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1 Introduction

Calculus of arbitrary order integration and differentiation has achieved a remarkable
growth over the last few decades due to its applications in a wide range of fields such
as engineering, physics, neural networks, control theory, population dynamics, and epi-
demiology; see for instance [1-4].

In this context, there have appeared many definitions of fractional derivatives including
the well-known types of Caputo, Riemann-Liouville, Hadamard, Katugampola derivatives
and many others. Consequently, this has led to several problems defined by different frac-
tional operators. However, it has been realized that the most efficient way to deal with such
a variety of fractional operators is to accommodate generalized forms of fractional opera-
tors that include other operators. In [5], the Hilfer fractional derivative DZ;‘ of order o and
type ¢ was introduced. This definition provides a concatenation betwixt the Riemann-—
Liouville and Caputo fractional derivatives. The type-parameter ¢ allows some freedom
of action in the initial conditions, which produces more kinds of stationary states. Some
models based on this definition can be seen in the papers [6—8]. Meanwhile, for the sake of
generalizing the definitions of fractional derivative, the fractional derivatives of a function
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relative to the other function defined as

1 d

4 1 d
¢'(c) ds

¢'(c) ds

n n
D19)= (5540 ) 106 and “Difre) =1 ) )
in terms of the Riemann—-Liouville and Caputo fractional derivatives were introduced, re-
spectively [9, 10]. In this perspective, the ¢-Hilfer derivative was defined in [11]. For more
relevant applications concerning ¢-Hilfer derivative, we refer the reader to [12-27].

On the one hand, the contraction mappings are widely utilized to examine of the exis-
tence and uniqueness of fixed points. For this purpose, many contraction mappings have
been developed and used by interested researchers who applied these mappings in vari-
ous disciplines. In [28], the authors presented « — y-contraction mappings. This mapping
and its extensions as well as some useful fixed point results can be seen in several papers
[29-39].

On the other hand, the pantograph is a mechanical connection set in a manner based on
parallelograms so that the movement of one pen, in tracing an image, produces identical
movements in a second pen. In the study of the motion of the pantograph head on an elec-
tric locomotive, the authors of [40] came across the following delay differential equation:

Y (¢)=ay(c) +by(es), O<e<l,g,a,beR,

which was referred to in the literature as pantograph differential equation. During the last
decades, it has been realized that pantograph differential equation has many applications
in various disciplines, see the paper [41] and the references cited therein.

Knowing the significant of fractional operators in modeling processes, the consideration
of pantograph differential equation in fractional settings has come true. We review some
relevant results for the sake of completeness. Nonlinear fractional pantograph differential
equation was studied in [42, 43] where the existence of solutions is investigated using
fractional calculus and fixed point theorems.

In the recent paper [44], the authors discussed the following:

D?x(s) = f(s,4(¢),4(e(5)), O<e<lce]=(abla>0,

s 1)

Iu1+ M,¢x(§)|g=u = Z:Zl cix(0;), Vi€ (a,bl,
where D;”f‘(p is ¢-Hilfer fractional derivative of order v (0 < v < 1) and type ¢ (0 <: <
1), I;: % is ¢-Riemann-Liouville fractional integral of order 1 — p with respect to the

continuous function ¢ such that ¢'(-) #0 and u = v + ¢t — vt. The nonlinearity f: J x R x
R — Ris a given continuous function, ¥, i =0, 1,...,m, are prefixed points satisfying a <
V1 <--- <1, < b, and ¢; is real numbers.

The objective of this paper is to provide different approach to investigate the existence
and uniqueness of solutions for Eq. (1). To do this, we use a new technique that is based
on the application of & — ¥ -contraction mappings which are defined in appropriate cones
of positive functions. Furthermore, we extend the proposed results to cover the following
modified implicit ¢-Hilfer pantograph fractional differential equation:

Dy () = gl x(s),x(e¢), Dy’ x(e5)), 0<e<1,c€)=(0,T],

. ' 2)
Ié:“’¢x(0+) = ZZI Ci]é’?x(ﬁi),
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which satisfies the same assumptions with 18? is ¢-Riemann-Liouville fractional integral
of order ¢ > 0 relative to the other function ¢ with ¢'(-) #0, g:J x R® — R is continuous,
T >0and ¥; €/ satisfying 0 < ) <t <--- <9, < T fori=1,2,...,m. It is to be noted
that the structure of the boundary conditions in Eq. (1) and Eq. (2) is visible and allows
better interpretations to many physical problems [45]. Reported results in this paper yield
new sufficient existence and uniqueness conditions via different approach comparing to
the existing results in the literature [43, 44, 46, 47]. These conditions are easily attainable
with the feature that they are less restrictive.

The rest of the paper adheres to the following plan: In Sect. 2, we define the norms, nota-
tions, and some spaces of functions. Properties of ¢- Hilfer fractional derivative along with
some necessary results on « — 1 -contraction mappings are stated for completeness. In
Sect. 3, the main results are stated and proved. The examples presented in Sect. 4 demon-
strate the visibility and capability of the proposed results. We end the paper with a con-
clusion in Sect. 5.

2 Requisite preliminaries

Here we state some explanations which are needed throughout this paper. Further, some

essential lemmas and theorems are stated as preparations for the main objectives.
Let0<a < T < 00, and C[a, T] be a Banach space of continuous functions y : [a, T] — R

with the norm ||y|| = max{|y(¢)|:a < ¢ < T'}. The weighted space C,_,;4[a, T] of continu-

ous functions y is defined in [11] as follows:

Ciosla, T1= {y: (@, T) > Ri[¢(s) - $@] "Ns) € Cla, TN}, 0=p<l.
Obviously, Ci_,;4[a, T] is a Banach space with the norm
1-p
9ller = max [[#(5) - $@)] "5(s)].

Definition 2.1 ([11]) Let v > 0, y € L1[a,b], and ¢ € C'[a, b] be an increasing function
with ¢'(¢) #0, ¢ € [, b]. Then the left-sided ¢-Riemann-Liouville integral is stated by

v, 1 s, o
196 = 1 f &/(5)(#(s)  $(9)) " y(s) s,

with I'(v) = [7 sV e ds.

Definition 2.2 ([9]) Let v € (n—1,n), (n =[v] + 1), and y,¢ € C"[a, b] (¢ is increasing),
and ¢'(¢) #0, ¢ € [a,b]. Then ¢-Caputo derivative of a function y is defined by

(v 1 d " n—-v
DYy(c) =< ) I77%y(c)

¢'(c) dt

and
1 d\"
Dy( )=1":”’¢<——) (s),
V&) =L o) Y

respectively.
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Definition 2.3 ([11]) Let v € (n—1,n), (n € N), and y,¢ € C"[a, T] be two functions (¢ is
increasing), and ¢'(¢) #0, ¢ € [a, T]. Then the left-sided ¢-Hilfer derivative of y defined
by

, 1 d\" ;
Dvuf)y(g) It(n v),d)( _) ](I—L)(n—u),qﬁy(g), 0<i<1

“ \¢lordr)
= I;(:’l—v),qul;;q}y(g)’ (H’ =V + - U[). (3)

Lemma 2.4 ([2]) For v >0 and 0 < u < 1, I:;¢ is bounded from Ci_,4la,b] into
Cl—/t;q’)[a»b]'

Now, we introduce the following spaces:
Clpla, T) = {yeCiuyla T],DZ;“qby €Crupla, T}, 0<p<l,
and
Clpla Tl1={y € Ciyypla, T],DZid’y €Ciupla, T}, 0<pu<Ll (4)

Lemma 2.5 ([11]) If u =v + ¢ — v, where v € (0,1), t € [0,1], and y € Cf_m(p [a,T], then
the following identities hold:

IM)DMby 1v+¢th¢y

and
D[Py = Dy,

Lemma 2.6 ([11]) Letv >0,0<u<1,andye Ci_,la,T], € [0,1]. Then we get
DIy (s) = ¥(s)-

Lemma 2.7 ([2]) Let ¢ > a. Then, for v > 0 and | > 0, we have

()

v+p—1
Mo+ )(¢>() ¢(a)) , §>a

2[p(s) - ¢@)]" " =
and
DZL¢ [¢(g) - (]5(61)]11_1 =0 forve(0,1).

Lemma 2.8 ([11]) Let = v + ¢ — vi, where v € (0,1), 1 € [0,1], y € C!* ,[a, T], and

1/4¢

1-p;¢
yeC| b la, T]. Then we have

1u¢

i y(”)
1 D )

¥(5) = 3(s) - “—((5) - pl@)"
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Lemma 2.9 ([11]) Letv>0,0<pu<v,andye Ci_,4la,T] (0<a<T <o00). If u<v, then
I:i¢ :Cipgla, T = Ci_ypla, T is continuous, and the following holds:

L% y(a) = glggggﬁy(g) =0.

Definition 2.10 ([28]) Let ¥ be all functions v : [0, c0) — [0, 00) with:
Py: ¢ is nondecreasing;
Py: let ¥ be the kth iterate of ¥, then Y 2, ¥*(0) < oo for all ¢ > 0.
A function ¢ € W is called a (c)-comparison function.

Definition 2.11 ([28]) Let T: M — M, T is called an o — y-contraction if there exist a
(¢)-comparison ¥ € ¥ and @ : M X M — R with

a(v,w)d(Tv, Tw) < w(d(v,a))), Yv,w € M. (5)
Definition 2.12 ([28]) Let M # &, T:M — M, and « : M x M — R. T is a-admissible if
vweM, av,w)>1 = oTv,Tw)>1.

In the context, we use the following lemma.

Lemma 2.13 ([28]) Forany ¢ € W,
i) ¥(o)<oforg>0;
ii) ¥(0)=0;

iii) at o =0, ¥ is continuous.
We define the following set X, for any ¢ € W:
Ty ={8€(0,00): 8y € W}
The following proposition is helpful.

Proposition 2.14 ([28]) Let (M, d) be a metric space and T : M — M be an o —  contrac-
tion mapping where o : M x M — R and € V. Suppose § € Zw with {&},., C M such
that

&0 = Vo, &p =Ty, (T, T"E1) = 87,

i=1,2,...,p-1. (6)
Then {T"vo} is Cauchy in (M, d).

Theorem 2.15 ([28]) Let T : M — M ((M,d) is a complete space), T is an o — -
contraction fora: M x M — R,and € V. Moreover (6) is satisfied. Then {T" vy} converges
to some v* € M. In addition, if there exists a subsequence {T?™ vy} of {T" v} with

lim a(Te(”)vo,v*) =1€(0,00),

n—00

then v* is a fixed point of T .
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Theorem 2.16 ([28]) Let ¢ : M — M and ¢ be an o —  contraction mapping for o : M x
M — R and € V. Moreover, we have the following:
i) Fix(T) #@;
ii) Let (v,w) € Fix(T) x Fix(T) be an arbitrary pair with v #  and o(v,w) < 1, then
there exists n € Xy, and for some positive integer q, there exists {¢;(v, w)}L, C M such
that

é-O(V’ Ll)) =V, é-q(‘)ra)) =w, a(¢n§i(v’ Ll)), ¢n§i+l(‘)ra))) = 77_1’ neN

and i=1,2,...,q-1. 7)
Then ¢ has a unique fixed point.

3 Main results
Let E = C(J, R). We define the cone K C E by

K = {x € Elx(s) = 0,5 € (,b]}. (®)
Let M = {f :] — R;f is continuous}. We endow M with a metric defined by

dx,y) = %=yl = sup {|x(s) -»(s)|}.
s€(a,b]

Theorem 3.1 ([21]) Let = v +t — v, where v € (0,1) and « € [0,1]. A function x is the
solution of Eq. (1) if and only if it holds in the following:

Tx(g) :=x(c)

| T((<) - pla))!
- I'(v)

D
< Ya [ FO@0)-66)" 6, xe0) ds

+ i | PO -00) (5500 (e5) ©)
I'(v) a o ’ ’ ’

where

1

L= T ) -, o) —p@y T

Theorem 3.2 Suppose that the following conditions hold:
(i) Yt cilp(@) —pla) < 1;
(i) The function f :] x R x R — R* satisfies the following condition:

P I = ylloovT (v)
= ATINFT L, cild(9) - p(a)” + N¥)’

If (s,(5), x(e5)) = f (5, 7(5), y(5))

where N = sup{¢(c) — ¢(@)}ce(ap)-

Page 6 of 14
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(iii) Fors €], we have
xyeK, x<y = f(sx(s),x(es)) <f(s(5)y(es)).

(iv) I xg € M such that xo(s) < T1xo(s), s€]J.
Then Eq. (1) has a unique solution.

Proof The results are stated in several steps.
Step 1. First we show T : K — K. By condition (i), we have

m

F(w) - c(@®) - p@)" ™ =0

i=1

Thus, it is easy to see that 7: K — K.
Step 2. We demonstrate that T is an o — ¥ -contraction.

For this purpose, we can write

| T1x(s) — Tuy(s)|

| T((6) - gl
- I'(v)

m 9
<Xa [ 06000 - 66" 15,409, s665) ds

/¢ () —o(s) f(s,x(s),x(es))ds

m

1
WZ / ¢ ()(P(9:) — 9(5)" ™ f (5:5(5), y(es)) ds

i || PO -90)" S50 tes) ds

_IT1@(s) - pla))"!
- I'(v)

m ¥
XY ¢ / ¢ ($)(D(0) — ()" |f (5,2(5), x(e5)) — £ (5, 3(5), y(es)) | ds
i=1 a

1 s / v-1
5 / &/(5)(6(c) = 9(5))" " (5,%(6),x(e)) - (5,¥(5), y(e9)) | ds

<{ % = yllocvT (v) } IT1(#(s) ~ p(@)*!
2(1TINPL YT cilp(9:) - pla))V + NV) (v)

3 [ Y0600 - 06" ds
i=1 4

1 3 ’ _ v-1
= / &'5)((s) - B(6) ds}

=l
e,

Page 7 of 14
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Define o : M x M — R by

1 ifx(s) <y(s)s €,
O((x,y) = (10)
0 otherwise.

Then

% = ¥lloo <alxy) %= ylloe

1Tx = Tiylloo = — 5

Setting ¥/(¢) = 5, we obtain

d(Tix, Try) < alx,y)¥ (d(x,9)),

hence T is an « — 1 -contraction.

Step 3. From (iv), we have a(xy, T1x) = 1, hence 71 is increasing. By induction, we easily
obtain that o (77 %o, T”*lxo) =1,neN.

Step 4. Using Theorem 2.14 and from Step (3), there exists a subsequence {T xo} of
{T7x0} such that

nli)rgoa(Tf(")xo,x*) =1 e (0,00).
Step 5. By Theorem 2.15, x* is a fixed point of 77 and hence x* € M is a solution for (1).
Step 6. In order to show the uniqueness of the solution, we let (i, v) € Fix(T7) x Fix(T1)
be an arbitrary pair with u # v. Without loss generality, we set # < v, then the conclusion
is obvious. Therefore, by Theorem 2.16 the proof is complete. g

Next, we investigate the existence and uniqueness of the solutions for Eq. (2).

Theorem 3.3 ([43]) LetO<v<1,0<t<1,andq=v+t— v Supposeg € Ci_,;4[J,R] for
any z € Ci_ul,R]. If z € Cf—wb [/, R], then x satisfies problem (2) if and only if x satisfies
the mixed-type integral equation

Tx(g) := x(c)

(TF(p + 1)@ (s) — () 1)
C(u)C(p +v)

(Zc,f ¢'(5)(0(0) - () """ g(5,x(c), x(E;)HD“‘“’x(eg))dS)

* T )/ ¢'(5)(6(5) — ()" g(,x(¢), x(e6),1 D x(e ) dis, (11)

where

1
T T+ ) — L cld (@) — pla)rriT

such that T(p + p) # > ey ci(@(9) — ¢la)) L.

Page 8 of 14
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Theorem 3.4 Suppose that the following conditions hold:

(@) X2 cil@(®) = p(a) ! <T(p + p;
(ii) The function g:] x R® — R* satisfies the following condition:

|g(s,x(s), x(es),” Dy x(e 6)) - g (5,(5), y(e5),” Dy y(e )|
- { 2[lx = ylloo }
BB S S (699 - (@) + N

LT (p+v)

where N = sup{¢(s) — ¢(a)}ce(ap)-
(iii) Fors e ], we have

x,yek, x=<y
= g(sx(),x(es)./ Dy x(ec)) < g(s,5(5), 5(e3),1 Dy y(e ).

(iv) I xg € M such that xy(s) < T1xo(s), s € J.

Then problem (2) has a unique solution.

Proof The results are stated in several steps.

Step 1. First we show T; : K — K. By condition (i), we have

m

C(u+p) = Y c(¢(0) - dl@)"" ™ >0.

i=1

Thus, T; : K — K.
Step 2. We demonstrate that T} is an « — 1 -contraction.

For this purpose, we can write

| Th2(s) - Thy(s)|

_|TT(p + 1)(¢(s) — ¢(0)" "
F(M)F(P+U)

m

>e / (B0 - ()" Tonls) ds

S
5 | Y000 -00) T s

CTT(p+10)(9(s) - ¢>(0>)”1 = / (s

v+p-1
()T (o +v) $(s)) T1,(s)ds

1 | PO -00) T

_ TT(p +1)(@(s) - ()" ’”
') (o +v)

e / &) (B0 = $()"" | Tuals) = T, (5)| ds

1[5, © ()HT ol
m/a @' ()(B(s) = p(s))" | T1.(s) = T1,(s)| ds

3 2/l% = ylloc

- {B(TF(/H#)N“‘I o

(T (p+v)

D+ S NY) }

llu+,o
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y TT(p + m)(9(s) — p(0))"*!
() (p +v)

m v , v+p-1 1 S , -

X ;Ci/a @' (s)(o(D:) — p(s)) ds + F(v)/a ¢'(5)(p(c) — ()" ds
<{ 2l =l } T (p + p)N#-!
" (el s o (g9) — p(ae + ANy I | TGIT (o +v)

- Ci v+p v

x ; U+p(¢(l7i)—¢(ﬂ)) t oo :|

i)

Define « : M x M — R by the following:

1 ifx(s) <y(s)s €],
alx,y) = (12)
0 otherwise.

Then

2[1% = ylloo

Tx = Tyl < 3

2||x_y||oo
_ <
3 <al(x,y)

Setting ¥ () = 2?;, we obtain

d(Tyx, T1y) < a(x,y)¥ (d(x,)).

Hence T is an o — {-contraction.

Step 3. By (iv), a(xo, T1x0) = 1. Further, as T is increasing, we can easily get «(77«o,
T{*'x)=1,neN.

Step 4. From step (3), there exists a subsequence {Tf (")xo} of {T7xo} with

nlingoa(Tf(”)xo,x*) =1€(0,00).
Step 5. By applying Theorem 2.15, we conclude that x* is a fixed point of T3, that is,
x* € M is a solution to equation (2).
Step 6. To prove the uniqueness, we let (4, v) € Fix(T1) x Fix(T;) be an arbitrary pair with
u #v. Without loss generality, we set # < v, then the result is concluded. By Theorem 2.16

the proof is perfect. d

4 Application

Here, we present two examples concerning Theorem 3.2 and Theorem 3.4. The validity of
the examples demonstrates the applicability of the proposed results. For our purpose, we
translate the pantograph fractional differential equations to an integral equation. Due to
the complexity of the obtained integral equation, however, it is difficult to use other fixed
point theorems in the study of the existence and uniqueness. Hence, our technique proves
to be helpful to overcome this limitation.
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Example 4.1 Consider the following terminal value problem:

1 0ses
DY () = s (1+ y(s)| + Iyes)), O<e<lce(1,2],

L.s (13)
11+ |§:1 = Zi:l Cix(l?,'), 17[ S (1,2]

Setting f (¢, u,v) = 29e%(l + |u| + |v|) for each u,v € R, ¢ € (1,2], and

1
citn,2] = 11,2 = {f: (1,2 x B — Ry (¢ —¢)*f e CI1,2]}.
Letting 91 = 2,0, =3, 93 =2, 94 =2 and
Vei—e Ver —e Vei—e e —e
1= , €= , 3= , Cy = )
4 4 4 4

we can obtain Z?:l ci(p(;) - ¢(1))771 < 1. Hence condition (i) from Theorem 3.2 is satis-
fied. On the other hand,

BT

If (s, %(5), x(e5)) = f (5, ¥(5), y(£9)) | = 00573

)| = [y(s)| + |x(es)| = [y(es)|)
f I = ¥lloc
2(IT'|(e? Z Lciveli —e+ /e —e)

- ||x—y||oovr<u)
T 2(|TINFLY T i@ (9y) — pla)V + NV)’

<

where N = sup{¢(s) — ¢(1)}ce1,2) = sup{eS — e}ceqr2) = €% — e and [|x — ¥|loc = sup{|x(s) —
¥(6)}ce2)- Therefore condition (i) of Theorem 3.2 holds. Further, it is easy to show that
item (iif) in Theorem 3.2 is true. Now, since T7(0) > 0, so by choosing xo = 0, we can
establish condition (iv) from Theorem 3.2. Therefore, all requirements of Theorem 3.2
hold which guarantee the existence and uniqueness of solution for (13).

Example 4.2 Consider the following terminal value problem:

L0ses 1 05
DI y(6) = — 20— (14 ()] + Iy(e<)| + IDE™ yec)),
9(e7 +e3 +e7 +2e2-5e) (14)

L.¢
112+e |§=1 = Zi:l Cix(l?i)r 191‘ € (1’211

where 0 < ¢ <1and ¢ €(1,2].

Let us find solution of the problem from the following cone:
1 0ses 1 0ses 1o
K={xyeCUR): DL x—DL™ y|_ < lx-ylloc,x <y= DL x<D2 “yl.

2_
Setting g(¢,u,v,w) = 2 ﬂ;e f)u:‘ulﬂv‘”wl) for each u,v,w € R, ¢ € (1,2], and

9(e7 +e3 +e7 +2e2—5¢)

Clo,21=CY L [11,2] = {g: (1,2] x R® — Rj (ef —e)%g € C[1,2]}.
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Letting p = 19 :%,192:%,193: ,194:2,andc1:C2:C3:c4:é,wecanobtain

3 (¢ - ¢(@)”" T <T(p + o).
i=1

Hence condition (i) from Theorem 3.4 is satisfied. On the other hand,

|g(s,x(5), x(e5), DZ’ * x(ss)) —g(s,y(s),y(ss),Dl%io;egy(ss))|

) ~[3(6)] + x(es)] ~ [es)| + [P (e )] ~ D} pte)|

1058 ,05
_ @l =le + 1D 5= DYy )2/ 7@ o)

9(6% +ed ret +2e2 - 5e)

2]lx - yllooy/ (€% — €)

=35 1 4
3(e7 +e3 +e7 +2e*—5e)

2||x Yoo

p+u)N" !
Tt 2ie

v
i=1 U+p UF(U N )

where N = sup{(s) — ¢(1)}ceq,2) = supfe® — e}ceqo) = € — e and |lx — ylloo = supflx(s) -
¥(6)}ce2)- Therefore condition (i) of Theorem 3.4 holds. Further, it is easy to show that
item (iii) in Theorem 3.4 is true. Now since 77(0) > 0, so by choosing x¢ = 0, we can estab-
lish condition (iv) from 3.4. Therefore, all requirements of 3.4 hold which guarantee the
existence and uniqueness of solution for (14).

5 Conclusion

The fractional derivatives involving ¢- Hilfer of a function relative to the other function
have widely been used due to their tremendous applications in modeling of various phe-
nomena.

Here, we investigated two initial value problems of implicit ¢-Hilfer fractional panto-
graph differential equations. Unlike the methods used in the literature which were based
on classical fixed point theorems, we utilized the « — 1-contractions to demonstrate the
existence and uniqueness of solutions for the proposed problems. The mappings are de-
fined in appropriate cones of positive functions. In spite of the complex structure of ¢-
Hilfer fractional derivative, which causes some limitations, we proposed different tech-
niques that produced sufficient existence and conditions which are more appropriate than
the existing conditions. For the sake of confirmation, we constructed particular examples
corresponding to the main theorems that illustrate the applicability of the mentioned as-
sumptions.

Results of this paper provide a new technique that associates the study of theory of con-
traction mappings with the theory fractional differential equations. We believe that the
contents of this paper will be of great significance for enthusiasts in these two theories.
In this context, many promising topics could be discussed in the future such as inclusion
boundary value problems involving ¢-Hilfer fractional pantograph differential equations
and system of fractional pantograph differential equations by using common fixed point

theorems of some contractions.
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