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Abstract
In this work, we study characterizations of some matrix classes (C (α)(�p),�∞),
(C (α)(�p), c), and (C (α)(�p), c0), where C (α)(�p) is the domain of Copson matrix of order α
in the space �p (0 < p < 1). Further, we apply the Hausdorff measures of
noncompactness to characterize compact operators associated with these matrices.
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1 Introduction
By l� = {ζ = (ζk) : each ξk is real}. The sequence space �p is defined by

�p :=

{
ζ = (ζk) ∈ l� :

∞∑
k=0

|ζk|p < ∞, p > 0

}
.

This is a Banach space with the norm

‖ζ‖�p =

( ∞∑
k=0

|ζk|p
)1/p

< ∞ (1 ≤ p < ∞)

and complete p-normed space with the p-norm

‖ζ‖�p =
∞∑

k=0

|ζk|p < ∞ (0 < p < 1).

Further,

c0 :=
{
ζ = (ζk) ∈ l� : ζk → 0(k → ∞)

}
,

c :=
{
ζ = (ζk) ∈ l� : lim

k→∞
ζk exists

}
,
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�∞ :=
{
ζ = (ζk) ∈ l� : sup

k
|ζk| < ∞

}

are Banach spaces with ‖ζ‖�∞ = supk |ζk|.
The Copson matrix C(1) = (cj,k)j,k∈N0 of order 1 is defined by

cj,k =

⎧⎨
⎩

1
k+1 0 ≤ j ≤ k,

0 otherwise.

Note that ‖C(1)‖�p = p. The Copson matrix is the transpose of the Cesàro matrix

ct
j,k =

⎧⎨
⎩

1
k+1 0 ≤ k ≤ j,

0 otherwise.

The Copson matrix of order α > 0, C(α) = (c(α)
j,k ) is defined by

c(α)
j,k =

⎧⎪⎨
⎪⎩

(n+k–j–1
k–j )

(n+k
k )

0 ≤ j ≤ k

0 otherwise,

which is the transpose of Cesàro matrix of order α, and the �p-norm of C(α) is (see [18, 19])

∥∥C(α)∥∥
�p =

�(α + 1)�(1/p)
�(α + 1/p)

.

For α = 0, C(0) = I , where I is the identity matrix, and for α = 1, it is C(1).
Recently, these types of sequence spaces have been studied in [18–22]. Most recently,

Roopaei [19] studied the following spaces:

C(α)(c0) =

{
ζ = (ζj) ∈ l� : lim

j→∞

∞∑
k=j

(
α+k–j–1

k–j
)

(
α+k

k
) ζk = 0

}
,

C(α)(c) =

{
ζ = (ζj) ∈ l� : lim

j→∞

∞∑
k=j

(
α+k–j–1

k–j
)

(
α+k

k
) ζk exists

}
,

and

C(α)(�p) =

{
ζ = (ζj) ∈ l� :

∞∑
j=0

∣∣∣∣∣
∞∑
k=j

(
α+k–j–1

k–j
)

(
α+k

k
) ζk

∣∣∣∣∣
p

< ∞
}

(0 < p < 1).

In terms of matrix domains, these spaces are defined as follows:

C(α)(c0) =
(
c0)

C(α) , C(α)(c) = (c)C(α) , and C(α)(�p) =
(
�p)

C(α) .

Throughout the study, η = (ηj) will be the C(α)-transform of a sequence ζ = (ζj); that is,

ηj =
(
C(α)ζ

)
j =

∞∑
k=j

(n+k–j–1
k–j

)
(n+k

k
) ζk (1.1)
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for all j ∈N0. Also, the relation

ζk =
∞∑
i=k

(–1)i–k

(
n + k

k

)(
n

i – k

)
ηi (1.2)

holds for all k ∈ N0.
The spaces C(α)(c0) and C(α)(c) are Banach spaces with the norm ‖ζ‖C(α)(c0) = ‖ζ‖C(α)(c) =

‖C(α)ζ‖�∞ , and C(α)(�p) (0 < p < 1) is a complete p-normed space with the p-norm
‖ζ‖C(α)(�p) = ‖C(α)ζ‖�p . Furthermore, C(α)(c0) � c0 and C(α)(c) � c, while C(α)(�p) � �p.

The main theme of this article is to characterize some matrix classes (C(α)(�p), E), where
E = �∞, c, c0. Furthermore, we apply the techniques of measures of noncompactness to
characterize compact operators associated with these matrix classes.

2 Matrix classes
Let c00 := {ζ = (ζj) ∈ l� : ζj 	= 0 for finite j; and 0 elsewhere}. For a BK-space U ⊃ c00 and
γ = (γk) ∈ l�, we define

‖γ ‖∗
U = sup

ζ∈SX

∣∣∣∣∣
∞∑

k=0

γkζk

∣∣∣∣∣ (2.1)

provided γ ∈ Uβ = {γ = (γk) ∈ l� :
∑∞

k=0 γkζk converges for all ζ = (ζk) ∈ U}.
For FK-, BK-, AK-spaces and the relevant literature, we refer to [1, 2, 11], and [12].
We need the following lemmas.

Lemma 2.1 ([23]) We have the following:
(i) D = (djk) ∈ (c0, c0) ⇔

sup
j∈N0

∞∑
k=0

|djk| < ∞ (2.2)

lim
j→∞ djk = 0 for each k ∈N0. (2.3)

(ii) D = (djk) ∈ (c0, c) ⇔ (2.2) holds, and

∃αk ∈ R � lim
j→∞ djk = αk for each k ∈N0. (2.4)

(iii) D = (djk) ∈ (c : c0) ⇔ (2.2), (2.3) hold, and

lim
j→∞

∞∑
k=0

djk = 0. (2.5)

(iv) D = (djk) ∈ (c, c) ⇔ (2.2) and (2.4) hold, and

lim
j→∞

∞∑
k=0

djk exists. (2.6)

(v) D = (djk) ∈ (c0,�∞) = (c,�∞) ⇔ (2.2) holds.
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Lemma 2.2 We have the following:
(i) [8, Theorem 1(i) with pk = p for all k] D = (djk) ∈ (�p,�∞) ⇔

sup
j,k∈N0

|djk|p < ∞. (2.7)

(ii) [8, Corollary for Theorem 1 with pk = p for all k] D = (djk) ∈ (�p, c) ⇔ (2.4) and (2.7)
hold.

The following results give the relation between (U,V) and B(U,V) [1].

Lemma 2.3 Let U ⊃ c00 and V be BK-spaces. Then,
(a) (U,V) ⊂ B(U,V), i.e., every matrix A ∈ (U,V) is associated with an operator

LA ∈ B(U,V) by LA(ζ ) = Aξ for all ζ ∈ U.
(b) If U has AK , then the reverse inclusion also holds.

Lemma 2.4 Let U ⊃ c00 be a BK-space and V ∈{c0, c,�∞}. Then

‖LA‖ = ‖A‖(U,�∞) = sup
n

‖An‖∗
U < ∞ for A ∈ (U,V).

Next, we characterize the matrix classes (C(α)(�p),�∞), (C(α)(�p), c), and (C(α)(�p), c0).
Hereafter, we write A = (ajk)j,k∈N0 for an infinite matrix.

The β-dual of a sequence space U, i.e., Uβ = {a = (ak) ∈ l� :
∑∞

k=0 akζk converges for
all ζ = (ζk) ∈ U} plays an important role in matrix transformations. The β-dual of C(α)(�p)
(0 < p < 1) is

(
C(α)(�p))β :=

{
b = (bk) ∈ l� : sup

j

∣∣∣∣∣
j∑

i=0

(–1)j–i
(

n + i
i

)(
n

j – i

)
bi

∣∣∣∣∣
p

< ∞
}

.

Theorem 2.5 A ∈ (C(α)(�p),�∞) ⇔

sup
j,k∈N0

∣∣∣∣∣
k∑

i=0

(–1)k–i
(

α + i
i

)(
α

k – i

)
aji

∣∣∣∣∣
p

< ∞. (2.8)

Proof Necessity. Suppose A ∈ (C(α)(�p),�∞) and ξ = (ξk) ∈ C(α)(�p). Then Aξ exists and
Aξ ∈ �∞. Then Aj = (ajk)k∈N0 ∈ (C(α)(�p))β for each j ∈N0, and hence (2.8) holds.

Sufficiency. Let (2.8) hold and that ζ = (ζk) ∈ C(α)(�p). Then Aj = (ajk)k∈N0 ∈ (C(α)(�p))β

for each j ∈N0, which guarantees the existence of Aζ . Fix j ∈N, then by (1.2), for r ∈ N0,

r∑
k=0

ajkζk =
r∑

k=0

∞∑
i=k

(–1)i–k
(

α + k
k

)(
α

i – k

)
ajkyi

=
r∑

k=0

( k∑
i=0

(–1)k–i
(

α + i
i

)(
α

k – i

)
aji

)
yk

+
∞∑

k=r+1

( r∑
i=0

(–1)r–i
(

α + i
i

)(
α

r – i

)
aji

)
yk
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for all j, r ∈N0. Now, by letting r → ∞, we have

(Aζ )j =
∞∑

k=0

ajkζk =
∞∑

k=0

bjkyk = (By)j (2.9)

for all j ∈N0, where

bjk =
k∑

i=0

(–1)k–i
(

α + i
i

)(
α

k – i

)
aji (2.10)

for all j, r ∈N0. Therefore, condition (2.7) of Lemma 2.2 is satisfied by the matrix B = (bjk).
Hence By = Aζ ∈ �∞, i.e., A ∈ (C(α)(�p),�∞). �

Theorem 2.6 A ∈ (C(α)(�p), c) ⇔ (2.8) holds and there exists βk ∈R such that

lim
j→∞

k∑
i=0

(–1)k–i
(

α + i
i

)(
α

k – i

)
aji = βk (2.11)

for each k ∈N0.

Proof Necessity. Let A = (ank) ∈ (C(α)(�p), c). Then Aζ exists and Aζ ∈ c for all ζ = (ζk) ∈
C(α)(�p). Since c ⊂ �∞, condition (2.8) follows from Theorem 2.5. Condition (2.11) imme-
diate follows by taking the sequence ζ (i) = {ζ (i)

k } ∈ C(α)(�p) defined by

ζ
(i)
k :=

⎧⎨
⎩(–1)k–i(α+i

i
)(

α

k–i
)
, k ≥ i,

0, 0 ≤ k ≤ i – 1,

for all i, k ∈ N0 that Aζ (k) = {∑k
i=0(–1)k–i(α+i

i
)(

α

k–i
)
aji} ∈ c for each k ∈N0.

Sufficiency. Suppose that conditions (2.8) and (2.11) hold, and that ζ = (ζk) ∈ C(α)(�p). Ex-
istence of Aζ follows from the fact that Aj = (ajk)k∈N0 ∈ (C(α)(�p))β for each j ∈ N0. There-
fore, it follows from (2.9) that conditions (2.8) and (2.11) correspond to (2.7) and (2.4) with
bjk instead of djk , respectively, where bjk is given by (2.10). Thus, By ∈ c, and we get by (2.9)
that A ∈ (C(α)(�p), c). �

Corollary 2.7 A ∈ (C(α)(�p), c0) ⇔ (2.8) holds and (2.11) also holds with βk = 0 for all
k ∈N0.

Corollary 2.8 For A = (ank), write c(j, k) =
∑j

i=0 aik for all k, n ∈ N0. Then, from Theo-
rem 2.5, Theorem 2.6, and Corollary 2.7, we get:

(i) A = (ank) ∈ (C(α)(�p), bs) ⇔ (2.8) holds with ajk is replaced by c(j, k).
(ii) A = (ank) ∈ (C(α)(�p), cs) ⇔ (2.8) and (2.11) hold with ajk is replaced by c(j, k).

(iii) A = (ank) ∈ (C(α)(�p), cs0) ⇔ (2.8) and (2.11) hold with ajk is replaced by c(j, k), with
βk = 0 for all k ∈N0, where bs, cs, and s0 are the space of bounded, convergent, and
null series, respectively.
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3 Compactness of matrix operators
We apply the techniques of [3–7, 9, 10], and [13–17].

Let MU := {B⊂ U : B is bounded}. The Hausdorff measure of noncompactness
(HMNC) of B ∈MU is defined by

χ (B) = inf{ε > 0 : B has finite ε-net}.

Let U and V be Banach spaces and D ∈ B(U,V). Then the HMNC of D is defined by

‖D‖χ = χ
(
D(SU)

)
= χ

(
D(B̄U)

)
, (3.1)

and we have

D is compact if and only if ‖D‖χ = 0. (3.2)

In what follows, we denote the set of all compact operators from U into V by C(U,V).

Theorem 3.1 Let U be a Banach space with a Schauder basis (bk)∞k=0, D ∈ MU and Pn :
U → U (n ∈N) be the projector onto the linear span of {b0, b1, . . . , bn}. Then we have

1
lim supn→∞ ‖I – Pn‖ · lim sup

n→∞

(
sup
ζ∈D

∥∥(I – Pn)(ζ )
∥∥)

≤ χ (D) ≤ lim sup
n→∞

(
sup
x∈D

∥∥(I – Pn)(ζ )
∥∥)

.

Theorem 3.2 Let D ∈ MU, where U = �p (1 ≤ p < ∞) or c0. If Pn : U → U (n ∈ N) is the
operator defined by Pn(ζ ) = ζ [n] = (ζ0, ζ1, . . . , ζn, 0, 0, . . .) for all ζ = (ζk)∞k=0 ∈ U, then

χ (D) = lim
n→∞

(
sup
ζ∈D

∥∥(I – Pn)(ζ )
∥∥)

.

Lemma 3.3 ([13]) Let U ⊃ c00 be a BK-space with AK or U = �∞. If A ∈ (U, c), then

αk = lim
j→∞ ajk exists for every k ∈N, (3.3)

α = (αk) ∈ U
β , (3.4)

sup
j

‖Aj – α‖∗
U < ∞, (3.5)

lim
j→∞Aj(x) =

∞∑
k=0

αjkxk for all x = (xk) ∈ U. (3.6)

Theorem 3.4 ([13]) Let U ⊃ c00 be a BK-space. Then we have
(a)

‖LA‖χ = lim sup
n→∞

‖An‖∗
U for A ∈ (

U, c0)
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and

LA ∈ C
(
U, c0) ⇔ lim

n→∞‖An‖∗
U = 0.

(b) If U has AK or U = �∞, then

1
2

· lim sup
n→∞

‖An – α‖∗
U ≤ ‖LA‖χ ≤ lim sup

n→∞
‖An – α‖∗

U for A ∈ (U, c)

and

LA ∈ C(U, c) ⇔ lim
n→∞‖An – α‖∗

U = 0,

where α = (αk) = (limn→∞ ank) for all k ∈N.
(c)

0 ≤ ‖LA‖χ ≤ lim sup
n→∞

‖An‖∗
U for A ∈ (

U,�∞)

and

LA ∈ C
(
U,�∞)

if lim
n→∞‖An‖∗

U = 0. (3.7)

We now state and prove the following.

Theorem 3.5 Let 1 ≤ p < ∞. Then we have
(a)

‖LA‖χ = lim
r→∞ sup

j

( ∞∑
k=r+1

|ajk|p
)1/p

for A ∈ (
C(α)(�p), c0). (3.8)

(b)

1
2

· lim
r→∞ sup

j

( ∞∑
k=r+1

|ajk – βk|p
)1/p

≤ ‖LA‖χ ≤ lim
r→∞ sup

j

( ∞∑
k=r+1

|ajk – βk|p
)1/p

for A ∈ (
C(α)(�p), c

)
, (3.9)

where β = (βk) = (limj→∞ bjk) for all k ∈N.
(c)

0 ≤ ‖LA‖χ ≤ lim
r→∞ sup

j

( ∞∑
k=r+1

|ajk|p
)1/p

for A ∈ (
C(α)(�p),�∞)

. (3.10)

Proof (a) Note that the limits in (3.8), (3.9), and (3.10) exist by Lemmas 2.4 and 3.3. Let
A ∈ (C(α)(�p), c0). Then Aj = (ajk)k∈N0 ∈ [C(α)(�p)]β for each j ∈N0, and we have

‖A‖∗
C(α)(�p) = ‖Bj‖�p =

( ∞∑
k=0

|ajk|p
)1/p

. (3.11)
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Write S = SC(α)(�p) for short. Then we have AS ∈Mc0 . From Theorem 3.2, we get

‖LA‖χ = χ (AS) = lim
r→∞ sup

ζ∈S

∥∥(I – Pr)(Aζ )
∥∥

�p . (3.12)

lim
r→∞ sup

y∈S�p

∥∥(I – Pr)(By)
∥∥

�p
= lim

r→∞ sup
j

( ∞∑
k=r+1

|ajk|p
)1/p

. (3.13)

We get (3.8) by (3.13).
(b) We have AS ∈ Mc. Suppose that Pr : c → c (r ∈ N) are the projectors defined by

(2.3).
Now, since A ∈ (C(α)(�p), c), we have B ∈ (�p, c) and Aξ = By. Thus, it follows from

Lemma 3.3 that the limits βk = limj→∞ ajk exist for all k, β = (βk) ∈ �1 = cβ and
limj→∞ Bj(y) =

∑∞
k=0 ajkyk . Therefore, we get

‖(I – Pr)(Aζ )‖�p = ‖(I – Pr)(By)‖�p

= sup
j

( ∞∑
k=r+1

|ajk – βk|p
)1/p

for all ζ = (ζk) ∈ C(α)(�p). Now, (3.12) and (3.1) imply that

1
2

· lim sup
r→∞

‖Bj – β‖�p ≤ ‖LA‖χ ≤ lim sup
r→∞

‖Bj – β‖�p . (3.14)

Hence, we get (3.9) from (3.14), since the limit in (3.9) exists.
(c) Define Pr : �∞ → �∞ (r ∈N) as in (a) for all ζ = (ζk) ∈ �∞. Then

AS ⊂Pr(AS) + (I – Pr)(AS); (r ∈N).

Therefore

0 ≤ χ (AS)

≤ χ
(
Pr(AS)

)
+ χ

(
(I – Pr)(AS)

)
= χ

(
(I – Pr)(AS)

)
≤ sup

ξ∈S
‖(I – Pr)(Aξ )‖�p

= lim
r→∞ sup

j

( ∞∑
k=r+1

|ajk|p
)1/p

.

From this and (3.12), we get (3.10), which concludes the proof. �

Corollary 3.6 We have the following:
(a) For A ∈ (C(α)(�p), c0),

LA ∈ C
(
C(α)(�p), c0) ⇔ lim

r→∞ sup
j

( ∞∑
k=r+1

|ajk|p
)1/p

= 0.
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(b) For A ∈ (C(α)(�p), c),

LA ∈ C
(
C(α)(�p), c

) ⇔ lim
r→∞ sup

j

( ∞∑
k=r+1

|ajk – βk|p
)1/p

= 0,

where β = (βk) = (limj→∞ ajk) for all k ∈N.
(c) For A ∈ (C(α)(�p),�∞), then

LA ∈ C
(
C(α)(�p),�∞)

if lim
r→∞ sup

j

( ∞∑
k=r+1

|bjk|p
)1/p

= 0. (3.15)

Corollary 3.7 From Theorem 3.4 and Corollary 2.11, we have the following:
(a) For A ∈ (C(α)(�p), cs0),

‖LA‖χ = lim
r→∞ sup

j

( ∞∑
k=r+1

∣∣c(j, k)
∣∣p

)1/p

. (3.16)

(b) For A ∈ (C(α)(�p), cs),

1
2

· lim
r→∞ sup

j

( ∞∑
k=r+1

∣∣c(j, k) – βk
∣∣p

)1/p

≤ ‖LA‖χ ≤ lim
r→∞ sup

j

( ∞∑
k=r+1

∣∣c(j, k) – βk
∣∣p

)1/p

, (3.17)

where β = (βk) = (limj→∞ bjk) for all k ∈N.
(c) For A ∈ (C(α)(�p), bs),

0 ≤ ‖LA‖χ ≤ lim
r→∞ sup

j

( ∞∑
k=r+1

∣∣c(j, k)
∣∣p

)1/p

. (3.18)

Corollary 3.8 From Corollary 3.5 and Corollary 2.11, we have the following:
(a) For A ∈ (C(α)(�p), cs0),

LA ∈ C
(
C(α)(�p), cs0) ⇔ lim

r→∞ sup
j

( ∞∑
k=r+1

∣∣c(j, k)
∣∣p

)1/p

= 0.

(b) For A ∈ (C(α)(�p), cs),

LA ∈ C
(
C(α)(�p), cs

) ⇔ lim
r→∞ sup

j

( ∞∑
k=r+1

∣∣c(j, k) – βk
∣∣p

)1/p

= 0,

where β = (βk) = (limj→∞ c(j, k)) for all k ∈N.
(c) For A ∈ (C(α)(�p), bs),

LA ∈ C
(
C(α)(�p), bs

) ⇔ if lim
r→∞ sup

j

( ∞∑
k=r+1

∣∣c(j, k)
∣∣p

)1/p

= 0.
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7. Kara, E.E., Başarir, M.: On compact operators and some Euler B(m)-difference sequence spaces. J. Math. Anal. Appl.

379(2), 499–511 (2011)
8. Lascarides, C.G., Maddox, I.J.: Matrix transformations between some classes of sequences. Proc. Camb. Philol. Soc. 68,

99–104 (1970)
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