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Abstract
In this paper, we introduce two factorizations for the Cesàro matrix of order n based
on Cesàro and gamma matrices. The results of these factorizations are new
inequalities, one of which is a generalized version of the well-known Hardy’s
inequality. Moreover, we obtain the norm of Cesàro operator of order n on Cesàro and
gamma matrix domains.
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1 Introduction
Let ω denote the vector space of all real-valued sequences x = (xk)∞k=0. Any linear subspace
of ω is called a sequence space. In particular, the Banach space �p is the set of all x ∈ ω such
that

‖x‖�p =

( ∞∑
k=0

|xk|p
)1/p

< ∞, 1 ≤ p < ∞.

In our discussion, we consider infinite matrices A = (ai,j), where the indices i and j run
through N0 := {0, 1, 2, . . .}. The matrix domain of A, with respect to a fixed sequence space
X , is defined as

A(X ) = {x ∈ ω : Ax ∈X }. (1.1)

In the special but important case X = �p, we will simply write A(p) instead of A(�p). Some
further special notations are described below. It is rather trivial that I(p) = �p, where I is
the infinite identity matrix. This concept has inspired many researchers to seek and define
new Banach spaces as the domain of an infinite matrix.

The operator T is called bounded if the inequality ‖Tx‖�p ≤ K‖x‖�p holds for all se-
quences x ∈ �p, while the constant K does not depend on x. The constant K is called an
upper bound for operator T , and the smallest possible value of K is called the norm of T .
One of the advantages of finding the norm of an operator is obtaining useful inequalities.
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The well-known inequalities

∞∑
n=0

( n∑
k=0

|xk|
n + 1

)p

≤
(

p
p – 1

)p ∞∑
k=0

|xk|p

and

∞∑
n=0

( ∞∑
k=0

|xk|
n + k + 1

)p

≤ (
π csc(π/p)

)p
∞∑

k=0

|xk|p,

which are also known as Hardy’s inequality and Hilbert’s inequality, have resulted from
the boundedness of Cesàro and Hilbert operators.

The problem of finding norms of operators has been investigated in some of the follow-
ing references [7, 9–13, 15, 17, 18].

The organization of paper is as follows. In Sect. 2, we introduce the family of Hausdorff
matrices Hμ. The definition is very general and includes several important subfamilies,
e.g., Cesàro and gamma matrices. We also introduce the classical Hilbert matrix in this
section.

In Sect. 3, we state our main theorem, where we introduce two factorizations for the
Cesàro matrix, which results in some interesting inequalities. The other result is obtaining
a factorization for the Hilbert operator based on the Cesàro matrix, which the author had
introduced before in [13, Corollary 2.3], but with a new approach.

In Sect. 4, as an application of those introduced factorizations for the Cesàro matrix, we
compute the norm of Cesàro operator of order n from the Cesàro and gamma sequence
spaces into the �p space.

2 The Cesàro and gamma matrices
Let μ be a probability measure on [0, 1]. The Hausdorff matrix Hμ = (hj,k)∞j,k=0 is an infinite
matrix with the entries

hj,k =
(

j
k

)∫ 1

0
θ k(1 – θ )j–k dμ(θ ), 0 ≤ k ≤ j,

and hj,k = 0 for k > j. As a direct consequence of Hardy’s formula [6, Theorem 216], we
know that the Hausdorff matrix is a bounded operator on �p, 1 ≤ p < ∞, if and only if

∫ 1

0
θ

–1
p dμ(θ ) < ∞;

moreover,

∥∥Hμ
∥∥

�p→�p
=

∫ 1

0
θ

–1
p dμ(θ ). (2.1)

Bennett [1, 3] extensively studied these matrices. He showed that Hausdorff operators
have the norm separating property [2, Theorem 9]. More explicitly, if p ≥ 1 and Hμ, Hϕ ,
and Hν are Hausdorff matrices such that Hμ = HϕHν , then Hμ is bounded on �p if and
only if both Hϕ and Hν are bounded on �p. Moreover, we have

∥∥Hμ
∥∥

�p→�p
=

∥∥Hϕ
∥∥

�p→�p

∥∥Hν
∥∥

�p→�p
. (2.2)
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The Hausdorff matrix contains several famous classes of matrices as a special case. We
mention a few examples below. In all cases, we assume that n > 0. We also denote the
conjugate exponent of p by p∗, i.e., 1/p + 1/p∗ = 1.

We use the notation hau(p) as the set of all sequences whose Hμ-transforms are in the
space �p, that is,

hau(p) =

{
x = (xj) ∈ ω :

∞∑
j=0

∣∣∣∣∣
j∑

k=0

∫ 1

0

(
j
k

)
θ k(1 – θ )j–k dμ(θ )xk

∣∣∣∣∣
p

< ∞
}

,

where μ is a fixed probability measure on [0, 1].
Cesàro matrix of order n. The measure

dμ(θ ) = n(1 – θ )n–1 dθ

gives the Cesàro matrix Cn = (Cn
j,k) of order n, for which

Cn
j,k =

⎧⎪⎨
⎪⎩

(n+j–k–1
j–k )

(n+j
j )

, 0 ≤ k ≤ j,

0, otherwise.

Hence, according to (2.1), Cn has the �p-norm

∥∥Cn∥∥
�p→�p

=
�(n + 1)�(1/p∗)

�(n + 1/p∗)
. (2.3)

Note that C0 = I , where I is the identity matrix, and

C1 = C =

⎛
⎜⎜⎜⎜⎝

1 0 0 · · ·
1/2 1/2 0 · · ·
1/3 1/3 1/3 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠

is the classical Cesàro matrix, which has the �p-norm ‖C‖�p→�p = p∗. According to (1.1),
the matrix domain of Cn is

Cn(p) =

{
x ∈ ω :

∞∑
j=0

∣∣∣∣∣ 1(n+j
j
) j∑

k=0

(
n + j – k – 1

j – k

)
xk

∣∣∣∣∣
p

< ∞
}

.

Equipped with the norm

‖x‖ :=

( ∞∑
j=0

∣∣∣∣∣ 1(n+j
j
) j∑

k=0

(
n + j – k – 1

j – k

)
xk

∣∣∣∣∣
p)1/p

,

Cn(p) is a Banach space. In literature, ces(n, p) is also used to denote this space [3]. The ma-
trix C was defined by Ernesto Cesàro (1859–1906), an Italian mathematician who worked
in the field of differential geometry. Since then, many mathematicians have studied Cesàro
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sequence and Cesàro function spaces. However, the main focus has been on the Cesàro
matrix of order one. The Cesàro sequence space C1(p), its topological properties, its ma-
trix transformations, and matrix domains are studied in [8, 16]. Recently, the general
case Cn(p) and its topological properties, matrix transformations, and matrix domains
for 0 < p < ∞ have been thoroughly studied [14, 15].

Gamma matrix of order n. The measure

dμ(θ ) = nθn–1 dθ

gives the gamma matrix �n = (γ n
j,k) of order n, for which

γ n
j,k =

⎧⎪⎨
⎪⎩

(n+k–1
k )

(n+j
j )

, 0 ≤ k ≤ j,

0, otherwise.

Hence, according to (2.1), �n has the �p-norm

∥∥�n∥∥
�p→�p

=
np

np – 1
. (2.4)

While �1 is the classical Cesàro matrix C, other values of n give birth to different matrices.
For example,

�2 =

⎛
⎜⎜⎜⎜⎝

1 0 0 · · ·
1/3 2/3 0 · · ·
1/6 2/6 3/6 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ and �3 =

⎛
⎜⎜⎜⎜⎝

1 0 0 · · ·
1/4 3/4 0 · · ·

1/10 3/10 6/10 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠ .

According to (1.1), the matrix domain of �n is

�n(p) =

{
x = (xk) ∈ ω :

∞∑
j=0

∣∣∣∣∣ 1(n+j
j
) j∑

k=0

(
n + k – 1

k

)
xk

∣∣∣∣∣
p

< ∞
}

,

which equipped with the norm

‖x‖ :=

( ∞∑
j=0

∣∣∣∣∣ 1(n+j
j
) j∑

k=0

(
n + k – 1

k

)
xk

∣∣∣∣∣
p) 1

p

becomes a Banach space. This space is also denoted by gam(n, p).
Hilbert matrix. In this study, we also need the Hilbert matrix H = (hj,k), which is defined

by

hj,k =
1

j + k + 1
, j, k ≥ 0.
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More explicitly,

H =

⎛
⎜⎜⎜⎜⎝

1 1/2 1/3 · · ·
1/2 1/3 1/4 · · ·
1/3 1/4 1/5 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ .

This matrix was introduced by David Hilbert in 1894 to study a question in approximation
theory.

3 Main theorem
In this section, factorization of the Cesàro operator based on Cesàro and gamma matrices
is investigated. First, we need some preliminaries. For nonnegative integers n, j, and k, let
us define the matrix Bn = (bn

j,k) by

bn
j,k =

(k + 1) · · · (k + n)
(j + k + 1) · · · (j + k + n + 1)

(3.1)

=
(

n + k
k

)
β(j + k + 1, n + 1) (j, k = 0, 1, . . .),

where β is the beta function

β(m, n) =
∫ 1

0
zm–1(1 – z)n–1 dz, m, n = 1, 2, . . . .

Note that, for n = 0, B0 = H, where H is the Hilbert matrix. We know that Bn is a bounded
operator on �p and

∥∥Bn∥∥
�p→�p

=
�(n + 1/p∗)�(1/p)

�(n + 1)
. (3.2)

See [10, Lemma 2.3].
In the next result, we reveal the relation between the Cesàro and gamma matrices which

have the same entries in a row, but the inverse order in columns. Moreover, we introduce
some factorizations for the Cesàro matrix based on Cesàro and gamma matrices, which
results in some interesting inequalities and inclusions.

Theorem 3.1 Let n ≥ m ≥ 1, and let Cn and �m be respectively the Cesàro and gamma
matrices of order n and m. Then the following assertions hold:

(a) Cn = Cn–1�n.
(b) Cn = �1�2 . . .�n.
(c) Cn = Rn,m�m, where

Rn,m =
n∏

i=1,i	=m

�i.

Moreover, Rn,m is a bounded operator on �p with the norm

∥∥Rn,m∥∥
�p→�p

=
(1 – 1/mp)�(n + 1)�(1/p∗)

�(n + 1/p∗)
. (3.3)
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(d) Cn = Sn,mCm, where

Sn,m =
n∏

i=m+1

�i. (3.4)

Moreover, Sn,m is a bounded operator on �p with the norm

∥∥Sn,m∥∥
�p→�p

=
�(n + 1)�(m + 1/p∗)
�(m + 1)�(n + 1/p∗)

.

Proof (a): Since Hausdorff matrices commute, by using the identity

j∑
k=0

(
n + j – k – 1

j – k

)
=

j∑
k=0

(
n + k – 1

k

)
=

(
n + j

j

)
,

we have

(
�nCn–1)

i,k =
i∑

j=k

�n
i,jC

n–1
j,k =

i∑
j=k

(n+j–1
j

)
(n+i

i
)

(n+j–k–2
j–k

)
(n+j–1

j
)

=
1(n+i
i
) i∑

j=k

(
n + j – k – 2

j – k

)

=
1(n+i
i
) i–k∑

j=0

(
n + j – 2

j

)
=

(n+i–k–1
i–k

)
(n+i

i
) = Cn

i,k .

Therefore Cn = Cn–1�n.
(b): This is a direct consequence of (a).
(c): According to part (a) and by induction,

Cn = �1 . . .�m–1�m+1 · · ·�n × �m = Rn,m�m.

Now, according the norm separating property of Hausdorff matrices (2.2), we have

∥∥Rn,m∥∥
�p→�p

=
∥∥�1∥∥

�p→�p
· · ·∥∥�m–1∥∥

�p→�p

∥∥�m+1∥∥
�p→�p

· · ·∥∥�n∥∥
�p→�p

=
∏n

i=1 ‖�i‖�p→�p

‖�m‖�p→�p

=
‖Cn‖�p→�p

‖�m‖�p→�p

=
(1 – 1/mp)�(n + 1)�(1/p∗)

�(n + 1/p∗)
.

(d): According to part (b), we have Cn = Cm�m+1 . . .�n. Hence, by the definition Sn,m =
�m+1 . . .�n, we have the claimed factorization. For computing the norm of Sn,m, note that

∥∥Sn,m∥∥
�p→�p

=
‖Cn‖�p→�p

‖Cm‖�p→�p
=

�(n + 1)�(m + 1/p∗)
�(m + 1)�(n + 1/p∗)

. �
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Bennett found the corresponding measure dμ(θ ) for the matrix Sm,n = �m+1 · · ·�n which
we obtained through Theorem 3.1. He showed

dμ(θ ) =
�(n + 1)

�(m + 1)�(n – m)
θm(1 – θ )n–m–1 dθ . (3.5)

The matrix Sn,m = (sn,m
j,k ) has the entries

sn,m
j,k =

⎧⎪⎨
⎪⎩

(m+k
k )(n–m+j–k–1

j–k )

(n+j
j )

, j ≥ k ≥ 0,

0, otherwise.

See [1, 2].
We can rewrite the factorization discussed in Theorem 3.1 as

∥∥Cnx
∥∥

�p
≤ ∥∥Cn–1∥∥

�p→�p

∥∥�nx
∥∥

�p
,∥∥Cnx

∥∥
�p

≤ ∥∥�n∥∥
�p→�p

∥∥Cn–1x
∥∥

�p
,∥∥Cnx

∥∥
�p

≤ ∥∥Rn,m∥∥
�p→�p

∥∥�mx
∥∥

�p
,∥∥Cnx

∥∥
�p

≤ ∥∥Sn,m∥∥
�p→�p

∥∥Cmx
∥∥

�p
.

In the first place, these inequalities imply
• �n(p) ⊂ Cn(p),
• Cn–1(p) ⊂ Cn(p),
• �m(p) ⊂ Cn(p),
• Cm(p) ⊂ Cn(p),

where n ≥ m ≥ 1. Secondly, combined with (2.4) and (3.3), we express a more explicit
account of the above inequalities.

Corollary 3.2 Let (xn) be a sequence of real numbers. Then the following statements hold.
(a) For n ≥ 1,

∞∑
j=0

∣∣∣∣∣
j∑

k=0

(n+j–k–1
j–k

)
(n+j

j
) xk

∣∣∣∣∣
p

≤
(

np
np – 1

)p ∞∑
j=0

∣∣∣∣∣
j∑

k=0

(n+j–k–2
j–k

)
(n+j–1

j
) xk

∣∣∣∣∣
p

.

In particular, for n = 1, we have Hardy’s inequality

∞∑
j=0

∣∣∣∣∣
j∑

k=0

xk

1 + j

∣∣∣∣∣
p

≤
(

p
p – 1

)p ∞∑
j=0

|xk|p.

(b) For n ≥ m ≥ 1,

∞∑
j=0

∣∣∣∣∣
j∑

k=0

(n+j–k–1
j–k

)
(n+j

j
) xk

∣∣∣∣∣
p

≤
[

(1 – 1/mp)�(n + 1)�(1/p∗)
�(n + 1/p∗)

]p ∞∑
j=0

∣∣∣∣∣
j∑

k=0

(m+k–1
k

)
(m+j

j
) xk

∣∣∣∣∣
p

.
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In particular, for m = n,

∞∑
j=0

∣∣∣∣∣
j∑

k=0

(n+j–k–1
j–k

)
(n+j

j
) xk

∣∣∣∣∣
p

≤
[

�(n)�(1/p∗)
�(n – 1/p)

]p ∞∑
j=0

∣∣∣∣∣
j∑

k=0

(n+k–1
k

)
(n+j

j
) xk

∣∣∣∣∣
p

.

(c) For n ≥ m ≥ 0,

∞∑
j=0

∣∣∣∣∣
j∑

k=0

(n+j–k–1
j–k

)
(n+j

j
) xk

∣∣∣∣∣
p

≤
[

�(n + 1)�(m + 1/p∗)
�(m + 1)�(n + 1/p∗)

]p ∞∑
j=0

∣∣∣∣∣
j∑

k=0

(m+j–k–1
j–k

)
(m+j

j
) xk

∣∣∣∣∣
p

.

In particular, for n = 1, m = 0, we have Hardy’s inequality.

See [4, 5] for similar inequalities of the above type.

Corollary 3.3 The Hilbert operator H has a factorization of the form H = BnCn, where Bn

was defined by (3.1).

Proof First we show that

Bn�n = Bn–1. (3.6)

In fact,

(
Bn�n)

i,k =
∞∑
j=k

(
n + j

j

)
β(i + j + 1, n + 1)

(n+k–1
k

)
(n+j

j
)

=
(

n + k – 1
k

) ∞∑
j=0

β(i + j + k + 1, n + 1)

=
(

n + k – 1
k

)∫ 1

0

∞∑
j=0

zjzi+k(1 – z)n dz

=
(

n + k – 1
k

)∫ 1

0
zi+k(1 – z)n–1 dz

=
(

n – 1 + k
k

)
β(i + k + 1, n) = Bn–1

j,k .

This establishes (3.6). Now, by commutativity of Hausdorff matrices and by (3.6),

BnCn = Bn�n · · ·�1 = Bn–1�n–1 · · ·�1.

Therefore, by induction,

BnCn = B1�1 = B0 = H. �

4 The mapping Cn : A(p) → �p

We are now ready to study the mappings Cn : A(p) → �p. Based on the cases described in
Sect. 2, two categories of A(p) spaces are treated below: the Cesàro sequence space Cn(p)
and the gamma sequence space �n(p). First, we need the following lemma.
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Lemma 4.1 Let U be a bounded operator on �p and A(p) be a matrix domain such that
A(p) � �p. If T has a factorization of the form T = UA, then T is a bounded operator from
the matrix domain A(p) into �p and

‖T‖A(p)→�p = ‖U‖�p→�p .

Proof Since A(p) and �p are isomorphic, hence

‖T‖A(p)→�p = sup
x∈A(p)

‖Tx‖�p

‖x‖A(p)
= sup

x∈A(p)

‖UAx‖�p

‖Ax‖�p

= sup
y∈�p

‖Uy‖�p

‖y‖�p
= ‖U‖�p→�p . �

We can follow a similar procedure to obtain the norm of Cesàro matrix from an A(p)
space into an �p space.

Corollary 4.2 Let n ≥ m ≥ 0. Then Cn : Cm(p) → �p is bounded and

∥∥Cn∥∥
Cm(p)→�p

=
�(n + 1)�(m + 1/p∗)
�(m + 1)�(n + 1/p∗)

.

Also, Cn : C(p) → �p is bounded and

∥∥Cn∥∥
C(p)→�p

=
�(n + 1)�(1 + 1/p∗)

�(n + 1/p∗)
.

Proof According to Theorem 3.1 Cn = Sn,mCm, hence Lemma 4.1 finishes the proof. �

Corollary 4.3 Let n ≥ m ≥ 1. Then Cn : �m(p) → �p is bounded and

∥∥Cn∥∥
�m(p)→�p

=
(1 – 1/mp)�(n + 1)�(1/p∗)

�(n + 1/p∗)
.

In particular, Cn : C(p) → �p is bounded and

∥∥Cn∥∥
C(p)→�p

=
�(n + 1)�(1 + 1/p∗)

�(n + 1/p∗)
.

Proof According to Theorem 3.1, Cn = Rn,m�m, hence the result will be obtained from
Lemma 4.1. �
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