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1 Introduction
In this paper, we consider the following fourth-order problem:

⎧
⎪⎪⎨

⎪⎪⎩

u(iv)(x) = λf (x, u(x)), in [0, 1],

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = μg(u(1)),

(1.1)

where λ,μ ∈ ]0,∞[, g : R → R is a continuous function and f : [0, 1] × R → R is an L1-
Caratéodory function.

Problem (1.1) describes the static equilibrium of a flexible elastic beam of length 1 when,
along its length, a load f is added to cause deformation. Precisely, conditions u(0) = u′(0) =
0 mean that the left end of the beam is fixed and conditions u′′(1) = 0, u′′′(1) = μg(u(1))
mean that the right end of the beam is attached to a bearing device, given by the function g .

Existence and multiplicity of solutions for fourth-order boundary value problems have
been discussed by several authors in the last decades; see for example [1, 4, 5, 9–13, 16,
17, 19–21] and the references therein.

In particular, Yang et al. [21] used Ricceri’s variational principle [18] to establish the
existence of at least two classical solutions generated from g for problem (1.1) with μ = 1.
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The authors in [9], using a multiplicity result by Cabada and Iannizzotto [8], ensured
the existence of at least two nontrivial classical solutions for the problem

⎧
⎪⎪⎨

⎪⎪⎩

u(4)(x) + λf (x, u(x)) = 0, 0 < x < 1,

u(0) = u′(0) = u′′(1) = 0,

u′′′(1) = λg(u(1)),

where the functions f : [0, 1] × R → R and g : R → R are continuous and λ ≥ 0 is a real
parameter.

Bonanno et al. [4], by means of an abstract critical points result of Bonanno [2], studied
the existence of at least one nonzero classical solution for problem (1.1).

In [12], by using a smooth version of [7, Theorem 2.1], Heidarkhani et al. established the
existence of infinitely many generalized solutions for the following perturbed fourth-order
problem:

⎧
⎪⎪⎨

⎪⎪⎩

u(4)(t) = λf (t, u(t)) + μg(t, u(t)) + p(u(t)), 0 < t < 1,

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = h(u(1)),

where λ > 0, μ ≥ 0 are two parameters, f , g are two L2-Caratéodory functions, and p, h
are Lipschitz continuous functions such that p(0) = h(0) = 0.

Also in [11], the present authors obtained sufficient conditions to guarantee that prob-
lem (1.1) has infinitely many classical solutions.

More recently, Heidarkhani and Gharehgazlouei [13], using an immediate consequence
of [3, Theorem 3.3], ensured the existence of at least three generalized solutions for the
problem

⎧
⎪⎪⎨

⎪⎪⎩

u(iv)(x) = λf (x, u(x)) + h(u(x)), in [0, 1],

u(0) = u′(0) = u′′(1) = 0,

u′′′(1) = μg(u(1)),

where λ > 0, μ ≥ 0 are two parameters, f : [0, 1] ×R → R is an L1-Caratéodory function,
g : R → R is a nonnegative continuous function, and h : R → R is a Lipschitz continuous
function such that h(0) = 0.

Motivated by the above works, the aim of the present paper is to offer the existence of
three solutions for fourth-order problem (1.1) by using two kinds of critical point theorems
obtained in [3, 6].

For completeness, we cite the recent and nice works [14, 15] as general references on
the subject treated in this paper.

2 Abstract setting
In order to study problem (1.1), the variational setting is the space

X :=
{

u ∈ H2([0, 1]
)

: u(0) = u′(0) = 0
}

,
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where H2([0, 1]) is the Sobolev space of all function u : [0, 1] → R such that u and its
distributional derivative u′ are absolutely continuous and u′′ belongs to L2([0, 1]). X is a
Hilbert space with the inner product

〈u, v〉 :=
∫ 1

0
u′′(t)v′′(t) dt

and the corresponding norm

‖u‖ :=
(∫ 1

0

(
u′′(t)

)2 dt
) 1

2
.

We observe that the norm ‖ · ‖ on X is equivalent to the usual norm

∫ 1

0

(∣
∣u(t)

∣
∣2 +

∣
∣u′(t)

∣
∣2 +

∣
∣u′′(t)

∣
∣2)dt.

It is well known that the embedding X ↪→ C1([0, 1]) is compact and

‖u‖C1([0,1]) := max
{‖u‖∞,

∥
∥u′∥∥∞

} ≤ ‖u‖ (2.1)

for all u ∈ X (see [21]).
We say that u ∈ X is a weak solution of problem (1.1) whenever

∫ 1

0
u′′(x)v′′(x) dx – λ

∫ 1

0
f
(
x, u(x)

)
v(x) dx + μg

(
u(1)

)
v(1) = 0

for all v ∈ X. By a classical solution of problem (1.1) we mean a function u ∈ C1([0, 1]) such
that u(iv)(x) ∈ C([0, 1]) and the boundary conditions and the equation are satisfied in [0, 1].

Our main tools are critical point theorems that we recall here in a convenient form. The
first result has been obtained in [6], and it is a more precise version of Theorem 3.2 of [3].
The second one has been established in [3].

Lemma 2.1 ([6, Theorem 3.6]) Let X be a reflexive real Banach space; � : X →R be a co-
ercive, continuously Gâteaux differentiable, and sequentially weakly lower semicontinuous
functional whose Gâteaux derivative admits a continuous inverse on X∗; � : X → R be a
continuously Gâteaux differentiable functional whose Gâteaux derivative is compact such
that

�(0) = �(0) = 0.

Assume that there exist r > 0 and x ∈ X, with r < �(x), such that
(a1) sup�(x)≤r �(x)

r < �(x)
�(x) ;

(a2) for each λ ∈ �r := ] �(x)
�(x) , r

sup�(x)≤r �(x) [, the functional � – λ� is coercive.
Then, for each λ ∈ �r , the functional � – λ� has at least three distinct critical points in X.

Lemma 2.2 ([3, Theorem 3.3]) Let X be a reflexive real Banach space; � : X → R be a con-
vex, coercive, and continuously Gâteaux differentiable functional whose derivative admits
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a continuous inverse on X∗; � : X →R be a continuously Gâteaux differentiable functional
whose derivative is compact such that

inf
X

� = �(0) = �(0) = 0.

Assume that there are two positive constants r1, r2 and x ∈ X, with 2r1 < �(x) < r2
2 , such

that
(b1)

sup�(x)<r1 �(x)
r1

< 2
3

�(x)
�(x) ;

(b2) sup�(x)<r2 �(x)
r2

< 1
3

�(x)
�(x) ;

(b3) for each λ in

�′ :=
]

3
2

�(x)
�(x)

, min

{
r1

sup�(x)<r1 �(x)
,

r2
2

sup�(x)<r2 �(x)

}[

and for every x1, x2 ∈ X , which are local minima for the functional � – λ� and such
that �(x1) ≥ 0 and �(x2) ≥ 0, one has infs∈[0,1] �(sx1 + (1 – s)x2) ≥ 0.

Then, for each λ ∈ �′, the functional �–λ� has at least three distinct critical points which
lie in �–1(] – ∞, r2[).

We use the following notations:
Corresponding to f , g , we introduce the functions F , G as follows:

F(x, ξ ) :=
∫ ξ

0
f (x, t) dt, G(ξ ) := –

∫ ξ

0
g(t) dt

for all x ∈ [0, 1] and ξ ∈ R. Also, for each θ and η of positive real numbers, define

Fθ =
∫ 1

0
sup
|ξ |≤θ

F(x, ξ ) dx, Gθ = sup
|ξ |≤θ

G(ξ ), Gη = inf|ξ |≤η
G(ξ ).

3 Main results
In this section, we present our main result on the existence of at least three weak solutions
for problem (1.1).

In order to introduce our result, we fix θ ,η > 0 such that

32π4η2

27
∫ 1

3
4

F(x,η) dx
<

θ2

2Fθ
,

and pick

� :=
]

32π4η2

27
∫ 1

3
4

F(x,η) dx
,

θ2

2Fθ

[

. (3.1)

Set

δ := min

{
θ2 – 2λFθ

2Gθ
,

32
27π4η2 – λ

∫ 1
3
4

F(x,η) dx

G(η)

}

(3.2)
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and

δ := min

{

δ,
1

max{0, 4 lim sup|ξ |→+∞
G(ξ )
ξ2 }

}

, (3.3)

where we read r/0 = +∞. For instance, δ = +∞ when lim sup|ξ |→+∞
G(ξ )
ξ2 ≤ 0 and G(η) =

Gθ = 0.
With the above notations we are able to prove the following multiplicity property.

Theorem 3.1 Assume that there exist two positive constants θ , η, with θ < 8
3
√

3π2η, such
that

(A1) F(x, t) ≥ 0 for each (x, t) ∈ [ 3
8 , 3

4 ] × [0,η];

(A2) Fθ

θ2 < 27
64π4

∫ 1
3
4

F(x,η) dx

η2 ;

(A3) lim sup|ξ |→+∞
supx∈[0,1] F(x,ξ )

ξ2 < Fθ

2θ2 .
Then, for every λ ∈ �, where � is given by (3.1), and for every continuous function g : R →R

such that

lim sup
|ξ |→+∞

G(ξ )
ξ 2 < +∞,

there exists δ > 0 given by (3.3) such that, for each μ ∈ [0, δ[, problem (1.1) admits at least
three distinct weak solutions.

Proof Our aim is to apply Lemma 2.1 to problem (1.1). To this end, we introduce the
functionals �,� : X →R as follows:

�(u) :=
1
2
‖u‖2,

�(u) :=
∫ 1

0
F
(
x, u(x)

)
dx +

μ

λ
G

(
u(1)

)
.

It is well known that � is a differentiable functional whose differential at the point u ∈ X
is

� ′(u)(v) =
∫ 1

0
f
(
x, u(x)

)
v(x) dx –

μ

λ
g
(
u(1)

)
v(1)

for every v ∈ X. Moreover, in [21], the authors proved that � ′ is strongly continuous on
X, which implies that � ′ is a compact operator. Furthermore, by standard arguments, �

is coercive and continuously differentiable whose differential at the point u ∈ X is

�′(u)(v) =
∫ 1

0
u′′(x)v′′(x) dx

for each v ∈ X. Also, in [21] it is proved that �′ admits a continuous inverse on X∗. More-
over, � is sequentially weakly lower semicontinuous. One can show that the weak solu-
tions of problem (1.1) are exactly the solutions of the equation �′(u) – λ� ′(u) = 0.
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Fix λ ∈ � and put r = θ2

2 . Then, for u ∈ X with �(u) ≤ r,

sup
�(u)≤r

�(u) = sup
�(u)≤r

(∫ 1

0
F
(
x, u(x)

)
dx +

μ

λ
G

(
u(1)

)
)

≤
∫ 1

0
sup
|t|≤θ

F(x, t) dx +
μ

λ
Gθ = Fθ +

μ

λ
Gθ .

Therefore,

sup�(u)≤r �(u)
r

≤ 2Fθ

θ2 +
2μ

λ

Gθ

θ2 .

From this, if Gθ = 0, it is clear that

sup�(u)≤r �(u)
r

<
1
λ

, (3.4)

while if Gθ > 0, it turns out to be true bearing in mind that

μ <
θ2 – 2λFθ

2Gθ
.

Denote by w the function of X defined by

w(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

0, x ∈ [0, 3
8 ],

η cos2( 4πx
3 ), x ∈ ] 3

8 , 3
4 [,

η, x ∈ [ 3
4 , 1].

(3.5)

It is easy to see that

�(w) =
32
27

π4η2.

Therefore, since θ < 8
3
√

3π2η, one has �(w) > r.
From assumption (A1) we obtain

�(w) =
∫ 1

0
F
(
x, w(x)

)
dx +

μ

λ
G

(
w(1)

) ≥
∫ 1

3
4

F(x,η) dx +
μ

λ
G(η).

So, we have

�(w)
�(w)

≥
∫ 1

3
4

F(x,η) dx + μ

λ
G(η)

32
27π4η2

.

Hence, if G(η) ≥ 0, we find

�(w)
�(w)

>
1
λ

, (3.6)
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while if G(η) < 0, the same relation holds since

μG(η) >
32
27

π4η2 – λ

∫ 1

3
4

F(x,η) dx.

Now, taking into account (3.4) and (3.6) results in

�(w)
�(w)

>
1
λ

>
sup�(u)≤r �(u)

r
,

and condition (a1) of Lemma 2.1 is verified.
Now, in order to prove the coercivity of the functional � – λ� , first we assume that

lim sup
|ξ |→+∞

supx∈[0,1] F(x, ξ )
ξ 2 > 0.

Therefore, fix

lim sup
|ξ |→+∞

supx∈[0,1] F(x, ξ )
ξ 2 < ε <

Fθ

2θ2 ,

from (A3) there is a function hε ∈ L1([0, 1]) such that

F(x, ξ ) ≤ εξ 2 + hε(x)

for each x ∈ [0, 1] and ξ ∈R. Taking (2.1) into account and since λ < θ2

2Fθ , it follows that

λ

∫ 1

0
F
(
x, u(x)

)
dx ≤ λ

(

ε

∫ 1

0

(
u(x)

)2 dx +
∫ 1

0
hε(x) dx

)

<
θ2

2Fθ

(

ε

∫ 1

0

(
u(x)

)2 dx +
∫ 1

0
hε(x) dx

)

≤ θ2

2Fθ

(
ε‖u‖2 + ‖hε‖L1([0,1])

)
(3.7)

for each u ∈ X. Moreover, since μ < δ, we obtain

lim sup
|ξ |→+∞

G(ξ )
ξ 2 <

1
4μ

.

Thus, there is a positive constant hμ such that

G(ξ ) ≤ 1
4μ

ξ 2 + hμ

for each ξ ∈R. Thus, taking again (2.1) into account, it follows that

G
(
u(1)

) ≤ 1
4μ

(
u(1)

)2 + hμ

≤ 1
4μ

‖u‖2 + hμ (3.8)
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for each u ∈ X. Finally, putting together (3.7) and (3.8), we have

�(u) – λ�(u) ≥ 1
2
‖u‖2 –

θ2

2Fθ

(
ε‖u‖2 + ‖hε‖L1([0,1])

)
–

1
4
‖u‖2 – μhμ

=
1
2

(
1
2

–
θ2

Fθ
ε

)

‖u‖2 –
θ2‖hε‖L1([0,1])

2Fθ
– μhμ.

On the other hand, if

lim sup
|ξ |→+∞

supx∈[0,1] F(x, ξ )
ξ 2 ≤ 0,

there exists a function hε ∈ L1([0, 1]) such that F(x, ξ ) ≤ hε(x) for each x ∈ [0, 1] and ξ ∈R,
and arguing as before we obtain

�(u) – λ�(u) ≥ 1
4
‖u‖2 –

θ2‖hε‖L1([0,1])

2Fθ
– μhμ.

Both cases lead to the coercivity of � – λ� , and condition (a2) of Lemma 2.1 is verified.
Since from (3.4) and (3.6)

λ ∈ � ⊆
]

�(w)
�(w)

,
r

sup�(u)≤r �(u)

[

,

Lemma 2.1 ensures the existence of at least three critical points for the functional � – λ� ,
and the proof is complete. �

Theorem 3.2 Let θ1, θ2, and η be positive constants such that 3
4

√
3
2

θ1
π2 < η < 3

8

√
3
2

θ2
π2 and

f : [0, 1]×R→ R be a mapping for which f (x, t) ≥ 0 for every (x, t) ∈ [0, 1]× [0, θ2]. Assume
that

(B1)

∫ 1
0 F(x, θ1) dx

θ2
1

<
64
81

π4 ∫ 1
3
4

F(x,η) dx

η2 ;

(B2)

∫ 1
0 F(x, θ2) dx

θ2
2

<
32
81

π4 ∫ 1
3
4

F(x,η) dx

η2 .

Then, for each

λ ∈ �′ :=
]

32
18

π4η2
∫ 1

3
4

F(x,η) dx
,

1
2

min

{
θ2

1
∫ 1

0 F(x, θ1) dx
,

θ2
2

2
∫ 1

0 F(x, θ2) dx

}[

and for every nonpositive continuous function g : R →R, there exists δ∗ > 0, where

δ∗ := min

{
θ2

1 – 2λ
∫ 1

0 F(x, θ1) dx
2Gθ1

,
θ2

2 – 4λ
∫ 1

0 F(x, θ2) dx
4Gθ2

}

,
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such that, for all μ ∈ [0, δ∗[, problem (1.1) admits at least three distinct weak solutions ui

for i ∈ {1, 2, 3} such that 0 ≤ ‖ui‖∞ < θ2 for every i ∈ {1, 2, 3}.

Proof Without loss of generality, we can assume f (x, t) ≥ 0 for every (x, t) ∈ [0, 1] ×R. Fix
λ, μ, and g as in the conclusion and take � and � as in the proof of Theorem 3.1. Arguing
as in the proof of Theorem 3.1, we observe that the regularity assumptions of Lemma 2.2
on � and � are satisfied. Then, our aim is to verify (b1) and (b2).

To this end, put w as given in (3.5), and let r1 = θ2
1
2 and r2 = θ2

2
2 . It is obvious that 2r1 <

�(w) < r2
2 . It follows from μ < δ∗ and Gη = 0 that

sup�(u)<r1 �(u)
r1

=
sup�(u)<r1 (

∫ 1
0 F(x, u(x)) dx + μ

λ
G(u(1)))

r1

≤ 2
∫ 1

0 F(x, θ1) dx + 2μ

λ
Gθ1

θ2
1

<
1
λ

<
2
3

∫ 1
3
4

F(x,η) dx + μ

λ
Gη

32
27π4η2

≤ 2
3

�(w)
�(w)

.

Similarly,

2 sup�(u)<r2 �(u)
r2

≤ 4
∫ 1

0 F(x, θ2) dx
θ2

2
+

4μ

λ

Gθ2

θ2
2

<
1
λ

<
2
3

∫ 1
3
4

F(x,η) dx + μ

λ
Gη

32
27π4η2

≤ 2
3

�(w)
�(w)

.

This implies that (b1) and (b2) of Lemma 2.2 are verified.
Finally, we verify that assumption (b3) of Lemma 2.2 holds. Let u1 and u2 be two local

minima for � – λ� . Then, u1 and u2 are critical points for � – λ� , and so they are weak
solutions for problem (1.1). We claim that the weak solutions obtained are nonnegative.
Indeed, if u0 is a weak solution of problem (1.1), then one has

∫ 1

0
u′′

0(x)v′′(x) dx = λ

∫ 1

0
f
(
x, u0(x)

)
v(x) dx – μg

(
u0(1)

)
v(1)

for all v ∈ X. Arguing by a contradiction, assume that the set A := {x ∈ [0, 1] : u0(x) < 0}
is nonempty and of positive measure. Put v0 := min{0, u0}. Clearly, v0 ∈ X. So, taking into
account that u0 is a weak solution and by choosing v = v0, from our sign assumptions on
the data, one has

∫

A

(
u′′

0(x)
)2 dx = λ

∫

A
f
(
x, u0(x)

)
u0(x) dx – μg

(
u0(1)

)
u0(1) ≤ 0.

Hence, u0 ≡ 0 on A which is absurd. Then we deduce u1(x) ≥ 0 and u2(x) ≥ 0 for each
x ∈ [0, 1]. Thus, it follows that su1 + (1 – s)u2 ≥ 0 for all s ∈ [0, 1], and that

�
(
su1 + (1 – s)u2

)
=

∫ 1

0
F
(
x, su1(x) + (1 – s)u2(x)

)
dx +

μ

λ
G

(
su1(1) + (1 – s)u2(1)

) ≥ 0.
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So, also (b3) holds. From Lemma 2.2, for every

λ ∈
]

3
2

�(w)
�(w)

, min

{
r1

sup�(u)<r1 �(u)
,

r2
2

sup�(u)<r2 �(u)

}[

,

the functional � – λ� has at least three distinct critical points which are the solutions of
problem (1.1) and the conclusion is achieved. �

4 Conclusion
By using as the main tools two critical point theorems presented recently in the works [3]
and [6], we proved two multiplicity properties (Theorems 3.1 and 3.2) that guarantee the
existence of an open interval ]λ′,λ′′[ and δ̃ > 0 such that, for each λ ∈ ]λ′,λ′′[ and for each
μ ∈ [0, δ̃[, a class of fourth-order boundary value problems depending on parameters λ

and μ (problem (1.1)) admits at least three distinct weak solutions.
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