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Abstract
The fundamental goal of the study under consideration is to establish some of the
existence criteria needed for a particular fractional inclusion model of cantilever beam
in the setting of quantum calculus using new arguments of existence theory. In this
way, we investigate a fractional integral equation that corresponds to the
aforementioned boundary value problem. In a more concrete sense, we design new
multi-valued operators based on this integral equation, which belong to the certain
subclasses of functions, called α-admissible and α-ψ -contractive multi-functions, in
combination with the AEP-property. Also, we use some inequalities such as
�-inequality and set-valued version inequalities. Moreover, we add a simulative
example for a numerical analysis of our results obtained in this study.
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1 Introduction
Fractional calculus and its corresponding differential equations and BvPs have been widely
utilized in the vast fields of science, including biology, chemistry, economy, physics, engi-
neering, etc. [1–3]. Fractional derivatives do not merely represent a generalization of or-
dinary derivatives but also precisely and accurately describe the complex behavior, in con-
trast to integer order derivatives, of diverse physical structures. Several investigators have
examined differential equation of arbitrary order starting from the existence and unique-
ness of solutions to the analytical and computational approaches in search of solutions.
A number of monographs and articles are available concerning the developments of the-
ory of fractional differential equations and inclusions [4–31].

On the other hand, the quantum calculus is a field without the concept of limit that cor-
responds to the traditional infinitesimal one. Regardless of their vast background, both
theories are in the domain of mathematical analysis, working on their properties did not
emerge two ages later. Quantum difference operators (q-DiffOper) were first exhibited
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and introduced by Jackson [32] and have been widely analyzed in order to explain com-
plex physical structures with a number of non-differentiable functions. In early nineties,
numerous academician [33, 34] came forward with the studies on q-difference equations
which lately received great interest and attention [32, 35, 36]. There are some intriguing
insights into IVPs and BVPs coupled with q-difference equations in [37–48].

The q-analogue of a second order q-difference inclusion BvP was studied by Ahmad
and Ntouyas [49] in 2011, and they explored the existence criteria by utilizing fixed point
theory:

⎧
⎨

⎩

CD2
qu(ς ) ∈ ψ(ς ,u(ς )),

u(0) = αu(M), Dqu(0) = αDqu(M),

where ς ∈ [0, M], ψ : [0, 1] ×R → P(R) is a compact-valued map and α ∈R \ {1}.
Ahmad et al. [50] reviewed later the existence criteria of the following q-difference in-

clusion involving q-antiperiodic boundary conditions:

⎧
⎨

⎩

CDω
q u(ς ) ∈ ψ(ς ,u(ς ),Dqu(ς ),D2

q(ς )),

u(0) + u(1) = 0, Dqu(0) + Dqu(1) = 0, D2
qu(0) + D2

qu(1) = 0,

where ς ∈ [0, 1], q ∈ (0, 1), 2 < ω ≤ 3, CD
β

q denotes the q-fractional derivatives in Caputo
sense of order ω and ψ : [0, 1] ×R

3 → P(R).
The malformations of an elastically balanced beam with fixed and released end points

can be represented by means of a mathematical model as the fourth-order BvP

⎧
⎨

⎩

u(4)(ς ) = ψ(ς ,u(ς ),u′(ς ),u′′(ς ),u′′′(ς )),

u(ς )|ς=0 = u′(ς )|ς=0 = u′′(ς )|ς=1 = u′′′(ς )|ς=1 = 0,
(1)

where ψ : [0, 1] × Y → R is a continuous function with Y = R
4. In fact, Li and Gao [51]

studied the existence results for lower and upper solution of above fully fourth-order BvP
(1) which is named cantilever beam equation in mechanics. In 2019, Li and Chen [52]
presented their existence findings to problem (1) by utilizing an approach based on the
fixed point theorem due to Leray–Schauder. In 2020, Zhang and Cui [53] utilized the con-
cepts of fixed point index theory and investigated the positivity of solutions of BvP (1)
over a cone, considering ψ : [0, 1] × B → [0, +∞], B = [0, +∞] × (–∞, +∞) × (–∞, 0) ×
(–∞, +∞).

The following nonlinear Caputo fractional quantum BvP is designed by the above re-
search works and is equipped with the fractional quantum differential conditions:

⎧
⎨

⎩

CDκ
q(CDω

q u)(ς ) ∈ 	(ς ,u(ς ), CDω
q u(ς ), CDω+1

q u(ς ), CDω+2
q u(ς )),

u(ς )|ς=0 = CDω
q u(ς )|ς=0 = CDω+1

q u(ς )|ς=1 = CDω+2
q u(ς )|ς=1 = 0,

(2)

where q ∈ (0, 1), ς ∈ S := [0, 1], κ ∈ (2, 3], ω ∈ (0, 1], ω + 1 ∈ (1, 2], ω + 2 ∈ (2, 3] and 	 :
S×R

4 → P(R) is a multi-function with specified properties. Also CDH
q displays q-Caputo

derivative of order H ∈ {κ ,ω,ω + 1,ω + 2}.
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Note that the above inclusion q-FBvP (2) is an extension of the standard practical model
of the cantilever beam to the fractional q-analogue structure. By assuming κ = 3, ω = 1,
and q → 1 and 	(·) = {ψ(·)}, we obtain the above fourth-order differential inclusion arising
in the cantilever beam model (1). One can state some physical interpretations for the q-
FBvP model (2) by assuming such assumptions over κ and ω as follows: u(ς ) stands for
the deformation function, CD3

q→1(CD1
q→1u) is the load density stiffness, CD3

q→1u denotes
the stiffness of the function u under the shear force, CD2

q→1u denotes the stiffness of the
function u in the bending moment, and CD1

q→1u represents the slope [54, 55].
About the novelty of this work, one can state that such a fractional model of cantilever

beam based on q-difference operators has not been studied in any research paper so far,
and on this new structure, we derive our mathematical and analytical results ensuring
the solution’s existence by means of some special subclasses of multi-functions. For our
applied technique, we here use α-ψ-contractive multi-functions for the confirmation of
the existence of a fixed point and also the confirmation of the existence of an end point by
making use of another family of multi-functions having the AEP-property.

The rest of the manuscript is structured as follows: Sect. 2 is dedicated to the funda-
mental ideas of q-analogue of fractional calculus. In the beginning of Sect. 3, we provide a
lemma which presents the solution of the cantilever beam q-FBvP (2) in the form of an in-
tegral equation, and then, by making use of the α-admissible multi-valued mappings with
control function and approximate end point theory, we guarantee the solutions’ existence
for the cantilever beam q-FBvP (2). Section 4 is assigned to the illustration of the results
presented in Sect. 3 with the aid of an example. Finally, Sect. 5 describes the concluded
remarks.

2 Preliminaries
We compile and study, in the light of our approaches used in this investigation, some aux-
iliary and primitive definitions regarding q-calculus.

We suppose that 0 < q < 1. The q-analogue of the function (m1 – m2)n given for n ∈ N0

is defined as (m1 – m2)(0) = 1 coupled with

(m1 – m2)(n) =
n–1∏

k=0

(
m1 – m2qk),

so that m1, m2 ∈ R and N0 := {0, 1, 2, . . . } [56]. Now, n = ω is a constant which is supposed
to belong to R. We represent the following q-analogue of the existing power function
(m1 – m2)n in a q-fractional setting:

(m1 – m2)(ω) = mω
1

∞∏

n=0

1 – ( m2
m1

)qn

1 – ( m2
m1

)qω+n (3)

for m1 �= 0. We consider that, by taking m2 = 0, m(ω)
1 = mω

1 [56]. For the same m1 ∈ R, a
q-number [m1]q is exhibited as

[m1]q =
1 – qm1

1 – q
= qm1–1 + · · · + q + 1.
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The q-gamma function is illustrated using such a format


q(ς ) =
(1 – q)(ς–1)

(1 – q)ς–1 , (4)

so that ς ∈R \ {0, –1, –2, . . .} [56, 57]. Also, 
q(ς + 1) = [ς ]q
q(ς ) [57].

Definition 1 ([58, 59] Riemann–Liouville q-integral) For ω ≥ 0 and for a given function
u ∈ CR([0, +∞)), the RL-q-integral of u is introduced by

R
I

ω
q u(ς ) =

1

q(ω)

∫ ς

0
(ς – qz)(ω–1)

u(z) dqz (ω > 0),

provided that the above value is finite and RI0
qu(ς ) = u(ς ).

For ω1,ω2,ω, θ > 0, we have these properties [59]:
(1) RI

ω1
q (RI

ω2
q u)(ς ) = RI

ω1+ω2
q u(ς ),

(2) RIω
q ςθ = 
q(θ+1)


q(θ+ω+1)ς
θ+ω .

If θ = 0, then RIω
q 1(ς ) = 1


q(ω+1)ς
ω for any ς > 0.

Definition 2 ([58, 59] Caputo q-derivative) Given n – 1 < ω < n, i.e., n = [ω] + 1 and a
function u ∈ AC(n)

R
([0, +∞)), the ωth-Caputo q-derivative for this function is formulated

by

C
D

ω
q u(ς ) =

1

q(n – ω)

∫ ς

0
(ς – qz)(n–ω–1)

D
n
qu(z) dqz,

if the integral exists.

Clearly, CDω
q c = 0 for any c ∈R and

C
D

ω
q ςθ =


q(θ + 1)

q(θ – ω + 1)

ςθ–ω (ς > 0).

Lemma 3 ([60]) Assume that n – 1 < ω < n and u ∈ C(n)
R

([0, +∞)). Then

(R
I

ω
q

C
D

ω
q u

)
(ς ) = u(ς ) –

n–1∑

k=0

(Dk
qu)(0)


q(k + 1)
ς k .

In view of the above lemma, by assuming the constants �k := (Dk
qu)(0)


q(k+1) > 0, the given frac-
tional homogeneous q-difference equation CDω

q u(ς ) = 0 has a general solution which is
given by u(ς ) = �0 + �1ς + �2ς

2 + · · · + �n–1ς
n–1 such that �0, . . . ,�n–1 ∈ R and n = [ω] + 1

[60]. It should be mentioned that, for each continuous function u, and by Lemma 3, we
obtain

(R
I

ω
q

C
D

ω
q u

)
(ς ) = u(ς ) + �0 + �1ς + �2ς

2 + · · · + �n–1ς
n–1,

where �0, . . . ,�n–1 illustrate constants in R [60].
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Regarding (X,‖ · ‖) as a normed space, the classes PCL(X) (all closed sets), PBN(X)
(all bounded sets), PCP(X) (all compact sets), and PCV(X) (all convex sets) involve the
respective form of subsets of X.

Definition 4 ([61]) An element u ∈ X is an end point of the multi-function 	 : X →
P(X) if 	(u) = {u}.

The multi-function 	 admits an approximate end point property (AEP) if

inf
u1∈X

sup
u2∈	(u1)

d(u1,u2) = 0.

Mohammadi et al. [62] introduced a new notion given as the subclass � of all nondecreas-
ing functions like

ψ : [0,∞) → [0,∞)

so that
∑∞

n=1 ψn(ς ) < ∞ for any ς > 0. Now, by making use of such a category, we define a
new family of multi-functions.

Definition 5 ([62]) Let 	 : X → PCL,BN(X) and α : X2
 → [0, +∞). Then

(1) 	 is α-admissible if, for each u1 ∈X and u2 ∈ 	u1, inequality α(u1,u2) ≥ 1 gives
α(u2,u3) ≥ 1 for each u3 ∈ 	u2.

(2) 	 is an α-ψ-contractive multi-function if ∀u1,u2 ∈X,

α(u1,u2)Hd(	u1,	u2) ≤ ψ
(
d(u1,u2)

)
,

where Hd is the Pompeiu–Hausdorff metric.

Next we recall requisite theorems concerning the investigation of the proposed q-FBvP
(2).

Theorem 6 ([62]) Let us assume a complete metric space (X, d), a nonnegative map
α : X2

 → [0,∞), and ψ ∈ � . In addition, assume 	 : X → PCL,BN(X) to be an α-ψ-
contractive multi-function, and let

(1) 	 be α-admissible;
(2) α(u0,u1) ≥ 1 for some u0 ∈X and u1 ∈ 	u0;
(3) for each sequence {un} in X with α(un,un+1) ≥ 1 for all n ∈N, a subsequence {unt } of

{un} exist such that, for all t ∈N, α(unt ,u) ≥ 1.
Then 	 admits a fixed point.

Theorem 7 ([61]) Let (X, d) be a metric space of complete type and consider
(1) an upper semi-continuous map ψ : [0,∞) → [0,∞) with ψ(ς ) < ς and

lim inf
ς→∞

(
ς – ψ(ς )

)
> 0, ∀ς > 0;

(2) a multi-function 	 : X → PCL,BN(X) such that

Hd(	u1,	u2) ≤ ψ
(
d(u1,u2)

)
, ∀u1,u2 ∈X.

Then a unique end point of 	 exists iff 	 has the AEP-property.
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3 Existence results
Regard X = {u(ς ) : u(ς ), CDω

q u(ς ), CDω+1
q u(ς ), CDω+2

q u(ς ) ∈ C(S,R)} as a Banach space of
all real-valued continuous functions on S equipped with a sup-norm

‖u‖ = sup
ς∈S

∣
∣u(ς )

∣
∣ + sup

ς∈S

∣
∣C
D

ω
q u(ς )

∣
∣ + sup

ς∈S

∣
∣C
D

ω+1
q u(ς )

∣
∣ + sup

ς∈S

∣
∣C
D

ω+2
q u(ς )

∣
∣.

In the following proposition, the solution to the proposed fractional cantilever q-
problem (2) is presented in the form of an integral equation, which will be helpful in es-
tablishing our main findings.

Proposition 8 Let κ ∈ (2, 3], ω ∈ (0, 1], and G ∈ C(S,R). Then the solution of the linear
q-FBvP

⎧
⎨

⎩

CDκ
q(CDω

q u)(ς ) = G(ς ),

u(ς )|ς=0 = CDω
q u(ς )|ς=0 = CDω+1

q u(ς )|ς=1 = CDω+2
q u(ς )|ς=1 = 0,

(5)

is presented in the following form:

u(ς ) =
1


q(κ + ω)

∫ ς

0
(ς – qz)(κ+ω–1)G(z) dqz

–
ςω+1


q(ω + 2)
q(κ – 1)

∫ 1

0
(1 – qz)(κ–2)G(z) dqz

+
[ω + 2]qς

ω+1 – ςω+2


q(ω + 3)
q(κ – 2)

∫ 1

0
(1 – qz)(κ–3)G(z) dqz, (6)

where [ω + 2]q = 1–qω+2

1–q .

Proof Assume that u∗ is a solution of the given q-FBvP (5). Then CDκ
q(CDω

q u
∗)(ς ) = G(ς ).

By taking κth-q-integral of Riemann–Liouville type, we obtain

C
D

ω
q u

∗(ς ) =
1


q(κ)

∫ ς

0
(ς – qz)(κ–1)G(z) dqz + �0 + �1ς + �2ς

2, (7)

where �m ∈R, m = 0, 1, 2. The second condition CDω
q u

∗(ς )|ς=0 = 0 implies �0 = 0. Thus

C
D

ω
q u

∗(ς ) =
1


q(κ)

∫ ς

0
(ς – qz)(κ–1)G(z) dqz + �1ς + �2ς

2. (8)

In the sequel, by using the Riemann–Liouville ωth-q-integral to both sides of (8), we reach

u
∗(ς ) =

1

q(κ + ω)

∫ ς

0
(ς – qz)(κ+ω–1)G(z) dqz + �∗

0 + �1
ςω+1


q(ω + 2)
+ �2

(1 + q)ςω+2


q(ω + 3)
. (9)

From (9) and the condition u∗(ς )|ς=0 = 0, we get �∗
0 = 0. Thus

u
∗(ς ) =

1

q(κ + ω)

∫ ς

0
(ς – qz)(κ+ω–1)G(z) dqz + �1

ςω+1


q(ω + 2)
+ �2

(1 + q)ςω+2


q(ω + 3)
. (10)
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As ω + 1 ∈ (1, 2] and ω + 2 ∈ (2, 3], we have

C
D

ω+1
q u

∗(ς ) =
1


q(κ – 1)

∫ ς

0
(ς – qz)(κ–2)G(z) dqz + �1 + �2(1 + q)ς (11)

and

C
D

ω+2
q u

∗(ς ) =
1


q(κ – 2)

∫ ς

0
(ς – qz)(κ–3)G(z) dqz + �2(1 + q). (12)

In view of the conditions CDω+1
q u∗(ς )|ς=1 = CDω+2

q u∗(ς )|ς=1 = 0 on the relations (11) and
(12), we have

1

q(κ – 1)

∫ 1

0
(1 – qz)(κ–2)G(z) dqz + �1 + �2(1 + q) = 0

and

1

q(κ – 2)

∫ 1

0
(1 – qz)(κ–3)G(z) dqz + �2(1 + q) = 0.

By solving the above system, we get

�1 = –
1


q(κ – 1)

∫ 1

0
(1 – qz)(κ–2)G(z) dqz +

1

q(κ – 2)

∫ 1

0
(1 – qz)(κ–3)G(z) dqz

and

�2 = –
1

(1 + q)
q(κ – 2)

∫ 1

0
(1 – qz)(κ–3)G(z) dqz.

By putting the values �m (m = 1, 2) in (10), we have

u
∗(ς ) =

1

q(κ + ω)

∫ ς

0
(ς – qz)(κ+ω–1)G(z) dqz

–
ςω+1


q(ω + 2)
q(κ – 1)

∫ 1

0
(1 – qz)(κ–2)G(z) dqz

+
[ω + 2]qς

ω+1 – ςω+2


q(ω + 3)
q(κ – 2)

∫ 1

0
(1 – qz)(κ–3)G(z) dqz,

which ensures that u∗ satisfies (6) and the proof is finished. �

We are now ready to develop our key findings about the existence of solutions for the
q-difference inclusion FBvP (2) occurring in the cantilever beam model. The function u ∈
C(S,X) is referred to as the solution of the fractional cantilever q-FBvP (2) when it settles
the given boundary conditions, and a function ϕ́ ∈ L1(S) exists such that, for almost all
ς ∈ S, we have

ϕ́(ς ) ∈ 	
(
ς ,u(ς ), C

D
ω
q u(ς ), C

D
ω+1
q u(ς ), C

D
ω+2
q u(ς )

)



Etemad et al. Journal of Inequalities and Applications        (2021) 2021:174 Page 8 of 20

and

u(ς ) =
1


q(κ + ω)

∫ ς

0
(ς – qz)(κ+ω–1)ϕ́(z) dqz

–
ςω+1


q(ω + 2)
q(κ – 1)

∫ 1

0
(1 – qz)(κ–2)ϕ́(z) dqz

+
[ω + 2]qς

ω+1 – ςω+2


q(ω + 3)
q(κ – 2)

∫ 1

0
(1 – qz)(κ–3)ϕ́(z) dqz

for all ς ∈ S. The selections’ set of the multi-function 	 is given by

(SEL)	,u =
{
ϕ́ ∈L1(S) : ϕ́(ς ) ∈ 	

(
ς ,u(ς ), C

D
ω
q u(ς ), C

D
ω+1
q u(ς ), C

D
ω+2
q u(ς )

)

for all ς ∈ S
}

for each u ∈ X. In addition, an operator U : X → P(X) is formulated by the following
rule:

U(u) =
{
ν ∈X : there exists ϕ́ ∈ (SEL)	,u : ν(ς ) = r(ς ) for all ς ∈ S

}
, (13)

where

r(ς ) =
1


q(κ + ω)

∫ ς

0
(ς – qz)(κ+ω–1)ϕ́(z) dqz

–
ςω+1


q(ω + 2)
q(κ – 1)

∫ 1

0
(1 – qz)(κ–2)ϕ́(z) dqz

+
[ω + 2]qς

ω+1 – ςω+2


q(ω + 3)
q(κ – 2)

∫ 1

0
(1 – qz)(κ–3)ϕ́(z) dqz.

For convenience, we take

ϒ̌1 =
1


q(κ + ω + 1)
+

1

q(ω + 2)
q(κ)

+
[ω + 2]q + 1


q(ω + 3)
q(κ – 1)
,

ϒ̌2 =
1


q(κ + 1)
+

1

q(κ)

+
2 + q

(1 + q)
q(κ – 1)
,

ϒ̌3 =
2


q(κ)
+

2

q(κ – 1)

,

ϒ̌4 =
2


q(κ – 1)
, (14)

and

�1 = ‖p‖ϒ̌1, �2 = ‖p‖ϒ̌2, �3 = ‖p‖ϒ̌3, �4 = ‖p‖ϒ̌4. (15)

Theorem 9 Consider 	 : S×X4
 → PCP(X) and assume the following:

(T1) The multi-function 	 is bounded and integrable and 	(·,u1,u2,u3,u4) : S →
PCP(X) is measurable for all um ∈X (m=1,2,3,4);
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(T2) There exists p ∈ C(S, [0,∞)) and ψ ∈ � such that the set-valued version inequality

Hd
(
	(ς ,u1,u2,u3,u4),	(ς , ū1, ū2, ū3, ū4)

)

≤ p(ς )
(

�

‖p‖
)

ψ

( 4∑

m=1

|um – ūm|
)

, (16)

holds for all ς ∈ S and um, ūm ∈ X (m = 1, 2, 3, 4), where supς∈S |p(ς )| = ‖p‖, � =
1

ϒ̌1+ϒ̌2+ϒ̌3+ϒ̌4
, and ϒ̌m (m = 1, 2, 3, 4) are given by (14);

(T3) A function � : R4 × R
4 → R exists such that, for all um, ūm ∈ X (m = 1, 2, 3, 4), we

have

�
(
(u1,u2,u3,u4), (ū1, ū2, ū3, ū4)

) ≥ 0;

(T4) If {un}n≥1 is a sequence in X with un → u and

�
((
un(ς ), C

D
ω
q un(ς ), C

D
ω+1
q un(ς ), C

D
ω+2
q un(ς )

)
,

(
un+1(ς ), C

D
ω
q un+1(ς ), C

D
ω+1
q un+1(ς ), C

D
ω+2
q un+1(ς )

)) ≥ 0,

for all ς ∈ S and n ≥ 1, then a subsequence {unt }t≥1 of {un} exists such that, for all
ς ∈ S and t ≥ 1, we have

�
((
unt (ς ), C

D
ω
q unt (ς ), C

D
ω+1
q unt (ς ), C

D
ω+2
q unt (ς )

)
,

(
u(ς ), C

D
ω
q u(ς ), C

D
ω+1
q u(ς ), C

D
ω+2
q u(ς )

)) ≥ 0;

(T5) There exist a member u0 ∈X and ν ∈ U(u0) such that, for any ς ∈ S,

�
((
u0(ς ), C

D
ω
q u0(ς ), C

D
ω+1
q u0(ς ), C

D
ω+2
q u0(ς )

)
,

(
ν(ς ), C

D
ω
q ν(ς ), C

D
ω+1
q ν(ς ), C

D
ω+2
q ν(ς )

)) ≥ 0,

where the multi-function U : X → P(X) is specified by (13);
(T6) For every u ∈X and ν ∈ U(u) with

�
((
u(ς ), C

D
ω
q u(ς ), C

D
ω+1
q u(ς ), C

D
ω+2
q u(ς )

)
,

(
ν(ς ), C

D
ω
q ν(ς ), C

D
ω+1
q ν(ς ), C

D
ω+2
q ν(ς )

)) ≥ 0,

a member r ∈ U(u) exists such that the �-inequality

�
((

ν(ς ), C
D

ω
q ν(ς ), C

D
ω+1
q ν(ς ), C

D
ω+2
q ν(ς )

)
,

(
r(ς ), C

D
ω
q r(ς ), C

D
ω+1
q r(ς ), C

D
ω+2
q r(ς )

)) ≥ 0,

holds for all ς ∈ S.
Then the fractional cantilever beam inclusion q-BvP (2) possesses a solution on S.
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Proof Evidently, the fixed point of the multi-function U : X → P(X) given by (13) is
identified as the solution for the cantilever beam inclusion q-FBvP (2), so we try to check
the assumptions of Theorem 6 on this multi-valued operator. Since the compact-valued
set-valued map ς �→ 	(ς ,u(ς ), CDω

q u(ς ), CDω+1
q u(ς ), CDω+2

q u(ς )) is measurable as well as
closed-valued for any u ∈ X, so the map 	 has a measurable selection and (SEL)	,u �= ∅.
At first, we verify that the subset U(u) of X is closed ∀u ∈X. For this purpose, consider a
sequence {un}n≥1 inU(u) via un → u. Now, for each n ≥ 1, we have a member ϕ́n ∈ (SEL)	,u

satisfying

u(ς ) =
1


q(κ + ω)

∫ ς

0
(ς – qz)(κ+ω–1)ϕ́n(z) dqz

–
ςω+1


q(ω + 2)
q(κ – 1)

∫ 1

0
(1 – qz)(κ–2)ϕ́n(z)dqz

+
[ω + 2]qς

ω+1 – ςω+2


q(ω + 3)
q(κ – 2)

∫ 1

0
(1 – qz)(κ–3)ϕ́n(z)dqz

for almost all ς ∈ S. Since 	 admits compact values, we take a subsequence of {ϕ́n}n≥1

(following the same symbol) that tends to some ϕ́ ∈L1(S). Thus, ϕ́ ∈ (SEL)	,u and

un(ς ) → u(ς ) =
1


q(κ + ω)

∫ ς

0
(ς – qz)(κ+ω–1)ϕ́(z) dqz

–
ςω+1


q(ω + 2)
q(κ – 1)

∫ 1

0
(1 – qz)(κ–2)ϕ́(z) dqz

+
[ω + 2]qς

ω+1 – ςω+2


q(ω + 3)
q(κ – 2)

∫ 1

0
(1 – qz)(κ–3)ϕ́(z) dqz

for all ς ∈ S. This leads to the conclusion that u ∈ U(u) and the multi-function U is closed-
valued. Since 	 is compact-valued, it is easy to ensure the boundedness of U(u) for every
u ∈ X. Next, we prove that U is an α-ψ-contractive multi-function. In view of this in-
tention, we take a function α on X × X with nonnegative values which is defined by
α(u, ū) = 1 if

�
((
u(ς ), C

D
ω
q u(ς ), C

D
ω+1
q u(ς ), C

D
ω+2
q u(ς )

)
,

(
ū(ς ), C

D
ω
q ū(ς ), C

D
ω+1
q ū(ς ), C

D
ω+2
q ū(ς )

)) ≥ 0,

and otherwise, it is defined to be zero for all u, ū ∈X. Suppose u, ū ∈X and ν1 ∈ U(ū) and
select ϕ́1 ∈ (SEL)	,ū such that

ν1(ς ) =
1


q(κ + ω)

∫ ς

0
(ς – qz)(κ+ω–1)ϕ́1(z) dqz

–
ςω+1


q(ω + 2)
q(κ – 1)

∫ 1

0
(1 – qz)(κ–2)ϕ́1(z)dqz

+
[ω + 2]qς

ω+1 – ςω+2


q(ω + 3)
q(κ – 2)

∫ 1

0
(1 – qz)(κ–3)ϕ́1(z)dqz
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for all ς ∈ S. Utilizing (16), we get

Hd
(
	

(
ς ,u, C

D
ω
q u, C

D
ω+1
q u, C

D
ω+2
q u

)
,	

(
ς , ū, C

D
ω
q ū, C

D
ω+1
q ū, C

D
ω+2
q ū

))

≤ p(ς )
(

�

‖p‖
)

ψ
(|u – ū| +

∣
∣C
D

ω
q u – C

D
ω
q ū

∣
∣ +

∣
∣C
D

ω+1
q u – C

D
ω+1
q ū

∣
∣

+
∣
∣C
D

ω+2
q u – C

D
ω+2
q ū

∣
∣
)

for all u, ū ∈X with

�
((
u(ς ), C

D
ω
q u(ς ), C

D
ω+1
q u(ς ), C

D
ω+2
q u(ς )

)
,

(
ū(ς ), C

D
ω
q ū(ς ), C

D
ω+1
q ū(ς ), C

D
ω+2
q ū(ς )

)) ≥ 0

for almost all ς ∈ S. Thus, a member

r ∈ 	
(
ς ,u(ς ), C

D
ω
q u(ς ), C

D
ω+1
q u(ς ), C

D
ω+2
q u(ς )

)

exists such that

∣
∣ϕ́1(ς ) – r

∣
∣ ≤ p(ς )

(
�

‖p‖
)

ψ
(∣
∣u(ς ) – ū(ς )

∣
∣ +

∣
∣C
D

ω
q u(ς ) – C

D
ω
q ū(ς )

∣
∣

+
∣
∣C
D

ω+1
q u(ς ) – C

D
ω+1
q ū(ς )

∣
∣ +

∣
∣C
D

ω+2
q u(ς ) – C

D
ω+2
q ū(ς )

∣
∣
)
.

Now, consider a map ℵ : S → P(X) which is characterized by

ℵ(ς ) =
{

r ∈ X :
∣
∣ϕ́1(ς ) – r

∣
∣ ≤ p(ς )

(
�

‖p‖
)

ψ
(∣
∣u(ς ) – ū(ς )

∣
∣ +

∣
∣C
D

ω
q u(ς ) – C

D
ω
q ū(ς )

∣
∣

+
∣
∣C
D

ω+1
q u(ς ) – C

D
ω+1
q ū(ς )

∣
∣ +

∣
∣C
D

ω+2
q u(ς ) – C

D
ω+2
q ū(ς )

∣
∣
)
}

for any ς ∈ S. Since ϕ́1 and

ð = p

(
�

‖p‖
)

ψ
(|u – ū| +

∣
∣C
D

ω
q u – C

D
ω
q ū

∣
∣ +

∣
∣C
D

ω+1
q u – C

D
ω+1
q ū

∣
∣ +

∣
∣C
D

ω+2
q u – C

D
ω+2
q ū

∣
∣
)

are measurable, so the multi-map ℵ(·) ∩ 	(·,u(·), CDω
q u(·), CDω+1

q u(·), CDω+2
q u(·)) is also

measurable. Now, choose

ϕ́2 ∈ 	
(
ς ,u(ς ), C

D
ω
q u(ς ), C

D
ω+1
q u(ς ), C

D
ω+2
q u(ς )

)

so that, for all ς ∈ S, we have

∣
∣ϕ́1(ς ) – ϕ́2(ς )

∣
∣ ≤ p(ς )

(
�

‖p‖
)

ψ
(∣
∣u(ς ) – ū(ς )

∣
∣ +

∣
∣C
D

ω
q u(ς ) – C

D
ω
q ū(ς )

∣
∣

+
∣
∣C
D

ω+1
q u(ς ) – C

D
ω+1
q ū(ς )

∣
∣ +

∣
∣C
D

ω+2
q u(ς ) – C

D
ω+2
q ū(ς )

∣
∣
)
.
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Consider ν2 ∈ U(u) given by

ν2(ς ) =
1


q(κ + ω)

∫ ς

0
(ς – qz)(κ+ω–1)ϕ́2(z) dqz

–
ςω+1


q(ω + 2)
q(κ – 1)

∫ 1

0
(1 – qz)(κ–2)ϕ́2(z)dqz

+
[ω + 2]qς

ω+1 – ςω+2


q(ω + 3)
q(κ – 2)

∫ 1

0
(1 – qz)(κ–3)ϕ́2(z)dqz

for any ς ∈ S. Then we obtain the following inequalities:

∣
∣ν1(ς ) – ν2(ς )

∣
∣ ≤ 1


q(κ + ω)

∫ ς

0
(ς – qz)(κ+ω–1)∣∣ϕ́1(z) – ϕ́2(z)

∣
∣dqz

+
ςω+1


q(ω + 2)
q(κ – 1)

∫ 1

0
(1 – qz)(κ–2)∣∣ϕ́1(z) – ϕ́2(z)

∣
∣dqz

+
|[ω + 2]qς

ω+1 – ςω+2|

q(ω + 3)
q(κ – 2)

∫ 1

0
(1 – qz)(κ–3)∣∣ϕ́1(z) – ϕ́2(z)

∣
∣dqz

≤ 1

q(κ + ω + 1)

‖p‖
(

�

‖p‖
)

ψ
(‖u – ū‖)

+
1


q(ω + 2)
q(κ)
‖p‖

(
�

‖p‖
)

ψ
(‖u – ū‖)

+
[ω + 2]q + 1


q(ω + 3)
q(κ – 1)
‖p‖

(
�

‖p‖
)

ψ
(‖u – ū‖)

=
[

1

q(κ + ω + 1)

+
1


q(ω + 2)
q(κ)
+

[ω + 2]q + 1

q(ω + 3)
q(κ – 1)

]

× ‖p‖
(

�

‖p‖
)

ψ
(‖u – ū‖)

= �ϒ̌1ψ
(‖u – ū‖).

Also, we have

∣
∣C
D

ω
q ν1(ς ) – C

D
ω
q ν2(ς )

∣
∣

≤
[

1

q(κ + 1)

+
1


q(κ)
+

2 + q
(1 + q)
q(κ – 1)

]

‖p‖
(

�

‖p‖
)

ψ
(‖u – ū‖)

= �ϒ̌2ψ
(‖u – ū‖),

∣
∣C
D

ω+1
q ν1(ς ) – C

D
ω+1
q ν2(ς )

∣
∣

≤
[

2

q(κ)

+
2


q(κ – 1)

]

‖p‖
(

�

‖p‖
)

ψ
(‖u – ū‖) = �ϒ̌3ψ

(‖u – ū‖),

and

∣
∣C
D

ω+2
q ν1(ς ) – C

D
ω+2
q ν2(ς )

∣
∣ ≤

[
2


q(κ – 1)

]

‖p‖
(

�

‖p‖
)

ψ
(‖u – ū‖) = �ϒ̌4ψ

(‖u – ū‖)
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for all ς ∈ S. Hence

‖ν1 – ν2‖
= sup

ς∈S

∣
∣ν1(ς ) – ν2(ς )

∣
∣ + sup

ς∈S

∣
∣C
D

ω
q ν1(ς ) – C

D
ω
q ν2(ς )

∣
∣

+ sup
ς∈S

∣
∣C
D

ω+1
q ν1(ς ) – C

D
ω+1
q ν2(ς )

∣
∣ + sup

ς∈S

∣
∣C
D

ω+2
q ν1(ς ) – C

D
ω+2
q ν2(ς )

∣
∣

≤ �(ϒ̌1 + ϒ̌2 + ϒ̌3 + ϒ̌4)ψ
(‖u – ū‖) = ψ

(‖u – ū‖).

Thus,

α(u, ū)Hd
(
U(u) – U(ū)

) ≤ ψ
(‖u – ū‖)

for any u, ū ∈ X which indicates that U is an α-ψ-contractive multi-function. Now, sup-
pose that u ∈X and ū ∈ U(u) satisfy α(u, ū) ≥ 1, and so

�
((
u(ς ), C

D
ω
q u(ς ), C

D
ω+1
q u(ς ), C

D
ω+2
q u(ς )

)
,

(
ū(ς ), C

D
ω
q ū(ς ), C

D
ω+1
q ū(ς ), C

D
ω+2
q ū(ς )

)) ≥ 0.

Then, from the hypothesis, a member r ∈ U(ū) exists such that

�
((
ū(ς ), C

D
ω
q ū(ς ), C

D
ω+1
q ū(ς ), C

D
ω+2
q ū(ς )

)
,

(
r(ς ), C

D
ω
q r(ς ), C

D
ω+1
q r(ς ), C

D
ω+2
q r(ς )

)) ≥ 0.

It implies that α(ū, r) ≥ 1, and so we deduce that U is α-admissible. Now, take u0 ∈X and
ū ∈ U(u0) so that

�
((
u0(ς ), C

D
ω
q u0(ς ), C

D
ω+1
q u0(ς ), C

D
ω+2
q u0(ς )

)
,

(
ū(ς ), C

D
ω
q ū(ς ), C

D
ω+1
q ū(ς ), C

D
ω+2
q ū(ς )

)) ≥ 0

for all ς ∈ S. Then it follows that α(u0, ū) ≥ 1. Let us assume that {un}n≥1 is a sequence in
X such that un → u and α(un,un+1) ≥ 1 for all n. Then we obtain

�
((
un(ς ), C

D
ω
q un(ς ), C

D
ω+1
q un(ς ), C

D
ω+2
q un(ς )

)
,

(
un+1(ς ), C

D
ω
q un+1(ς ), C

D
ω+1
q un+1(ς ), C

D
ω+2
q un+1(ς )

)) ≥ 0.

Utilization of the assumption (T4) leads to the existence of a subsequence {unt }t≥1 of {un}
such that

�
((
unt (ς ), C

D
ω
q unt (ς ), C

D
ω+1
q unt (ς ), C

D
ω+2
q unt (ς )

)
,

(
u(ς ), C

D
ω
q u(ς ), C

D
ω+1
q u(ς ), C

D
ω+2
q u(ς )

)) ≥ 0

for all ς ∈ S. This directly implies that α(unt ,u) ≥ 1 for all t. Hence, Theorem 6 is settled
and the multi-function U possesses a fixed point which is regarded as a solution for the
fractional cantilever beam inclusion q-BvP (2). �
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Now, we utilize the notion of end points for other subclass of multi-functions to achieve
the desired aim.

Theorem 10 Consider 	 : S×X4
 → PCP(X) and assume:

(T7) ∃ψ : [0,∞) → [0,∞) as an increasing and u.s.c. function with lim infς→∞(ς –
ψ(ς )) ≥ 0 and ψ(ς ) < ς ,∀ς > 0;

(T8) the multi-function 	 : S × X4
 → PCP(X) is bounded and integrable such that the

map 	(·,u1,u2,u3,u4) : S → PCP(X) is measurable for all um ∈ X (m = 1, 2, 3, 4);
(T9) ∃p ∈ C(S, [0,∞)) satisfying

Hd
(
	(ς ,u1,u2,u3,u4),	(ς , ū1, ū2, ū3, ū4)

)

≤ p(ς )�ψ
(|u1 – ū1| + |u2 – ū2| + |u3 – ū3| + |u4 – ū4|

)
(17)

for all ς ∈ S and um, ūm ∈ X (m = 1, 2, 3, 4), where � = 1
�1+�2+�3+�4

and �m (m =
1, 2, 3, 4) are the constants defined by (15);

(T10) U, given by (13), has the AEP-property.
Then the fractional cantilever beam inclusion q-BvP (2) admits a solution.

Proof To fulfill Theorem 7, we have to prove that the multi-map U : X → P(X), given by
(13) has an end point. At first, since

ς �→ 	
(
ς ,u(ς ), C

D
ω
q u(ς ), C

D
ω+1
q u(ς ), C

D
ω+2
q u(ς )

)

is a closed-valued as well as measurable map, so 	 has a measurable selection and
(SEL)	,u �= ∅ for each u ∈ X. Using the same method as given in Theorem 9, one can
deduce that U(u) has closed values. Since the multi-function 	 is compact, so U(u) is
bounded for any u ∈ X. This time, we only try to show that Hd(U(u),U(r)) ≤ ψ(‖u – r‖).
Let us assume that u, r ∈X and ν1 ∈ U(r). Select ϕ́1 ∈ (SEL)	,r such that

ν1(ς ) =
1


q(κ + ω)

∫ ς

0
(ς – qz)(κ+ω–1)ϕ́1(z) dqz

–
ςω+1


q(ω + 2)
q(κ – 1)

∫ 1

0
(1 – qz)(κ–2)ϕ́1(z) dqz

+
[ω + 2]qς

ω+1 – ςω+2


q(ω + 3)
q(κ – 2)

∫ 1

0
(1 – qz)(κ–3)ϕ́1(z) dqz

for almost all ς ∈ S. Since, for any ς ∈ S, we have

Hd
(
	

(
ς ,u(ς ), C

D
ω
q u(ς ), C

D
ω+1
q u(ς ), C

D
ω+2
q u(ς )

)
,

	
(
ς , r(ς ), C

D
ω
q r(ς ), C

D
ω+1
q r(ς ), C

D
ω+2
q r(ς )

))

≤ p(ς )�ψ
(∣
∣u(ς ) – r(ς )

∣
∣ +

∣
∣C
D

ω
q u(ς ) – C

D
ω
q r(ς )

∣
∣ +

∣
∣C
D

ω+1
q u(ς ) – C

D
ω+1
q r(ς )

∣
∣

+
∣
∣C
D

ω+2
q u(ς ) – C

D
ω+2
q r(ς )

∣
∣
)
,

there exists a member

λ̀ ∈ 	
(
ς ,u(ς ), C

D
ω
q u(ς ), C

D
ω+1
q u(ς ), C

D
ω+2
q u(ς )

)
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such that

∣
∣ϕ́1(ς ) – λ̀

∣
∣ ≤ p(ς )�ψ

(∣
∣u(ς ) – r(ς )

∣
∣ +

∣
∣C
D

ω
q u(ς ) – C

D
ω
q r(ς )

∣
∣

+
∣
∣C
D

ω+1
q u(ς ) – C

D
ω+1
q r(ς )

∣
∣ +

∣
∣C
D

ω+2
q u(ς ) – C

D
ω+2
q r(ς )

∣
∣
)

for any ς ∈ S. Now, the map � : S → P(X) is considered which is given by the following
way:

�(ς ) =
{
λ̀ ∈X :

∣
∣ϕ́1(ς ) – λ̀

∣
∣ ≤ p(ς )�ψ

(∣
∣u(ς ) – r(ς )

∣
∣ +

∣
∣C
D

ω
q u(ς ) – C

D
ω
q r(ς )

∣
∣

+
∣
∣C
D

ω+1
q u(ς ) – C

D
ω+1
q r(ς )

∣
∣ +

∣
∣C
D

ω+2
q u(ς ) – C

D
ω+2
q r(ς )

∣
∣
)}

.

The multi-function �(·) ∩ 	(·,u(·), CDω
q u(·), CDω+1

q u(·), CDω+2
q u(·)) is measurable because

ϕ́1 and

k = p�ψ
(|u – r| +

∣
∣C
D

ω
q u – C

D
ω
q r

∣
∣ +

∣
∣C
D

ω+1
q u – C

D
ω+1
q r

∣
∣ +

∣
∣C
D

ω+2
q u – C

D
ω+2
q r

∣
∣
)

are measurable. Now, a member

ϕ́2 ∈ 	
(
ς ,u(ς ), C

D
ω
q u(ς ), C

D
ω+1
q u(ς ), C

D
ω+2
q u(ς )

)

is selected such that

∣
∣ϕ́1(ς ) – ϕ́2(ς )

∣
∣ ≤ p(ς )ψ

(∣
∣u(ς ) – r(ς )

∣
∣ +

∣
∣C
D

ω
q u(ς ) – C

D
ω
q r(ς )

∣
∣

+
∣
∣C
D

ω+1
q u(ς ) – C

D
ω+1
q r(ς )

∣
∣

+
∣
∣C
D

ω+2
q u(ς ) – C

D
ω+2
q r(ς )

∣
∣
)
[

1
�1 + �2 + �3 + �4

]

for all ς ∈ S. Choose ν2 ∈ U(u) such that, for all ς ∈ S,

ν2(ς ) =
1


q(κ + ω)

∫ ς

0
(ς – qz)(κ+ω–1)ϕ́2(z) dqz

–
ςω+1


q(ω + 2)
q(κ – 1)

∫ 1

0
(1 – qz)(κ–2)ϕ́2(z) dqz

+
[ω + 2]qς

ω+1 – ςω+2


q(ω + 3)
q(κ – 2)

∫ 1

0
(1 – qz)(κ–3)ϕ́2(z) dqz.

By employing the same methodology used in the proof of Theorem 9, we reach

‖ν1 – ν2‖ = sup
ς∈S

∣
∣ν1(ς ) – ν2(ς )

∣
∣ + sup

ς∈S

∣
∣C
D

ω
q ν1(ς ) – C

D
ω
q ν2(ς )

∣
∣

+ sup
ς∈S

∣
∣C
D

ω+1
q ν1(ς ) – C

D
ω+1
q ν2(ς )

∣
∣ + sup

ς∈S

∣
∣C
D

ω+2
q ν1(ς ) – C

D
ω+2
q ν2(ς )

∣
∣

≤ �(�1 + �2 + �3 + �4)ψ
(‖u – r‖) = ψ

(‖u – r‖).

Accordingly, we have Hd(U(u),U(r)) ≤ ψ(‖u– r‖) for any u, r ∈X. From assumption (T10)
implying the existence of the AEP-property for the multi-function U, the application of
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Theorem 7 leads to the existence of u∗ ∈ X satisfying U(u∗) = {u∗}. This indicates that u∗

is a solution for the cantilever beam inclusion q-FBvP (2). �

4 An example
Based on the fractional cantilever beam inclusion q-BvP (2), we here present some exam-
ples in this framework to confirm the validity of the results.

Example 1 Consider the cantilever beam inclusion q-FBvP

⎧
⎪⎪⎨

⎪⎪⎩

CD2.8
0.7(CD0.9

0.7u)(ς )

∈ [0, ς | arcsin(u(ς ))|+ς |CD0.9
0.7u(ς )|+ς2| sin(CD1.9

0.7u(ς ))|+ς3| arctan(CD2.9
0.7u(ς ))|

77 + 12eς ],

u(ς )|ς=0 = CD0.9
q u(ς )|ς=0 = CD1.9

q u(ς )|ς=1 = CD2.9
q u(ς )|ς=1 = 0,

(18)

where ς ∈ S = [0, 1], and we have selected q = 0.7,κ = 2.8,ω = 0.9. Now, consider the multi-
valued map 	 : S×R

4 → P(R) which is determined by

	
(
ς ,u1(ς ),u2(ς ),u3(ς ),u4(ς )

)

=
[

0,
ς | arcsin(u1(ς ))| + ς |u2(ς )| + ς2| sin(u3(ς ))| + ς3| arctan(u4(ς ))|

77
+ 12eς

]

for any ς ∈ S. Next, consider the function p ∈ C(S, [0,∞)) given by p(ς ) = ς

11 for all ς ∈ S.
Then ‖p‖ = supς∈S | ς

11 | = 1
11 . Moreover, we choose ψ : [0,∞) → [0,∞) as an increasing

u.s.c map given by ψ(ς ) = ς

7 for almost all ς > 0. It can be easily seen that lim infς→∞(ς –
ψ(ς )) > 0 and ψ(ς ) < ς for all ς > 0. In the light of preceding data, (14) and (15), we obtain

ϒ̌1 =
1


0.7(2.8 + 0.9 + 1)
+

1

0.7(0.9 + 2)
0.7(2.8)

+
[0.9 + 2]0.7 + 1


0.7(0.9 + 3)
0.7(2.8 – 1)
� 1.54029,

ϒ̌2 =
1


0.7(2.8 + 1)
+

1

0.7(2.8)

+
2 + 0.7

(1 + 0.7)
0.7(2.8 – 1)
� 2.67215,

ϒ̌3 =
2


0.7(2.8)
+

2

0.7(2.8 – 1)

� 3.46062,

ϒ̌4 =
2


0.7(2.8 – 1)
� 2.11890,

and

�1 � 0.14003, �2 = 0.24292, �3 = 0.31460, �4 = 0.19263.

For each um, ūm ∈R (m = 1, 2, 3, 4), we have

Hd
(
	

(
ς ,u1(ς ),u2(ς ),u3(ς ),u4(ς )

)
,	

(
ς , ū1(ς ), ū2(ς ), ū3(ς ), ū4(ς )

))

≤ ς

11
.
1
7
(∣
∣arcsin

(
u1(ς )

)
– arcsin

(
ū1(ς )

)∣
∣ +

∣
∣u2(ς ) – ū2(ς )

∣
∣

+
∣
∣sin

(
u3(ς )

)
– sin

(
ū3(ς )

)∣
∣ +

∣
∣arctan

(
u4(ς )

)
– arctan

(
ū4(ς )

)∣
∣
)
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≤ ς

11
.
1
7
(∣
∣u1(ς ) – ū1(ς )

∣
∣ +

∣
∣u2(ς ) – ū2(ς )

∣
∣ +

∣
∣u3(ς ) – ū3(ς )

∣
∣ +

∣
∣u4(ς ) – ū4(ς )

∣
∣
)

=
ς

11
ψ

(∣
∣u1(ς ) – ū1(ς )

∣
∣ +

∣
∣u2(ς ) – ū2(ς )

∣
∣ +

∣
∣u3(ς ) – ū3(ς )

∣
∣ +

∣
∣u4(ς ) – ū4(ς )

∣
∣
)

≤ p(ς )ψ
(∣
∣u1(ς ) – ū1(ς )

∣
∣ +

∣
∣u2(ς ) – ū2(ς )

∣
∣ +

∣
∣u3(ς ) – ū3(ς )

∣
∣ +

∣
∣u4(ς ) – ū4(ς )

∣
∣
)

×
[

1
�1 + �2 + �3 + �4

]

.

Now, define the multi-function U : X → P(X) by

U(u) =
{
ν ∈X : ∃ϕ́ ∈ (SEL)	,u s.t. ν(ς ) = r(ς ),∀ς ∈ S

}
,

where

r(ς ) =
1


q(2.8 + 0.9)

∫ ς

0
(ς – qz)(2.8+0.9–1)ϕ́(z) dqz

–
ς0.9+1


q(0.9 + 2)
q(2.8 – 1)

∫ 1

0
(1 – qz)(2.8–2)ϕ́(z) dqz

+
[0.9 + 2]qς

0.9+1 – ς0.9+2


q(0.9 + 3)
q(2.8 – 2)

∫ 1

0
(1 – qz)(2.8–3)ϕ́(z) dqz

=
1


q(3.7)

∫ ς

0
(ς – qz)2.7ϕ́(z) dqz –

ς1.9


q(2.9)
q(1.8)

∫ 1

0
(1 – qz)0.8ϕ́(z) dqz

+
[2.9]qς

1.9 – ς2.9


q(3.9)
q(0.8)

∫ 1

0
(1 – qz)–0.2ϕ́(z) dqz,

and [2.9]0.7 � 2.14848. As the multi-function U possesses the AEP-property, so utilizing
Theorem 10, one can clearly follow that the q-FBvP (18) has a solution.

5 Conclusion
A variety of complex natural phenomena that arise from science and technology are mod-
eled by fractional operators. In the present study, we considered a fractional inclusion
model of cantilever beam in the context of quantum calculus. We therefore, specified sev-
eral operators based on the special classes of α-admissible and α-ψ-contractive multi-
functions, relying on the equivalent integral equation. We studied the existence of solu-
tions and, in addition, for such operators, we explored the AEP-property. Lastly, an exam-
ple was given to examine the results regarding the proposed cantilever beam inclusion q-
FBvP. As a future proposal, one can consider some other fractional operators to discuss the
existence of solutions and approximating them for different generalized fractional models
of the cantilever beam equation.
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