 dT
q ξ

for κ ∈ [κ1,κ2].

Proof By the definition of κ2 Tq-integral, we have

∫ κ2

κ

F (ξ ) κ2 dT
q ξ =

(1 – q)(κ2 – κ)
2q

[
(1 + q)

∞∑
n=0

qnF
(
qn
κ +

(
1 – qn)κ2

)
– F (κ)

]

=
(1 – q)(κ2 – κ)

2q

[
(1 + q)

∞∑
n=1

qnF
(
qn
κ +

(
1 – qn)κ2

)
+ qF (κ)

]

≤ (1 – q)(κ2 – κ)
2q

[
(1 + q)

∞∑
n=1

qng
(
qn
κ +

(
1 – qn)κ2

)
+ qg(κ)

]

=
(1 – q)(κ2 – κ)

2q

[
(1 + q)

∞∑
n=0

qng
(
qn
κ +

(
1 – qn)κ2

)
– g(κ)

]

=
∫ κ2

κ

g(ξ ) κ2 dT
q ξ . �

Proposition 1 For α ∈R\{–1}, we have the following equality:

∫ b

x
(b – s)α bdT

q s =
1 + qα

2[α + 1]q
(b – x)α+1. (3.11)

Proof Using the definition of κ2 Tq-integral, we have

∫ κ2

κ

(κ2 – ξ )α κ2 dT
q ξ

=
(1 – q)(κ2 – κ)

2q

[
(1 + q)

∞∑
n=0

qn(κ2 –
(
qn
κ +

(
1 – qn)κ2

))α – (κ2 – κ)α
]

=
(1 – q)(κ – κ1)

2q

[
(1 + q)

∞∑
n=0

qn(qn(κ2 – κ)
)α – (κ2 – κ)α

]

=
(1 – q)(κ2 – κ)

2q

[
(1 + q)(κ2 – κ)α

∞∑
n=0

(
qα+1)n – (κ2 – κ)α

]

=
(1 – q)(κ2 – κ)α+1

2q

[
(1 + q)

1 – qα+1 – 1
]

=
1 – q

1 – qα+1
1 + qα

2
(κ2 – κ)α+1

=
1

[α + 1]q

1 + qα

2
(κ2 – κ)α+1.

The proof is completed. �
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4 Hermite–Hadamard inequalities for κ2 Tq-integral
In this section, we present some Hermite–Hadamard type inequalities for κ2 Tq-integral
by utilizing convex functions.

Theorem 11 LetF : [κ1,κ2] →R be a convex continuous function on [κ1,κ2] and 0 < q < 1.
Then we have

F
(

κ1 + κ2

2

)
≤ 1

κ2 – κ1

∫ κ2

κ1

F (κ) κ2 dT
q κ ≤ F (κ1) + F (κ2)

2
. (4.1)

Proof Since F is a differentiable function on [κ1,κ2], there is a tangent line for the function
F at the point κ1+κ2

2 ∈ (κ1,κ2). This tangent line can be expressed as a function �1(κ) =
F ( κ1+κ2

2 ) + F ′( κ1+κ2
2 )(κ – κ1+κ2

2 ).
Since F is a convex function on [κ1,κ2], then we have the following inequality:

�1(κ) = F
(

κ1 + κ2

2

)
+ F ′

(
κ1 + κ2

2

)(
κ –

κ1 + κ2

2

)
≤F (κ) (4.2)

for all κ ∈ [κ1,κ2] (see Fig. 2). From Theorem 10, we have

∫ κ2

κ1

�1(κ) κ2 dT
q κ ≤

∫ κ2

κ1

F (κ) κ2 dT
q κ.

By Definition 6, we have

∫ κ2

κ1

�1(κ) κ2 dT
q κ

=
∫ κ2

κ1

[
F

(
κ1 + κ2

2

)
+ F ′

(
κ1 + κ2

2

)(
κ –

κ1 + κ2

2

)]
κ2 dT

q κ

= (κ2 – κ1)F
(

κ1 + κ2

2

)
– F ′

(
κ1 + κ2

2

)∫ κ2

κ1

(
κ2 – κ +

κ1 – κ2

2

)
κ2 dT

q κ

Figure 2 Graphs of a convex function F and some tangent lines
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= (κ2 – κ1)F
(

κ1 + κ2

2

)
– F ′

(
κ1 + κ2

2

)

×
[(

1 – q
1 – q2

)(
1 + q

2

)
(κ2 – κ)2

∣∣∣∣
κ2

κ1

+
κ1 – κ2

2
(κ2 – κ1)

]

= (κ2 – κ1)F
(

κ1 + κ2

2

)
– F ′

(
κ1 + κ2

2

)[
(κ2 – κ1)2

2
–

(κ2 – κ1)2

2

]

= (κ2 – κ1)F
(

κ1 + κ2

2

)
.

This gives the proof of the first inequality in (4.1).
On the other hand, we have the function �2(κ) = F (κ2) + F (κ2)–F (κ1)

κ2–κ1
(κ – κ2) (see Fig. 2).

Since F is a convex function on [κ1,κ2], we have the inequality

F (κ) ≤ �2(κ),

and thus, by Theorem 10, we get

∫ κ2

κ1

F (κ) κ2 dT
q κ ≤

∫ κ2

κ1

�2(κ) κ2 dT
q κ

for all κ ∈ [κ1,κ2]. By the definition of κ2 Tq-integral, we have

∫ κ2

κ1

�2(κ) κ2 dT
q κ

=
∫ κ2

κ1

(
F (κ2) +

F (κ2) – F (κ1)
κ2 – κ1

(κ – κ2)
)

κ2 dT
q κ

= (κ2 – κ1)F (κ2) –
F (κ2) – F (κ1)

κ2 – κ1

∫ κ2

κ1

(κ2 – κ) κ2 dT
q κ

= (κ2 – κ1)F (κ2) –
F (κ2) – F (κ1)

κ2 – κ1

(
1 – q
1 – q2

)(
1 + q

2

)
(κ2 – κ1)2

= (κ2 – κ1)F (κ2) –
F (κ2) – F (κ1)

κ2 – κ1

(κ2 – κ1)2

2

= (κ2 – κ1)
F (κ1) + F (κ2)

2
.

The proof is completed. �

Remark 1 In Theorem 11, if we take the limit q → 1–, we recapture the classical Hermite–
Hadamard inequality for convex function.

Theorem 12 Let F : [κ1,κ2] → R be a convex differentiable function on [κ1,κ2] and 0 <
q < 1. Then we have

F
(

qκ1 + κ2

1 + q

)
+

q – 1
1 + q

(κ2 – κ1)
2

F ′
(

qκ1 + κ2

1 + q

)
≤ 1

κ2 – κ1

∫ κ2

κ1

F (κ) κ2 dT
q κ (4.3)

≤ F (κ1) + F (κ2)
2

.
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Proof Since F is a differentiable function on [κ1,κ2], there is a tangent line for the function
F at the point qκ1+κ2

1+q ∈ (κ1,κ2). This tangent line can be expressed as a function �3(κ) =
F ( qκ1+κ2

1+q ) + F ′( qκ1+κ2
1+q )(κ – qκ1+κ2

1+q ). Since F is a convex function on [κ1,κ2], then we have
the following inequality:

�3(κ) ≤F (κ) (4.4)

for all κ ∈ [κ1,κ2] (see Fig. 2). From Theorem 10, we have

∫ κ2

κ1

�3(κ) κ2 dT
q κ ≤

∫ κ2

κ1

F (κ) κ2 dT
q κ.

By definition of κ2 Tq-integral, we get

∫ κ2

κ1

�3(κ) κ2 dT
q κ

=
∫ κ2

κ1

[
F

(
qκ1 + κ2

1 + q

)
+ F ′

(
qκ1 + κ2

1 + q

)(
κ –

qκ1 + κ2

1 + q

)]
κ2 dT

q κ

= (κ2 – κ1)F
(

qκ1 + κ2

1 + q

)
– F ′

(
qκ1 + κ2

1 + q

)[∫ κ2

κ1

(
κ2 – κ + q

κ1 – κ2

1 + q

)
κ2 dT

q κ

]

= (κ2 – κ1)F
(

qκ1 + κ2

1 + q

)

– F ′
(

qκ1 + κ2

1 + q

)[(
1 – q
1 – q2

)(
1 + q

2

)
(κ2 – κ1)2 +

κ1 – κ2

1 + q
q(κ2 – κ1)

]

= (κ2 – κ1)F
(

qκ1 + κ2

1 + q

)
– F ′

(
qκ1 + κ2

1 + q

)[
(κ2 – κ1)2

2
–

q(κ2 – κ1)2

1 + q

]
,

which completes the proof. �

Theorem 13 Let F : [κ1,κ2] → R be a convex differentiable function on [κ1,κ2] and 0 <
q < 1. Then we have

F
(

κ1 + qκ2

1 + q

)
+

1 – q
1 + q

(κ2 – κ1)
2

F ′
(

κ1 + qκ2

1 + q

)
≤ 1

κ2 – κ1

∫ κ2

κ1

F (κ) κ2 dT
q κ (4.5)

≤ F (κ1) + F (κ2)
2

.

Proof Since F is a differentiable function on [κ1,κ2], there is a tangent line for the function
F at the point κ1+qκ2

1+q ∈ (κ1,κ2). This tangent line can be expressed as a function �4(κ) =
F ( κ1+qκ2

1+q ) + F ′( κ1+qκ2
1+q )(κ – κ1+qκ2

1+q ). Since F is a convex function on [κ1,κ2], then we have
the following inequality:

�4(κ) ≤F (κ) (4.6)

for all κ ∈ [κ1,κ2] (see Fig. 2). By Theorem 10, we have

∫ κ2

κ1

�4(κ) κ2 dT
q κ ≤

∫ κ2

κ1

F (κ) κ2 dT
q κ.
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By definition of κ2 Tq-integral, we get

∫ κ2

κ1

�4(κ) κ2 dT
q κ

=
∫ κ2

κ1

[
F

(
κ1 + qκ2

1 + q

)
+ F ′

(
κ1 + qκ2

1 + q

)(
κ –

κ1 + qκ2

1 + q

)]
κ2 dT

q κ

= (κ2 – κ1)F
(

κ1 + qκ2

1 + q

)
– F ′

(
κ1 + qκ2

1 + q

)∫ κ2

κ1

(
κ2 – κ +

κ1 – κ2

1 + q

)
κ2 dT

q κ

= (κ2 – κ1)F
(

κ1 + qκ2

1 + q

)

– F ′
(

κ1 + qκ2

1 + q

)[(
1 – q
1 – q2

)(
1 + q

2

)
(κ2 – κ1)2 + (κ2 – κ1)

κ1 – κ2

1 + q

]

= (κ2 – κ1)F
(

κ1 + qκ2

1 + q

)
– F ′

(
κ1 + qκ2

1 + q

)[
(κ2 – κ1)2

2
–

(κ2 – κ1)2

1 + q

]
.

This gives the proof of the theorem. �

Theorem 14 Let F : [κ1,κ2] → R be a convex differentiable function on [κ1,κ2] and 0 <
q < 1. Then we have

max{I1, I2, I3} ≤ 1
κ2 – κ1

∫ κ2

κ1

F (κ) κ2 dT
q κ ≤ F (κ1) + F (κ2)

2
, (4.7)

where

I1 = F
(

κ1 + κ2

2

)
,

I2 = F
(

qκ1 + κ2

1 + q

)
+

q – 1
1 + q

(κ2 – κ1)
2

F ′
(

qκ1 + κ2

1 + q

)

I3 = F
(

κ1 + qκ2

1 + q

)
+

1 – q
1 + q

(κ2 – κ1)
2

F ′
(

κ1 + qκ2

1 + q

)
.

Proof A combination of (4.1), (4.3), and (4.5) gives (4.7) and the proof is completed. �

5 Conclusion
In this article, we proved a new idea of quantum integrals which is called κ2 Tq-integral. By
using this idea, we proved several properties for quantum integrals. Further, we presented
several Hermite–Hadamard type κ2 Tq-integral inequalities within a class of convexity. It
is also shown that some classical results can be obtained by the results presented in the
current research by taking the limit q → 1–. It will be an interesting problem to prove
similar inequalities for the functions of two variables.
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