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Abstract
We introduce the non-homogeneous Dirac-harmonic equation for differential forms
and characterize the basic properties of solutions to this new type of differential
equations, including the norm estimates and the convergency of sequences of the
solutions. As applications, we prove the existence and uniqueness of the solutions to
a special non-homogeneous Dirac-harmonic equation and its corresponding reverse
Hölder inequality.
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1 Introduction
This is our continuous work on the Dirac-harmonic equation started in the recent pa-
per [1] in which we studied the homogeneous Dirac-harmonic equation for differential
forms and established some basic estimates, including the Caccioppoli-type inequality
and the weak reverse Hölder inequality for the solutions of the homogeneous Dirac-
harmonic equation. The purpose of this paper is to introduce the non-homogeneous
Dirac-harmonic equation d�A(x, Du) = B(x, Du) for differential forms and study its solv-
ability as well as establish some essential estimates for its solutions, where D = d + d∗ is
the Hodge–Dirac operator, d is the exterior differential operator, d∗ is the Hodge cod-
ifferential that is the formal adjoint operator of d, A and B are operators satisfying cer-
tain conditions. In the last several decades, the A-harmonic equation d�A(x, du) = 0 and
the p-harmonic equation d�(du|du|p–2) = 0, which are special cases of our new equation
(Du = du if u is a function (0-form) or a co-closed form), have been very well studied [2].
These equations only involve du. However, in many situations, we need to deal with du,
d�u, and Du = du + d�u, such as in the case of Poisson’s equation ω = D(D(u)) + H(ω),
where ω ∈ Lp(�,�l) is any differential form defined on the bounded domain M ⊂ Rn,
n ≥ 2, u = G(ω) and G is Green’s operator [2]. Hence, we introduced and studied the ho-
mogeneous Dirac-harmonic equation d�A(x, Du) = 0 for differential forms in [1].

In this paper, we extend our previous work and introduce the non-homogeneous Dirac-
harmonic equation d�A(x, Du) = B(x, Du) for differential forms. We establish some essen-
tial estimates, including the Caccioppoli-type estimate, the reverse Hölder inequality and
the Poincaré–Sobolev imbedding theorems with Orlicz norm for solutions of the new
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equation. We also show that the limit of a convergent sequence of solutions for the non-
homogeneous Dirac-harmonic equation is still a solution of the equation. Finally, we study
the existence and uniqueness of solutions to a special non-homogeneous Dirac-harmonic
equation.

Throughout this paper, let Q be a ball (or a cube) in M ⊂ Rn, and �k = �k(Rn) be the
set of all differential k-forms u(x) with the expression

u(x) =
∑

I

ωI(x) dxI =
∑

ωi1i2···ik (x) dxi1 ∧ dxi2 ∧ · · · ∧ dxik

in Rn, where I = (i1, i2, . . . , ik), 1 ≤ i1 < i2 < · · · < ik ≤ n. As extensions of functions, differ-
ential forms and the related equations have been very well investigated and widely used in
some fields of mathematics and physics, see [3–8] for example. The space of all differential
k-forms is denoted by D′(M,�k) and the space of all differential forms in Rn is denoted
by D′(M,�). For any u ∈ D′(M,�k), the vector-valued differential form

∇u =
(

∂u
∂x1

,
∂u
∂x2

, . . . ,
∂u
∂xn

)

consists of differential forms

∂u
∂xi

∈ D′(M,�k), i = 1, 2, . . . , n,

where the partial differentiation is applied to the coefficients of u. The norm ‖∇u‖p,M is
defined by

‖∇u‖p,M =

(∫

M

( n∑

i=1

∣∣∣∣
∂u
∂xi

∣∣∣∣
2
)p/2

dx

) 1
p

.

We use Lp(M,�k) to denote the classical Lp space of differential k-forms with the norm
defined by

‖u‖p,M =
(∫

M

∣∣u(x)
∣∣p dx

) 1
p

=
(∫

M

(∑

I

∣∣ωI(x)
∣∣2

)p/2

dx
) 1

p

Similarly, Lp(M,�) is used to denote the Lp space of all differential forms defined in M,
where � = �(Rn) =

⊕n
l=0 �l(Rn) is a graded algebra with respect to the exterior product

and 1 < p < ∞. For the set �, we denote the pointwise inner product by 〈·, ·〉 and the
module by | · |, then for any α ∈ � and β ∈ �, the global inner product (·, ·) is given by

(α,β) =
∫

M
〈α,β〉. (1.1)

A non-homogeneous Dirac-harmonic equation for differential forms is of the form

d�A(x, Du) = B(x, Du), (1.2)
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where D = d + d� is the Dirac operator, operators A : M × �(Rn) → �(Rn) and B : M ×
�(Rn) → �(Rn) satisfy the following conditions:

∣∣A(x, ξ )
∣∣ ≤ a|ξ |p–1,

〈
A(x, ξ ), ξ

〉 ≥ |ξ |p, and
∣∣B(x, ξ )

∣∣ ≤ b|ξ |p–1 (1.3)

for almost every x ∈ M and all ξ ∈ �l(Rn). Here, 0 < a < 1 and b > 0 are constants and 1 <
p < ∞ is a fixed exponent associated with (1.2). Let W 1,p

loc (M,�) =
⋂

W 1,p(M′,�), where
the intersection is for all M′ compactly contained in M. A solution to (1.2) is an element
of the Sobolev space W 1,p

loc (M,�l–1) such that

∫

M

〈
A(x, Du), dϕ

〉
+

〈
B(x, Du),ϕ

〉
dx = 0 (1.4)

for all ϕ ∈ W 1,p(M,�l–1) with compact support. The corresponding homogeneous equa-
tion to (1.2) is of the form

d�A(x, Du) = 0, (1.5)

where A satisfies the corresponding conditions defined in (1.3).
It should be noticed that, for any differential form u in the harmonic field H(M,�l), we

have Du = 0. Hence, u is a solution of the non-homogeneous Dirac-harmonic equation
(1.2), that is, any differential form u ∈ H(M,�l) is a solution of equation (1.2). Also, if
u is a function (0-form) or a co-closed form, then d�u = 0 and Du = du. Thus, both the
non-homogeneous Dirac-harmonic equation (1.2) and the homogeneous Dirac-harmonic
equation (1.5) reduce to the corresponding non-homogeneous A-harmonic equation and
the homogeneous A-harmonic equation, that is, equation (1.2) reduces to

d�A(x, du) = B(x, du), (1.6)

equation (1.5) reduces to

d�A(x, du) = 0 (1.7)

respectively. Both the non-homogeneous and the homogeneous A-harmonic equations
have received much investigation in recent years, see [9–13] for example. It is easy to see
that if u is a function (0-form), both the traditional A-harmonic equation (1.7) and the
Dirac-harmonic equation (1.5) become the usual A-harmonic equation

div A(x,∇u) = 0 (1.8)

for functions. Let A : M × �l(Rn) → �l(Rn) be defined by A(x, ξ ) = ξ |ξ |p–2 with p > 1.
Then, A satisfies conditions (1.3) and equation (1.5) becomes the p-Dirac-harmonic equa-
tion

d�
(
Du|Du|p–2) = 0 (1.9)
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for differential forms. Similarly, if u is a function in (1.9), we obtain the usual p-harmonic
equation

div
(∇u|∇u|p–2) = 0 (1.10)

which is equivalent to the following partial differential equation:

(p – 2)
n∑

k=1

n∑

i=1

uxk uxi uxk xi + |∇u|2�u = 0. (1.11)

Selecting p = 2 in (1.10), we have the Laplace equation �u = 0 for functions in Rn.

2 Basic inequalities
In this section, we establish some basic estimates for solutions to the non-homogeneous
Dirac-harmonic equation for differential forms.

Theorem 2.1 Let u ∈ D′(M,�k), k = 0, 1, . . . , n, be a solution of the non-homogenous Dirac-
harmonic equation (1.2) in a domain M ⊂ Rn. Assume that 1 < p < ∞ is a fixed exponent
associated with the non-homogeneous Dirac-harmonic equation (1.2) and η ∈ C∞

0 (M),
η > 0. Then there exist constants C1 and C2, independent of u and Du, such that

(∫

M
|Du|p|η|p dx

)1/p

≤ C1

(∫

M
|u|p|∇η|p dx

)1/p

+ C2

(∫

M
|u|p|η|p dx

)1/p

. (2.1)

Proof The proof is similar to that of Theorem 2.2 in [1]. We include the key steps that are
different from [1]. We choose the test form φ = –uηp. Hence,

dφ = –d
(
u ∧ ηp) = –du ∧ ηp + (–1)ku ∧ d

(
ηp) = –(du)ηp + (–1)ku ∧ d

(
ηp)

and

〈
A(x, Du), dφ

〉
=

〈
A(x, Du), –(du)ηp〉 +

〈
A(x, Du), (–1)ku ∧ d

(
ηp)〉.

Notice that

∣∣(–1)ku ∧ d
(
ηp)∣∣ ≤ p|η|p–1|u||dη| ≤ p|η|p–1|u||∇η|.

Then
∫

M

∣∣〈A(x, Du), (–1)ku ∧ d
(
ηp)〉∣∣ ≤

∫

M
ap|Du|p–1|η|p–1|u||∇η|dx.

By (1.3) and (1.4), we obtain

∫

M

〈
A(x, Du), dφ

〉

=
∫

M

〈
A(x, Du), –(Du)ηp〉 +

〈
A(x, Du),

(
d�u

)
ηp〉 +

〈
A(x, Du), (–1)ku ∧ d

(
ηp)〉
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≤ –
∫

M
|Du|p|η|p dx +

∫

M
a|Du|p–1(∣∣d�u

∣∣|η|p + p|η|p–1|u||∇η|)dx

≤ –
∫

M
|Du|p|η|p dx +

∫

M
a|Du|p–1|Du||η|p dx +

∫

M
pa|Du|p–1|u||η|p–1|∇η|dx

= –
∫

M
|Du|p|η|p dx +

∫

M
a|Du|p|η|p dx +

∫

M
pa|Du|p–1|u||η|p–1|∇η|dx

= –(1 – a)
∫

M
|Du|p|η|p dx +

∫

M
pa|Du|p–1|u||η|p–1|∇η|dx.

Then

0 =
∫

M

(〈
A(x, Du), dφ

〉
+

〈
B(x, Du),ϕ

〉)

≤ –(1 – a)
∫

M
|Du|p|η|p dx +

∫

M
pa|Du|p–1|u||η|p–1|∇η|dx

+
∫

M
b|Du|p–1|u||η|p dx.

Therefore, using the Hölder inequality with 1 = (p – 1)/p + 1/p, it follows that

(1 – a)
∫

M
|Du|p|η|p dx

≤
∫

M
pa|Du|p–1|u||η|p–1|∇η|dx +

∫

M
b|Du|p–1|u||η|p dx

≤ pa
(∫

M
|Du|p|η|p dx

)(p–1)/p(∫

M
|u|p|∇η|p dx

)1/p

+ b
(∫

M
|Du|p|η|p dx

)(p–1)/p(∫

M
|u|p|η|p dx

)1/p

.

Since 0 < a < 1, we have

(∫

M
|Du|p|η|p dx

)1/p

≤ pa
1 – a

(∫

M
|u|p|∇η|p dx

)1/p

dx +
b

1 – a

(∫

M
|u|p|η|p dx

)1/p

which is (2.1) with C1 ≥ pa/(1 – a) and C2 ≥ b/(1 – a). �

If we let Q be any ball with σQ ⊂ M, where σ > 1. Let η ∈ C∞
0 (σQ) with η = 1 in Q and

|∇η| ≤ C3|Q|–1/n, where C3 > 0 is a constant. Then we have the following simple version
of the Caccioppoli-type estimate.

Corollary 2.2 Suppose that u is a solution of equation (1.2) and Q is a ball with σQ ⊂ M,
where σ > 1. Then there is a constant C, which is independent of u and Du, such that

(∫

Q
|Du|p dx

)1/p

≤ C|Q|–1/n
(∫

σQ
|u|p dx

)1/p

. (2.2)
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From [1], we also have

(∫

Q
|Du|p dx

)1/p

≤ C|Q|–1/n
(∫

σQ
|u – c|p dx

)1/p

, (2.3)

where c is a harmonic form.
Similar to the solutions of the homogeneous Dirac-harmonic equation [1], we also have

the following weak reverse Hölder inequality for the solutions of the non-homogeneous
Dirac-harmonic equation.

Theorem 2.3 Let u be a solution to equation (1.2) in M, σ > 1, and 0 < s, t < ∞. Then there
exists a constant C, that is independent of u, such that

‖u‖s,Q ≤ C|Q|(t–s)/ts‖u‖t,σQ (2.4)

for all cubes or balls Q with σQ ⊂ M.

We will need the following results that can be found from [1].

Lemma 2.4 ([1]) Let u ∈ D′(Q,�l) and Du ∈ Lp(Q,�). Then u – uQ is in W 1,p(Q,�) and

‖u – uQ‖W 1,p(Q,�) ≤ C diam(Q)‖Du‖p,Q. (2.5)

Sometimes, we need to estimate Du. We prove the following version of the reverse
Hölder inequality for Du.

Theorem 2.5 Let u ∈ D′(Q,�l) and Du ∈ Lp(Q,�) and 0 < s, t < ∞. Then there exists a
constant C, independent of u and Du, such that

‖Du‖s,Q ≤ C|Q|(t–s)/st‖Du‖t,σQ (2.6)

for all Q with σQ ⊂ M, here σ > 1 is a constant.

Proof Note that |d�u| = |d � u| and d � u is a closed form, so it is a solution of the A-
harmonic equation. Hence, we can apply the weak reverse Hölder inequality [1] for solu-
tions of the A-harmonic equation to d � u and obtain

∥∥d�u
∥∥

s,Q = ‖d � u‖s,Q ≤ C1|Q|1/s–1/t‖d � u‖t,Q = C1|Q|1/s–1/t∥∥d�u
∥∥

t,σ1Q (2.7)

for any constants 0 < s, t < ∞, and σ1 > 1. Similarly, since du is also a closed form, we have

‖du‖s,Q ≤ C2|Q|1/s–1/t‖du‖t,σ2Q (2.8)

for some constant σ2 > 1. Combining (2.7) and (2.8), we derive that

‖Du‖s,Q =
∥∥du + d�u

∥∥
s,Q

≤ ‖du‖s,Q +
∥∥d�u

∥∥
s,Q
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≤ C2|Q|1/s–1/t‖du‖t,σ2Q + C1|Q|1/s–1/t∥∥d�u
∥∥

t,σ1Q

≤ C3|Q|1/s–1/t(‖du‖t,σ2Q +
∥∥d�u

∥∥
t,σ1Q

)

≤ C3|Q|1/s–1/t(‖Du‖t,σ3Q + ‖Du‖t,σ3Q
)

≤ C4|Q|1/s–1/t‖Du‖t,σ3Q

where σ3 = max{σ1,σ2}, that is,

‖Du‖s,Q ≤ C4|Q|1/s–1/t‖Du‖t,σQ

for any Q with σQ ⊂ M and any constants 0 < s, t < ∞. The proof of Theorem 2.5 is com-
pleted. �

3 Imbedding theorems with Orlicz norms
In this section, we prove the Poincaré–Sobolev imbedding theorems with Orlicz norms
for solutions of the non-homogeneous Dirac-harmonic equation.

We define an Orlicz function to be any continuously increasing function � : [0,∞) →
[0,∞) with �(0) = 0. A convex Orlicz function is a Young function which is finite valued
and vanishes only at 0. The Orlicz space L� (M) consists of all measurable functions f on
M such that

∫
M �( |f |

t ) dx < ∞ for some t = t(f ) > 0. L� (M) is equipped with the nonlinear
Luxemburg norm ‖ · ‖L� (M) by

‖f ‖L� (M) = inf

{
t > 0 :

∫

M
�

( |f |
t

)
dx ≤ 1

}
. (3.1)

Definition 3.1 ([14]) We say that a Young function � lies in the class G(p, q, C), 1 ≤ p ≤
q ≤ ∞, C ≥ 1, if (i) 1/C ≤ �(t1/p)/g(t) ≤ C and (ii) 1/C ≤ �(t1/q)/h(t) ≤ C for all t > 0,
where g is a convex increasing function and h is a concave increasing function on [0,∞).

From [14], each of � , g , and h in the above definition is doubling in the sense that its
values at t and 2t are uniformly comparable for all t > 0, and the consequent fact that

C1tq ≤ h–1(�(t)
) ≤ C2tq, (3.2)

C1tp ≤ g–1(�(t)
) ≤ C2tp,

where C1 and C2 are constants. Also, for all 1 ≤ p1 ≤ p ≤ p2 and α ∈ R, the function
�(t) = tp logα

+ t belongs to G(p1, p2, C) for some constant C = C(p,α, p1, p2). Here log+(t) is
defined by log+(t) = 1 for t ≤ e; and log+(t) = log(t) for t > e. Particularly, if α = 0, we see
that �(t) = tp lies in G(p1, p2, C), 1 ≤ p1 ≤ p ≤ p2.

For any subset E ⊂Rn, we use W 1,�(E,�) to denote the Orlicz–Sobolev space of l-forms
which equals L� (E,�) ∩ L�

1 (E,�) with the norm

‖u‖W 1,� (E) = ‖u‖W 1,� (E,�) = diam(E)–1‖u‖L� (E) + ‖∇u‖L� (E).

If we choose �(t) = tp, p > 1, we obtain the norm for W 1,p(E,�) defined by

‖u‖W 1,p(E) = ‖u‖W 1,p(E,�) = diam(E)–1‖u‖p,E + ‖∇u‖p,E .
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Lemma 3.2 ([1]) Suppose that u ∈ Lp
loc(M,�l) is such that Du ∈ Lp

loc(M,�l+1), 1 ≤ p < ∞,
l = 1, . . . , n, and T is the homotopy operator defined on differential forms. Then

‖u – uB‖W 1,p(Q) ≤ Ap(n)|B|‖Du‖p,Q, (3.3)

‖T du‖W 1,p(Q) ≤ Ap(n)|Q|‖Du‖p,Q, (3.4)

‖T du‖p,Q ≤ C|Q|diam(Q)‖Du‖p,Q, (3.5)

where T : Lp(M,�l) → Lp(M,�l–1) is the homotopy operator defined in [15].

Similar to the proof of Theorem 2.3 in [6], by using Theorem 2.5, we have the following
L� norm estimate.

Lemma 3.3 Let � be a Young function in the class G(p, q, C), 1 ≤ p < q < ∞, C ≥ 1. M be
a bounded and convex domain, and T be the homotopy operator. Assume that �(|Du|) ∈
L1

loc(M) and u is a differential form with Du ∈ Lp
loc(M,�l). Then there exists a constant C,

independent of u, such that

∥∥T(Du)
∥∥

L� (Q) ≤ C‖Du‖L� (σQ) (3.6)

for all balls Q with σQ ⊂ M, where σ > 1 is a constant.

Proof We give the proof here for the purpose of completeness. By (3.5), for any q > 1, we
have

∥∥T(Du)
∥∥

q,Q ≤ C1|Q|1+1/n‖Du‖q,Q (3.7)

for all balls Q with σQ ⊂ M. From the reverse Hölder inequality, for any positive numbers
p and q, we have

(∫

Q
|Du|q dx

)1/q

≤ C2|Q|(p–q)/pq
(∫

σQ
|Du|p dx

)1/p

, (3.8)

where σ > 1 is a constant. Using Jenson’s inequality for h–1, (3.2), (3.7), and (3.8), (i) in
Definition 3.1, the fact that � and h are doubling, and � is an increasing function, we
have

∫

Q
�

(∣∣T(Du)
∣∣)dx

= h
(

h–1
(∫

Q
�

(∣∣T(Du)
∣∣)dx

))

≤ h
(∫

Q
h–1(�

(∣∣T(Du)
∣∣))dx

)

≤ h
(

C3

∫

Q

∣∣T(Du)
∣∣q dx

)

≤ C4�

((
C3

∫

Q

∣∣T(Du)
∣∣q dx

)1/q)
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≤ C4�

(
C5|Q|1+1/n

(∫

Q
|Du|q dx

)1/q)

≤ C4�

(
C6|Q|1+1/n+(p–q)/pq

(∫

σQ
|Du|p dx

)1/p)

≤ C4�

(
Cp

6 |Q|p+p/n+(p–q)/q
(∫

σQ
|Du|p dx

)1/p)

≤ C7g
(∫

σQ
Cp

6 |Q|p+p/n+(p–q)/q
∫

σQ
|Du|p dx

)

≤ C7

∫

σQ
g
(

Cp
6 |Q|p+p/n+(p–q)/q

∫

σQ
|Du|p

)
dx

≤ C8

∫

σQ
�

(
C6|Q|1+1/n+(p–q)/pq|Du|)dx, (3.9)

where 1 + 1
n + (p–q)

pq = 1
n + p(q+1)–q

pq > 0 by p ≥ 1, so that

|Q|1+ 1
n + (p–q)

pq ≤ |M|1+ 1
n + (p–q)

pq ≤ C9.

We know that � is doubling, so that

�
(
C6|Q|1+1/n+(p–q)/pq|Du|) ≤ C10�

(|Du|).

Therefore, combining with (3.9), we have

∫

Q
�

(∣∣T(Du)
∣∣)dx ≤ C11

∫

σQ
�

(|Du|). (3.10)

Again � , g , and h are all doubling, from (3.10) we have

∫

Q
�

( |T(Du)|
λ

)
dx ≤ C

∫

σQ
�

( |Du|
λ

)
(3.11)

for all balls Q with σQ ⊂ M and any constant λ > 0. Thus, with the Luxemburg norm, we
have

∥∥T(Du)
∥∥

L� (Q) ≤ C‖Du‖L� (σQ). (3.12)

Lemma 3.3 is proved. �

From the proof of Lemma 3.3, noticing that � is doubling and ‖du‖p,Q ≤ ‖Du‖p,Q, we
could also get

∥∥T(du)
∥∥

L� (Q) ≤ C diam(Q)‖Du‖L� (σQ). (3.13)

Since � is an increasing function, it is also obvious that

‖du‖L� (Q) ≤ ‖Du‖L� (Q). (3.14)
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Then, similar to Theorem 2.5 in [6], we have the following local Poincaré–Sobolev imbed-
ding theorem.

Theorem 3.4 Let � be a Young function in the class G(p, q, C), 1 ≤ p < q < ∞, C ≥ 1, M
be a bounded and convex domain. Assume that �(|Du|) ∈ L1

loc(M,�) and u is differential
form with Du ∈ Lp

loc(M,�l). Then, there exists a constant C, independent of u, such that

‖u – uQ‖W 1,� (Q) ≤ C‖Du‖L� (σQ) (3.15)

for all balls Q with σQ ⊂ M.

Proof First we notice that the following L� norm inequality holds for any differential
forms, see [6]:

∥∥∇(
T(du)

)∥∥
L� (Q) ≤ C|Q|‖du‖L� (σQ) ≤ C|Q|‖Du‖L� (σQ). (3.16)

Then, by (3.13), (3.14), and (3.16), we have

‖u – uQ‖W 1,� (Q,�l) =
∥∥T(du)

∥∥
W 1,� (Q,�l)

=
(
diam(Q)

)–1∥∥T(du)
∥∥

L� (Q) +
∥∥∇(

T(du)
)∥∥

L� (Q)

≤ C1‖Du‖L� (σ1Q) + C2‖Du‖L� (σ2Q)

≤ C3‖Du‖L� (σQ),

where σ1 > 1, σ2 > 1 and σ = max{σ1,σ2} and σQ ⊂ M. �

Lemma 3.5 ([12]) Each domain M has a modified Whitney cover of cubes V = {Qi} such
that

⋃

i

Qi = M,
∑

Qi∈V
χ√

5
4 Qi

≤ NχM

and some N > 1, and if Qi ∩ Qj �= ∅, then there exists a cube R (this cube need not be a
member of V) in Qi ∩ Qj such that Qi ∪ Qj ⊂ NR. Moreover, if M is δ-John, then there is a
distinguished cube Q0 ∈ V which can be connected with every cube Q ∈ V by a chain of cubes
Q0, Q1, . . . , Qk = Q from V and such that Q ⊂ ρQi, i = 0, 1, 2, . . . , k, for some ρ = ρ(n, δ).

Finally, we have the following global Poincaré–Sobolev imbedding theorem.

Theorem 3.6 Let � be a Young function in the class G(p, q, C), 1 ≤ p < q < ∞, K ≥ 1, M
be a bounded domain. Assume that �(|Du|) ∈ L1(M,�) and u is a differential form with
Du ∈ Lp

loc(M,�l). Then there exists a constant C, independent of u, such that

‖u – uM‖W 1,� (M) ≤ C‖Du‖L� (M) (3.17)

for any bounded domain M ⊂Rn.
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Proof Using (3.13) and Lemma 3.5, we have the global estimate

‖T du‖L� (M) ≤ C1 diam(M)‖Du‖L� (M). (3.18)

Note that, for any differential form u and the constant p > 1, we have

‖∇Tu‖p,Q ≤ C2|Q|‖u‖p,Q (3.19)

for all balls Q ⊂Rn. Hence

∥∥∇T(du)
∥∥

p,Q ≤ C2|Q|‖du‖p,Q ≤ C3|Q|‖Du‖p,Q. (3.20)

Starting from (3.20), using Theorem 2.5 and the same skills developed in the proof of
Lemma 3.3, we obtain

‖∇T du‖L� (Q) ≤ C4|Q|‖Du‖L� (σQ), (3.21)

where σ > 1 is a constant. From (3.21) and Lemma 3.5, it follows that

‖∇T du‖L� (M) ≤ C5‖Du‖L� (M). (3.22)

Thus,

‖u – uM‖W 1,� (M) = ‖T du‖W 1,� (M)

=
(
diam(M)

)–1‖T du‖L� (M) + ‖∇T du‖L� (M)

≤ (
diam(M)

)–1(C1 diam(M)‖Du‖L� (M)
)

+ C5‖Du‖L� (M)

≤ C6‖Du‖L� (M)

We have completed the proof of Theorem 3.6. �

Remark 1 If we choose �(t) to be some special function in G(p, q, C), we will obtain some
special versions of the imbedding theorem. For example, if we select �(t) = tp logα(e + t)
with p ≥ 1, α > 0 or �(t) = tp, p ≥ 1, we will have Lp(log L)α-norm or Lp-norm imbedding
theorem, respectively.

4 Limits of convergent sequences
In this section, we consider the limits of convergent sequences of differential l-forms un(x)
defined in a bounded domain M ⊂Rn. We say an l-form un(x) converges uniformly in M
if all its coefficient functions under the base {dxi1 , dxi2 , . . . , dxil } converge uniformly in M.
For example, we say the sequence

un(x) =
∑

I

un
I (x) dxI =

∑
un

i1i2···ik (x) dxi1 ∧ dxi2 ∧ · · · ∧ dxik

converges uniformly in M if all its coefficient functions un
i1i2···ik (x) converge uniformly in

M as n goes to infinity. For example, for x ∈ M ⊂R3, let

un(x) = Pn(x) dx1 ∧ dx2 + Qn(x) dx1 ∧ dx3 + Rn(x) dx2 ∧ dx3.
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We say that un(x) converges uniformly in M as n → ∞ if its all coefficient functions Pn(x),
Qn(x), and Rn(x) converge uniformly in M as n → ∞.

In addition to condition (1.3), we also assume that the operators A and B are Lipschitz
continuous with respect to ξ and satisfy

∣∣A(x, ξ ) – A(x,η)
∣∣ ≤ L1

(|ξ |2 + |η|2)
p–2

2 |ξ – η|, (4.1)
∣∣B(x, ξ ) – B(x,η)

∣∣ ≤ L2
(|ξ |2 + |η|2)

p–2
2 |ξ – η|

for all x ∈ M and all ξ ,η ∈ ∧l . Here L1 and L2 are positive constants. See [16] for Lipschitz
continuous condition and other conditions that the operators A and B could satisfy. From
(2.1) in [16], we know that A(x, ξ ) and B(x, ξ ) have a polynomial growth with respect to
the variable ξ . Specifically, for any x ∈ M and ξ ∈ �l , we have

m1|ξ |p–1 ≤ ∣∣A(x, ξ )
∣∣ ≤ L1|ξ |p–1, (4.2)

m2|ξ |p–1 ≤ ∣∣B(x, ξ )
∣∣ ≤ L2|ξ |p–1,

where m1, m2, L1, and L2 are positive constants. Also, a simple example of this kind of
operators is the p-Laplace system A(x, ξ ) = B(x, ξ ) = |ξ |p–2ξ .

Theorem 4.1 Let un(x) be a solution of the non-homogeneous Dirac-harmonic equation
(1.2) with conditions (1.3) and (4.1) such that Dun(x) converges uniformly to Du(x) in M
and un(x0) converges for some x0 ∈ M. Then u(x) is also a solution of the non-homogeneous
Dirac-harmonic equation (1.2).

Proof Assume that un(x) is a solution of the non-homogeneous Dirac-harmonic equation
(1.2), that is,

∫

M

〈
A(x, Dun), dϕ

〉
+

〈
B(x, Dun),ϕ

〉
= 0. (4.3)

Using the basic properties of the inner product and (4.1), we obtain

∣∣∣∣

(∫

M

〈
A(x, Dun), dϕ

〉
+

〈
B(x, Dun),ϕ

〉)
–

(∫

M

〈
A(x, Du), dϕ

〉
+

〈
B(x, Du),ϕ

〉)∣∣∣∣

≤
∫

M

∣∣〈A(x, Dun), dϕ
〉
–

〈
A(x, Du), dϕ

〉∣∣ +
∫

M

∣∣〈B(x, Dun),ϕ
〉
– B(x, Du),ϕ〉∣∣

=
∫

M

∣∣〈A(x, Dun) – A(x, Du), dϕ
〉∣∣ +

∫

M

∣∣〈B(x, Dun) – B(x, Du),ϕ
〉∣∣

≤
∫

M

∣∣A(x, Dun) – A(x, Du)
∣∣|dϕ|dx +

∫

M

∣∣B(x, Dun) – B(x, Du)
∣∣|ϕ|dx

≤
∫

M
L1

(|Dun|2 + |Du|2)
p–2

2 |Dun – Du||dϕ|dx

+
∫

M
L2

(|Dun|2 + |Du|2)
p–2

2 |Dun – Du||ϕ|dx.
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Letting n → ∞ in the above inequality and noticing that Dun(x) converges uniformly to
Du(x) in M, we can switch the limit operation with the integral operation and obtain

lim
n→∞

∣∣∣∣

(∫

M

〈
A(x, Dun), dϕ

〉
+

〈
B(x, Dun),ϕ

〉)

–
(∫

M

〈
A(x, Du), dϕ

〉
+

〈
B(x, Du),ϕ

〉)∣∣∣∣ = 0.

Hence, it follows that

∫

M

〈
A(x, Du), dϕ

〉
+

〈
B(x, Du),ϕ

〉

= lim
n→∞

∫

M

〈
A(x, Dnu), dϕ

〉
+

〈
B(x, Dnu),ϕ

〉

= 0

by (4.3), which indicates that u(x) is also a solution of the non-homogeneous Dirac-
harmonic equation (1.2). We have completed the proof of Theorem 4.1. �

5 Existence and uniqueness of solutions
As mentioned in Sect. 1, there exist many solutions to equation (1.2) in general if the op-
erators A and B only satisfy condition (1.3). However, if we require that the operators A
and B satisfy some more conditions or one of these operators in (1.2) is replaced with cer-
tain type of differential form, we need to study the existence and uniqueness of solutions
to equation (1.2). For example, we consider the following type of the non-homogenous
Dirac-harmonic equation for differential forms:

d�A(x, Du) = d�f (x), (5.1)

where the natural space we consider in (5.1) is the Sobolev space W 1,q(M,�), D = d + d�

is the Dirac operator; f ∈ W 1,p(M,�l) is a differential form, and the operator A : M ×
�(M) → �(M) satisfies the following conditions:

(i) The mapping x → A(x, ξ ) is measurable for all ξ ∈ �(M);
(ii) The Lipschitz type inequality

|A(x, ξ ) – A(x,η)| ≤ L1(|ξ |2 + |η|2)
q–2

2 |ξ – η|.
(iii) The monotonicity inequality

|〈A(x, ξ ) – A(x,η), ξ – η〉| ≥ L2(|ξ |2 + |η|2)
q–2

2 |ξ – η|2.
(iv) A(x, 0) ∈ Lp(M,�).
Here, L1 > 0 and L2 > 0 are two constants, and 1 < p, q < ∞ are the conjugate exponents

with 1/p + 1/q = 1 determined by conditions (ii)–(iv).
It should be noticed that we do not require that the operator A appearing in (5.1) satisfies

condition (1.3). Before the upcoming argument, we first give the following definition.

Definition 5.1 Given the formal joint operator d� = (–1)nl+1 � d� defined on D′(M,�l+1)
with the values in D′(M,�l), n ≥ 1 and l = 0, 1, . . . , n, the forms in the image of d� are called
the co-exact l-forms, and the forms in the kernel of d� are called the co-closed l-forms.
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Indeed, we should point out that the construction of equation (5.1) is applicable and
reasonable. To be precise, if the differential form u is a function (0-form) defined in M,
then equation (5.1) reduces to a divergence A-harmonic equation

div(A,∇u) = div f . (5.2)

The properties of equation (5.2), including its solvability, have been very well studied in
[17]. Equation (5.1) could be viewed as a generalization of the divergence A-harmonic
equations (5.2). If the differential form u is a co-closed form, equation (5.1) is actually
corresponding to the non-homogenous A-harmonic equation

d�A(x, du) = d�f .

For more descriptions and details, we refer the readers to [18] and [19]. From the other per-
spective, according to the non-homogenous Dirac-harmonic equation in Sect. 1, one may
see that every element in the image of the operator B(x, ξ ) in (1.3) is of the class D′(M,�l),
l = 0, 1, . . . , n. Specifically, assumed that B(x, ξ ) is a co-exact form, by Definition 5.1 of the
co-exact form, there exists a differential form f ∈ D′(M,�l+1) such that B(x, ξ ) = d�f . Thus,
we are inspired to introduce the non-homogenous Dirac-harmonic equation (5.1). It is
worth noting that this equation is different from equation (1.2) where a differential form
u with Du = 0 is always a solution of equation (1.2). The differential form u here with
Du = 0 is not a solution of equation (5.1) (unless d�f = 0 and A(x, 0) = 0), since we cannot
derive that A(x, Du) = d�f from Du = 0. Therefore, our focus in this section is to explore
the technique for the solvability of the non-homogenous Dirac-harmonic equation (5.1).

To facilitate the latter assertion of Theorem 5.3, we begin with the following lemma 5.2
given by Minty and Browder in [20].

Lemma 5.2 Let X be the real and reflexive Banach space and X∗ be the dual space of X.
Suppose that T : X → X∗ is hemicontinuous operator on X such that, for every v1, v2 ∈ X
and v1 �= v2,

(Tv1 – Tv2, v1 – v2) > 0 (5.3)

and

lim‖v‖→∞
(Tv, v)
‖v‖ = ∞. (5.4)

Then, for any b ∈ X∗, the equation Tx = b has a unique solution on X.

With this monotone operator theory, we can establish Theorem 5.3 as follows.

Theorem 5.3 Let the operator A satisfy conditions (i)–(iv). Then the non-homogenous
Dirac-harmonic equation (5.1) has a solution in the Sobolev space W 1,p(M,�) for p > 1
and l = 0, 1, . . . , n. Moreover, the solution to equation (5.1) is unique except for a harmonic
form c satisfying dc = d�c = 0.
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Before giving the rigorous proof, we need to make a brief analysis first for this theorem.
According to Lp-Hodge decomposition, for any differential form u ∈ Lp(M,�l), there are
α ∈ dW 1,p(M,�l–1), β ∈ d�W 1,p(M,�l+1), and h ∈Hp(M,�l) such that

u = dα + d�β + h(u) (5.5)

for 1 < p < ∞, l = 1, 2, . . . , n, where h is the harmonic projection in Lp.
We should point out that there exist other two Hodge decompositions of Lp-space,

which are equivalent to (5.5), see [21] for more descriptions. Without loss of generality,
we only apply (5.5) to the proof of Theorem 5.3. In addition, it should be noticed that
dW 1,s(M,�l) and d�W 1,s(M,�l) are both Banach subspaces of Ls(M,�), s > 1. For sim-
plicity, since d + d� = D, denote

dW 1,p(M,�l) ⊕ d�W 1,p(M,�l) = DW 1,p(M,�l), (5.6)

dW 1,q(M,�l) ⊕ d�W 1,q(M,�l) = DW 1,q(M,�l).

It is obvious to see that DW 1,p(M,�l) is the dual space of DW 1,q(M,�l). We can define a
projection operator K : Lp(M,�l) → Lp(M,�l) such that

Ku = dα + d�β . (5.7)

By some simple observation, one may readily see that the projection operator K is a
bounded linear operator. Due to (5.5) and the boundedness of the harmonic projection
h, we have

‖Ku‖p =
∥∥dα + d�β

∥∥
p (5.8)

=
∥∥dα + d�β + h(u) – h(u)

∥∥
p

≤ ‖u‖p +
∥∥h(u)

∥∥
p

≤ ‖u‖p + C1‖u‖p

≤ C2‖u‖p.

Furthermore, given u satisfying KA(x, Du) = Kf , according to definition (5.7) of the oper-
ator K , we have A(x, Du) – f is of the class Hp(M,�) of the harmonic field, which implies
that (A(x, Du) – f , dω) = 0 for any ω ∈ W 1,p(M,�). Thus, u is a solution of Dirac-harmonic
equation (5.1). With these facts in hand, for every fixed x ∈ M, we find that the key point
to prove the existence in Theorem 5.3 is equivalent to showing that

KA(x, Du) = Kf (5.9)

with respect to the differential form u. Namely, denote F(v) = KA(x, v), in which F is a
nonlinear mapping defined on DW 1,q(M,�l) with values in DW 1,p(M,�l).

Next, our primary work is to deal with the continuity, monotonicity, and coercivity of
the operator F.
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Proof For any fixed point x ∈ M, the expression of operator K shows that A(x, Du) =
KA(x, Du) + h(A(x, Du)), where h(A(x, Du)) ∈ Hp(M,�). Notice that (h, Dη) = 0 for any
η ∈ Lq(M,�). Thus, for all u ∈ W 1,q(M,�), we have

(
A(x, Du), Dη

)
=

(
KA(x, Du) + h

(
A(x, Du)

)
, Dη

)
(5.10)

=
(
KA(x, Du), Dη

)
.

To prove the continuity, the Lipschitz inequality (ii) and bounded property (5.8) ensure
that F is continuous with respect to v.

For the monotonicity, in accord to condition (iii) and (5.10), we derive that

(
F(Du) – F(Dη), Du – Dη

)
=

(
KA(x, Du) – KA(x, Dη), Du – Dη

)

=
(
A(x, Du) – A(x, Dη), Du – Dη

)

=
∫

M

〈
A(x, Du) – A(x, Dη), Du – Dη

〉

≥ L2

∫

M

(|Du|2 + |Dη|2)
q–2

2 |Du – Dη|2 dμ

≥ 0.

On the other hand, using condition (iii) again gives that

(F(Du), Du)
‖Du‖q

–
(F(0), Du)

‖Du‖q
=

(KA(x, Du), Du)
‖Du‖q

–
(KA(x, 0), Du)

‖Du‖q

=
(A(x, Du) – A(x, 0), Du)

‖Du‖q

=
∫

M〈A(x, Du) – A(x, 0), Du – 0〉
‖Du‖q

≥ L2‖Du‖q
q

‖Du‖q

= L2‖Du‖q–1
q . (5.11)

Hence, it follows that

(F(Du), Du)
‖Du‖q

–
(F(0), Du)

‖Du‖q
→ ∞ (5.12)

as ‖Du‖q → ∞. By applying Hölder’s inequality and condition (iv), we notice that

|(F(0), Du)|
‖Du‖q

=
|(KA(x, 0), Du)|

‖Du‖q
(5.13)

=
|(A(x, 0), Du)|

‖Du‖q

≤ ‖A(x, 0)‖p‖Du‖q

‖Du‖q

=
∥∥A(x, 0)

∥∥
p < ∞.
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Then substituting (5.13) and (5.12) into (5.11) yields

(F(Du), Du)
‖Du‖q

→ ∞, (5.14)

which shows that the operator F is monotonic. By applying Lemma 5.2, we find that, for
any g ∈ DW 1,p(M,�l), there exists unique v ∈ DW 1,q(M,�l) such that F(v) = g , in par-
ticular, for g = Kf , in view of definition (5.6), there exists unique u ∈ W 1,q(M,�l) with
Du ∈ DW 1,q(M,�l) such that F(Du) = Kf , that is, KA(x, Du) = Kf . Thus, we derive that
the solution of equation (5.1) in W 1,q(M,�) exists. Moreover, by the monotonic result,
one may see that, except for the harmonic form c, the solution to equation (5.1) is unique.
Therefore, the desired result Theorem 5.3 holds. �

Now, with the above existence theorem in mind, we can derive the following local result
as an application for Theorem 2.5.

Example 5.4 Let u0 ∈ be the solution of the non-homogenous equation (5.1) and 0 < s, t <
∞. Then, according to the definition of the weak solution to the non-homogenous equa-
tion, we know that u0 ∈ D′(M) and D(u0) ∈ Lp(M). Thus, by applying Theorem 2.5, we
know that the reverse Hölder inequality of Du holds. That is, there exists a constant C > 0,
independent of u and Du, such that

‖Du‖s,Q ≤ C|Q|‖Du‖t,Q (5.15)

holds for any ball (or cube) Q with σQ ⊂ M, where σ > 1 is a constant.

It should be pointed out that the reverse Hölder inequality of Du is a key tool in some
sense for the study on the non-homogenous equations driven by the term Du, especially
for the norm inequalities, such as Poincaré–Sobolev imbedding inequalities, which play
an important role in the characterization of the continuity and regularity of the solutions.

6 Conclusion
In this paper, we introduce a new Dirac-harmonic equation (1.2) and present an exhaus-
tive study on the norm estimates of the solution for this equation. Precisely, in Sect. 2,
using some new techniques and the methods previously developed by others, we obtain
the essential inequalities, including Caccioppoli inequalities and reverse Hölder inequali-
ties. In Sect. 3, by using the basic inequalities, we derive the Poincaré–Sobolev imbedding
inequalities in terms of Orlicz norm. In Sect. 4, with these norm estimates in hand, we
get the convergency of solution sequences for this equation under certain structure as-
sumptions. In the last section, we assert that there exists a unique nontrivial solution for
a concrete non-homogenous Dirac-harmonic equation.

In general, non-homogenous equation (1.2) is an extension of the p-Laplacian equation
for differential forms. In fact, it is quite applicable to many related fields such as geometry
analysis and elasticity theory. For example, the elasticity results involving the determinants
could be understood better if they can be formulated by the equation for differential forms,
such as that every conformal mapping f corresponds to a solution of a special harmonic
equation for differential forms.
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