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1 Introduction
In [9], Gronwall was the first to provide Gronwall’s inequality under the framework of
differential form. Later, Bellman [2] put forward the integral form of Gronwall’s inequality
as the following proposition.

Proposition 1.1 Assume that α ≥ 0 and T > 0. If β(t) and μ(t), t ∈ [0, T] are two nonneg-
ative continuous functions satisfying

μ(t) ≤ α +
∫ t

0
β(s)μ(s) ds, t ∈ [0, T],

then

μ(t) ≤ αe
∫ t

0 β(s) ds, t ∈ [0, T].

Since then, on the basis of different motivation, Gronwall’s inequality has been extended
and used considerably in various articles. It became a useful tool to solve many problems in
the fields of differential equations. We refer the reader to [4, 5, 12, 13, 19] and the references
therein. In order to meet the needs of the development of stochastic differential equations,
many scholars tried to generalize Gronwall’s inequality. Wang and Fan [16] established the
following backward stochastic Gronwall’s inequality.
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Proposition 1.2 Let β(ω, t) be a strictly positive F-adapted stochastic process satisfying

∥∥∥∥
∫ T

0
β(ω, s) ds

∥∥∥∥∞
< ∞.

If the nonnegative Ft-adapted stochastic process μ(ω, t) satisfies the following conditions:
1◦

E[supt∈[0,T] μ(ω, t)] < ∞.
2◦ μ(t) ≤ a + E[

∫ T
t β(s)μ(s) ds|Ft], t ∈ [0, T], where a > 0 is a constant.

Then, for each t ∈ [0, T], we have

μ(t) ≤ aE
[
e
∫ T

t β(s) ds|Ft
]
. (1)

In particular, if a = 0, we have u(t) = 0.

They used this proposition to prove a comparison theorem of Lp solution for 1-
dimensional backward stochastic differential equation under the stochastic Lipschitz con-
dition. Hun et al. [10] generalized backward stochastic Gronwall’s inequality in the situa-
tion of random time horizon. [1] generalized a Lipovan’s result of Gronwall-like inequali-
ties into a more general form.

Later, Bihari [3] put forward a useful generalization of Gronwall–Bellman’s inequality,
called Bihari’s inequality, which provides explicit bounds on unknown functions. This in-
equality also had many applications in the fields of differential equations. Zhang and Zhu
[20] used Bihari’s inequality to study non-Lipschitz stochastic differential equations driven
by multi-parameter Brownian motion. In [17], Bihari’s inequality was used to study non-
Lipschitz stochastic Volterra type equations with jumps. Furthermore, Wu et al. used [18]
Bihari’s inequality to analyze the solvability of anticipated backward stochastic differen-
tial equations. And Fan [6] used Bihari’s inequality to study existence, uniqueness, and
stability of L1 solutions for multidimensional backward stochastic differential equations
with generators of one-sided Osgood type. With further study of stochastic differential
equations, it was found that original Bihari’s inequality can no longer meet the needs of
application. Thus, people began to generalize Bihari’s inequality. [11] studied some new
Gronwall–Bellman–Bihari type integral inequalities with singular as well as nonsingular
kernels, generalizing some already existing results. As an application, the behavior of so-
lution of the fractional stochastic differential equation has been investigated. [8] analyzed
some new nonlinear Gronwall–Bellman–Bihari type inequalities with singular kernel via
k-fractional integral of Riemann–Liouville, which can be used to study some properties of
solution for fractional differential equations.

To the best of our knowledge, so far there is little study on backward stochastic Bihari’s
inequality. Motivated by the above articles, in this paper, we mainly generalize the follow-
ing Bihari’s inequality in [3] into the situation of backward stochastic Bihari’s inequality.

Proposition 1.3 Let ρ : R+ →R
+ be a continuous and nondecreasing function, if β(s), f (s)

are two nonnegative functions on R
+ such that, for some a > 0,

f (t) ≤ a +
∫ t

0
β(s)ρ

(
f (s)

)
ds, t ≥ 0.



Hao and Wang Journal of Inequalities and Applications        (2021) 2021:172 Page 3 of 14

Then

f (t) ≤ G–1
(

G(a) +
∫ t

0
β(s) ds

)
,

where G(x) .=
∫ x

c
1

ρ(y) dy is well defined for some c > 0 and G–1(·) is an inverse function of G.

We will study several different forms of backward stochastic Bihari’s inequality and give
two applications. It is necessary to point out that the proof method in [3, 14, 15] for Bi-
hari’s inequality is no longer applicable since β(s) in the following theorems in this paper
depends on ω, while the β(s) in Proposition 1.3 is independent of ω.

2 Preliminaries
2.1 Notations
For x, y ∈ R, we use |x| to denote the Euclidean norm of x and use 〈x, y〉 to denote the
Euclidean inner product. For B ∈ R

d , |B| represents
√

TrBB∗. Let (�,F , P) be a com-
plete probability space taking along a d-dimensional Brownian motion {Wt}0≤t≤T . F .=
{Ft}t∈[0,T] is the natural filtration generated by W . For Euclidean space H, we introduce
the following spaces:

L2
FT

(�;H) is represented as a space of H-valued FT -measurable random variables φ

satisfying ‖φ‖2
.= (E[|φ|2]) 1

2 < ∞.
L∞

FT
(�;H) is represented as a space of H-valued FT -measurable random variables φ

satisfying ‖φ‖∞
.= esssupω∈�|φ| < ∞.

L2
F

(0, T ;H) is represented as a space of H-valued F-adapted stochastic processes {ϕs, s ∈
[0, T]} satisfying ‖ϕ‖L2

F (0,T)
.= (E[

∫ T
0 |ϕ(s)|2 ds]) 1

2 < ∞.
L∞
F

(0, T ;H) is represented as a space of H-valued F-adapted stochastic processes {ϕs, s ∈
[0, T]} satisfying ‖ϕ‖L∞

F
(0,T)

.= esssup(ω,s)∈�×[0,T]|ϕ(s)| < ∞.
S2
F

(0, T ;H) is represented as a space of continuous processes {ϕs, s ∈ [t, T]} in L2
F

(0, T ;H)
satisfying ‖ϕ‖S2

F
(0,T)

.= (E[sup0≤s≤T |ϕ(s)|2]) 1
2 < ∞.

In the following, ρ is a nondecreasing continuous concave function from R+ to R+ such
that ρ(0) = 0 and

∫
0+

1
ρ(s) ds = +∞, where G(x) .=

∫ x
c

1
ρ(y) dy is well defined for some c > 0

and G–1(·) is an inverse function of G.

Remark 2.1
1. Since ρ is concave and ρ(0) = 0, one can find a pair of positive constants a and b such

that

ρ(u) ≤ a + bu for all u ≥ 0.

2. We make the following convention: the letter C′ will denote a positive constant,
whose value may vary from one place to another. Moreover, C′ only depends on the
constants in the following theorems.

3 Main results
Before giving our main results, we need the following lemma.

Lemma 3.1 The above function G(x), x > 0 is a concave function.
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Proof For any 0 < x1 < x2,

G
(

x1 + x2

2

)
–

1
2
(
G(x1) + G(x2)

)

=
1
2

∫ x1+x2
2

x1

1
ρ(x)

dx –
1
2

∫ x2

x1+x2
2

1
ρ(x)

dx ≥ 0.

Thus, G(x), x > 0 is a concave function. �

Theorem 3.2 Let β(ω, t) be a strictly positive F-adapted stochastic process satisfying

∥∥∥∥
∫ T

0
β(ω, s) ds

∥∥∥∥∞
< ∞.

If the nonnegative Ft-adapted stochastic process μ(ω, t) satisfies the following conditions:
1◦

E[supt∈[0,T] μ(ω, t)] < ∞.
2◦ μ(t) ≤ a + E[

∫ T
t β(s)ρ(μ(s)) ds|Ft], t ∈ [0, T], where a > 0 is a constant.

Then, for each t ∈ [0, T], we have

μ(t) ≤ G–1
(

G
(
E

[
G–1

(
G(a) +

∫ T

0
β(s) ds

)∣∣∣∣Ft

])
–

∫ t

0
β(s) ds

)
. (2)

In particular, if a = 0, we have u(t) = 0.

Proof Set η =
∫ T

0 β(s)ρ(μ(s)) ds. By the martingale representation theorem, there exists a
stochastic process {z(t), t ∈ [0, T]} ∈ L2

F
(0, T ;R) such that

E[η|Ft] = E[η] +
∫ t

0
z(s) dW (s).

Set

μ̄(t) = a + E

[∫ T

t
β(s)ρ

(
μ(s)

)
ds|Ft

]
.

By assumptions in theorem, we know that μ(t) ≤ μ̄(t). Moreover,

μ̄(t) = a + E

[∫ T

t
β(s)ρ

(
μ(s)

)
ds|Ft

]

= a + E

[
η –

∫ t

0
β(s)ρ

(
μ(s)

)
ds|Ft

]

= a + E[η|Ft] –
∫ t

0
β(s)ρ

(
μ(s)

)
ds

= a + E[η] +
∫ t

0
z(s) dW (s) –

∫ t

0
β(s)ρ

(
μ(s)

)
ds.

Using the differential formula to G–1(G(μ̄(t)) +
∫ t

0 β(s) ds), we have

dG–1
(

G
(
μ̄(t)

)
+

∫ t

0
β(s) ds

)
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= ρ

(
G–1

(
G

(
μ̄(t)

)
+

∫ t

0
β(s) ds

))

×
(

1
ρ(μ̄(t))

(
z(t) dW (t) – β(t)ρ

(
μ(t)

)
dt

)
+ β(t) dt

)
.

Since ρ is nondecreasing and μ(t) ≤ μ̄(t), we have ρ(μ(t)) ≤ ρ(μ̄(t)), we have

dG–1
(

G
(
μ̄(t)

)
+

∫ t

0
β(s) ds

)
≥ ρ

(
G–1

(
G

(
μ̄(t)

)
+

∫ t

0
β(s) ds

))
1

ρ(μ̄(t))
z(t) dW (t)

≥ z(t) dW (t).

Integrating on [t, T] and taking the conditional mathematical expectation with respect to
Ft , noting that μ̄(T) = a leads to

E

[
G–1

(
G

(
μ̄(T)

)
+

∫ T

0
β(s) ds

)∣∣∣∣Ft

]
≥ G–1

(
G

(
μ̄(t)

)
+

∫ t

0
β(s) ds

)
.

Thus,

μ̄(t) ≤ G–1
(

G
(
E

[
G–1

(
G(a) +

∫ T

0
β(s) ds

)∣∣∣∣Ft

])
–

∫ t

0
β(s) ds

)
.

By μ(t) ≤ μ̄(t), we obtain

μ(t) ≤ G–1
(

G
(
E

[
G–1

(
G(a) +

∫ T

0
β(s) ds

)∣∣∣∣Ft

])
–

∫ t

0
β(s) ds

)
. �

Remark 3.3 We will illustrate that

G–1
(

G
(
E

[
G–1

(
G(a) +

∫ T

0
β(s) ds

)∣∣∣∣Ft

])
–

∫ t

0
β(s) ds

)
≥ 0.

Since G is a concave function, by Jensen’s inequality, we have

G–1
(

G
(
E

[
G–1

(
G(a) +

∫ T

0
β(s) ds

)∣∣∣∣Ft

])
–

∫ t

0
β(s) ds

)

≥ G–1
(
E

[
G(a) +

∫ T

t
β(s) ds|Ft

])
≥ 0.

The following lemma is a slight extension of Theorem 3.2.

Lemma 3.4 Let α(ω, t),β(ω, t) be two nonnegative F-adapted stochastic processes. One of
them is strictly positive. If the following conditions

1◦ ‖ ∫ T
0 α(ω, s) ds‖∞ < ∞,‖ ∫ T

0 β(ω, s) ds‖∞ < ∞;
2◦ μ(ω, t) is a nonnegative F-adapted stochastic process and E[supt∈[0,T] μ(ω, t)] < ∞;
3◦ μ(t) ≤ a + E[

∫ T
t α(s)μ(s) ds|Ft] + E[

∫ T
t β(s)ρ(μ(s)) ds|Ft], t ∈ [0, T], where a > 0 is a

constant,
hold, then, for each t ∈ [0, T], we have

μ(t) ≤ W̄ –1
(

W̄
(
E

[
W̄ –1

(
W̄ (a) +

∫ T

0
α(s) ds +

∫ T

0
β(s) ds

)∣∣∣∣Ft

])
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–
∫ t

0
α(s) ds –

∫ t

0
β(s) ds

)
,

where W̄ (x) .=
∫ x

c
1

y+ρ(y) dy is well defined for some c > 0 and W̄ –1(·) is an inverse function of
W̄ . In particular, if a = 0, we have u(t) = 0.

In the following theorem, the forward Gronwall–Bellman’s inequality in [14] is gener-
alized to backward stochastic Gronwall–Bellman’s inequality. In addition, compared with
Gronwall–Bellman’s inequality in [14], α(ω, t),β(ω, t) in the following theorem are not in-
dependent of ω. Thus, the proof method in this paper is also different from the method in
[14].

Theorem 3.5 Let α(ω, t),β(ω, t) be two nonnegative F-adapted stochastic processes. If the
following conditions are satisfied:

1◦ ‖ ∫ T
0 α(ω, s) ds‖∞ < ∞,‖ ∫ T

0 β(ω, s) ds‖∞ < ∞,
2◦ μ(ω, t) is a nonnegative F-adapted stochastic process and E[supt∈[0,T] μ(ω, t)] < ∞,
3◦ μ(t) ≤ a + E[

∫ T
t α(s)μ(s) ds|Ft] + E[

∫ T
t (α(s)E[

∫ T
s β(τ )μ(τ ) dτ |Fs]) ds|Ft], t ∈ [0, T],

where a > 0 is a constant,
then, for each t ∈ [0, T], we have

μ(t) ≤ aE
[
e
∫ T

t (α(s)+β(s)) ds|Ft
]
.

In particular, if a = 0, we have u(t) = 0.

Proof Set

μ̄(t) = a + E

[∫ T

t
α(s)μ(s) ds|Ft

]
+ E

[∫ T

t

(
α(s)E

[∫ T

s
β(τ )μ(τ ) dτ |Fs

])
ds

∣∣∣∣Ft

]
.

It follows that μ(t) ≤ μ̄(t). Set

η = E

[∫ T

0
α(s)μ(s) ds|Ft

]
+ E

[∫ T

0

(
α(s)E

[∫ T

s
β(τ )μ(τ ) dτ |Fs

])
ds

∣∣∣∣Ft

]
.

By the martingale representation theorem, there exists a stochastic process {z(t), t ∈
[0, T]} ∈ L2

F
(0, T ;R),

E[η|Ft] = E[η] +
∫ t

0
z(s) dW (s).

Thus,

μ̄(t) = a + E

[∫ T

t
α(s)μ(s) ds|Ft

]
+ E

[∫ T

t

(
α(s)E

[∫ T

s
β(τ )μ(τ ) dτ |Fs

])
ds

∣∣∣∣Ft

]

= a + E

[
η –

∫ t

0
α(s)μ(s) ds –

∫ t

0

(
α(s)E

[∫ T

s
β(τ )μ(τ ) dτ |Fs

])
ds

∣∣∣∣Ft

]

= a + E[η] +
∫ t

0
z(s) dW (s) –

∫ t

0
α(s)μ(s) ds
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–
∫ t

0

(
α(s)E

[∫ T

s
β(τ )μ(τ ) dτ |Fs

])
ds.

Furthermore, it leads to

dμ̄(t) = z(t) dW (t) – α(t)μ(t) dt –
(

α(t)E
[∫ T

t
β(τ )μ(τ ) dτ |Ft

])
dt

≥ z(t) dW (t) – α(t)
(

μ̄(t) +
(
E

[∫ T

t
β(τ )μ̄(τ ) dτ |Ft

]))
dt.

Set

m(t) = μ̄(t) +
(
E

[∫ T

t
β(τ )μ̄(τ ) dτ |Ft

])
.

From the above equality, we get

dm(t) = dμ̄(t) + d
(
E

[∫ T

t
β(τ )μ̄(τ ) dτ |Ft

])

≥ z(t) dW (t) – α(t)m(t) dt + d
(
E

[∫ T

t
β(τ )μ̄(τ ) dτ |Ft

])
.

Integrating on [t, T] and taking the conditional expectation with respect to Ft on both
sides of the above inequality, we have

m(T) – m(t) ≥ –E
[∫ T

t
α(s)m(s) ds|Ft

]
– E

[∫ T

t
β(τ )μ̄(τ ) dτ |Ft

]
.

Then

m(t) ≤ a + E

[∫ T

t
α(s)m(s) ds|Ft

]
+ E

[∫ T

t
β(τ )m(τ ) dτ |Ft

]
.

From Theorem 1 in [16], we have

m(t) ≤ aE
[
e
∫ T

t (α(s)+β(s)) ds|Ft
]
.

Then we have

μ(t) ≤ aE
[
e
∫ T

t (α(s)+β(s)) ds|Ft
]
. �

From Theorem 3.5, we get the following lemma.

Lemma 3.6 α(ω, t),β(ω, t) are two nonnegative F-adapted stochastic processes satisfying

∥∥∥∥
∫ T

0
α(ω, s) ds

∥∥∥∥∞
< ∞,

∥∥∥∥
∫ T

0
β(ω, s) ds

∥∥∥∥∞
< ∞.

If the following conditions hold:
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1◦ n(t) is a strictly positive F-adapted stochastic process and is decreasing with respect to
t;

2◦ μ(ω, t) is a nonnegative F-adapted stochastic process and E[supt∈[0,T] μ(ω, t)] < ∞;
3◦ μ(t) ≤ n(t) + E[

∫ T
t α(s)μ(s) ds|Ft] + E[

∫ T
t (α(s)E[

∫ T
s β(τ )μ(τ ) dτ |Fs]) ds|Ft], t ∈

[0, T],
then, for each t ∈ [0, T], we have

μ(t) ≤ n(t)E
[
e
∫ T

t (α(s)+β(s)) ds|Ft
]
, dP-a.s.

Proof Since

μ(t) ≤ n(t) + E

[∫ T

t
α(s)μ(s) ds|Ft

]
+ E

[∫ T

t

(
α(s)E

[∫ T

s
β(τ )μ(τ ) dτ |Fs

])
ds

∣∣∣∣Ft

]
,

t ∈ [0, T],

we have

μ(t)
n(t)

≤ 1 + E

[∫ T

t
α(s)

μ(s)
n(s)

ds|Ft

]
+ E

[∫ T

t

(
α(s)E

[∫ T

s
β(τ )

μ(τ )
n(τ )

dτ |Fs

])
ds

∣∣∣∣Ft

]
,

t ∈ [0, T].

By the above theorem, we complete the proof. �

Next, we will extend Bellman–Bihari’s inequality in Theorem 2 of [15] to backward
stochastic Bellman–Bihari’s inequality. And the proof method is this paper is also different
from the method in [15].

Theorem 3.7 Let α(ω, t),β(ω, t),γ (ω, t) be three nonnegative F-adapted stochastic pro-
cesses satisfying

∥∥∥∥
∫ T

0
α(ω, s) ds

∥∥∥∥∞
< ∞,

∥∥∥∥
∫ T

0
β(ω, s) ds

∥∥∥∥∞
< ∞,

∥∥∥∥
∫ T

0
γ (ω, s) ds

∥∥∥∥∞
< ∞.

One of them is strictly positive. If the following conditions are established:
1◦ μ(ω, t) is a nonnegative F-adapted stochastic process and E[supt∈[0,T] μ(ω, t)] < ∞;
2◦

μ(t) ≤ a + E

[∫ T

t
α(s)μ(s) ds|Ft

]

+ E

[∫ T

t

(
α(s)E

[∫ T

s
β(τ )μ(τ ) dτ |Fs

])
ds

∣∣∣∣Ft

]

+ E

[∫ T

t
γ (s)ρ

(
μ(s)

)
ds|Ft

]
, t ∈ [0, T],

then, for each t ∈ [0, T], we have

μ(t) ≤ W̄ –1
(

W̄
(
E

[
W̄ –1

(
W̄ (a) +

∫ T

0

(
α(s) + β(s) + γ (s)

)
ds

)∣∣∣∣Ft

])
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–
∫ t

0

(
α(s) + β(s) + γ (s)

)
ds

)
,

where W̄ , W̄ –1 are the functions in Lemma 3.4.

Proof Set

μ̄(t) = a + E

[∫ T

t
α(s)μ(s) ds|Ft

]
+ E

[∫ T

t

(
α(s)E

[∫ T

s
β(τ )μ(τ ) dτ |Fs

])
ds

∣∣∣∣Ft

]

+ E

[∫ T

t
γ (s)ρ

(
μ(s)

)
ds|Ft

]
.

It follows that μ(t) ≤ μ̄(t). Set

η = a +
∫ T

0
α(s)μ(s) ds + E

[∫ T

0

(
α(s)E

[∫ T

s
β(τ )μ(τ ) dτ |Fs

])
ds

]

+
∫ T

0
γ (s)ρ

(
μ(s)

)
ds.

By the martingale representation theorem, there exists a stochastic process {z(t), t ∈
[0, T]} ∈ L2

F
(0, T ;R) such that

E[η|Ft] = E[η] +
∫ t

0
z(s) dW (s).

Thus,

μ̄(t) = a + E

[∫ T

t
α(s)μ(s) ds|Ft

]

+ E

[∫ T

t

(
α(s)E

[∫ T

s
β(τ )μ(τ ) dτ |Fs

])
ds|Ft

]

+ E

[∫ T

t
γ (s)ρ

(
μ(s)

)
ds|Ft

]

= a + E

[
η –

∫ t

0
α(s)μ(s) ds

–
∫ t

0

(
α(s)E

[∫ T

s
β(τ )μ(τ ) dτ |Fs

])
ds –

∫ t

0
γ (s)ρ

(
μ(s)

)
ds|Ft

]

= a + E[η] +
∫ t

0
z(s) dW (s) –

∫ t

0
α(s)μ(s) ds

–
∫ t

0

(
α(s)E

[∫ T

s
β(τ )μ(τ ) dτ |Fs

])
ds

–
∫ t

0
γ (s)ρ

(
μ(s)

)
ds.

Furthermore, it leads to

dμ̄(t) = z(t) dW (t) – α(t)μ(t) dt –
(

α(t)E
[∫ T

t
β(τ )μ(τ ) dτ |Ft

])
dt – γ (t)ρ

(
μ̄(t)

)
dt
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≥ z(t) dW (t) – α(t)
(

μ̄(t) +
(
E

[∫ T

t
β(τ )μ̄(τ ) dτ |Ft

]))
dt – γ (t)ρ

(
μ̄(t)

)
dt.

Set

m(t) = μ̄(t) +
(
E

[∫ T

t
β(τ )μ̄(τ ) dτ |Ft

])
.

From the above equality, we get

dm(t) = dμ̄(t) + d
(
E

[∫ T

t
β(τ )μ̄(τ ) dτ |Ft

])

≥ z(t) dW (t) – α(t)m(t) dt + d
(
E

[∫ T

t
β(τ )μ̄(τ ) dτ |Ft

])
– γ (t)ρ

(
μ̄(t)

)
dt.

Integrating on [t, T] and taking the conditional expectation with respect to Ft on both
sides of the above inequality, we have

m(T) – m(t) ≥ –E
[∫ T

t
α(s)m(s) ds|Ft

]
– E

[∫ T

t
β(s)μ̄(s) ds|Ft

]

– E

[∫ T

t
γ (s)ρ

(
μ̄(s)

)
ds|Ft

]
.

Since μ̄(t) ≤ m(t), we derive

m(t) ≤ a + E

[∫ T

t
α(s)m(s) ds|Ft

]
+ E

[∫ T

t
β(s)m(s) ds|Ft

]

+ E

[∫ T

t
γ (s)ρ

(
m(s)

)
ds|Ft

]
.

From Lemma 3.4, we have

μ(t) ≤ W̄ –1
(

W̄
(
E

[
W̄ –1

(
W̄ (a) +

∫ T

0

(
α(s) + β(s) + γ (s)

)
ds

)∣∣∣∣Ft

])

–
∫ t

0

(
α(s) + β(s) + γ (s)

)
ds

)
. �

4 Application
4.1 Application 1
In this subsection, we will give an application for Theorem 3.2. Let (Y (1), Z(1)), (Y (2), Z(2))
be respectively the solutions of the following two 1-dimensional BSDEs:

Y (j)(t) = ξ (j) +
∫ T

t
fj
(
s, Y (j)(s), Z(j)(s)

)
ds –

∫ T

t
Z(j)(s) dW (s), t ∈ [0, T], (3)

where j = 1, 2.
(H1) Assume that

f (·, ·, ·, ·) : � × [0, T] ×R×R
d → R,
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and f satisfies the following condition:

E

[∫ T

0

∣∣f (s, 0, 0)
∣∣2 ds

]
< ∞.

(H2) For all s ∈ [0, T], y, y′ ∈R, z, z′ ∈R
d , we have

∣∣f (s, y, z) – f
(
s, y′, z′)∣∣2 ≤ ε(s)ρ

(∣∣y – y′∣∣2) + C
∣∣z – z′∣∣2,

where C > 0 is a constant and ε(s) > 0 is an F-adapted stochastic process satisfying
‖ ∫ T

0 ε(s) ds‖∞ < ∞.
(H3) Assume that ξ (j) ∈ L2

FT
(�;R), (Y (j), Z(j)) ∈ S2

F
(0, T ;R) × L2

F
(0, T ;Rd), j = 1, 2.

Theorem 4.1 Assume that f1, f2 satisfy (H1) and (H2) and condition (H3) holds. If ξ (1) ≤
ξ (2) and f1(t, y, z) ≤ f2(t, y, z) for all t ∈ [0, T], y ∈R, z ∈R

d , we have

Y (1)(t) ≤ Y (2)(t), a.e., a.s.

Proof Set

Ŷ (t) = Y (1)(t) – Y (2)(t), Ẑ(t) = Z(1)(t) – Z(2)(t).

Using Itô’s formula to |Ŷ +(t)|2, we have

eβt∣∣Ŷ +(t)
∣∣2 + E

[∫ T

t
βeβs∣∣Ŷ +(s)

∣∣2 ds|Ft

]
+ E

[∫ T

t
1Ŷ +(t)>0eβs∣∣Ẑ(s)

∣∣2 ds|Ft

]

≤ λE

[∫ T

t
eβs∣∣Ŷ +(s)

∣∣2 ds|Ft

]
+

1
λ
E

[∫ T

t
1Ŷ +(s)>0eβs∣∣f1

(
s, Y1(s), Z1(s)

)

– f1
(
s, Y2(s), Z2(s)

)∣∣2 ds|Ft

]

≤ λE

[∫ T

t
eβs∣∣Ŷ +(s)

∣∣2 ds|Ft

]
+ C′

E

[∫ T

t
eβsε(s)ρ

(∣∣Ŷ +(s)
∣∣2)ds|Ft

]

+
C′

λ
E

[∫ T

t
1Ŷ +(s)>0eβs∣∣Ẑ(s)

∣∣2 ds|Ft

]
.

Letting λ = 2C′ and β > λ, then we obtain

∣∣Ŷ +(t)
∣∣2 ≤ C′

E

[∫ T

t
ε(s)ρ

(∣∣Ŷ +(s)
∣∣2)ds|Ft

]
.

So, according to Theorem 3.2, we obtain that Ŷ +(t) = 0, a.s., that is to say, Y (1)(t) ≤ Y (2)(t),
a.e., a.s. �

Remark 4.2 Obviously, since ε(s) is a stochastic process, the assumption in (H3) about f
is different from the assumption in [7].
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4.2 Application 2
In this subsection, we will give an application for Theorem 3.7. Let (Y (1), Z(1)), (Y (2), Z(2))
be the solutions of the following two 1-dimensional BSDEs, respectively:

Y (j)(t) = ξ (j) +
∫ T

t
fj
(
s, Y (j)(s), Z(j)(s)

)
ds +

∫ T

t
ε2(s)E

[∫ T

s
ε3(r)Y (j)(r) dr|Fs

]
ds

–
∫ T

t
Z(j)(s) dW (s), t ∈ [0, T], (4)

where ε1, ε2 are two nonnegative processes satisfying

∥∥∥∥
∫ T

0
ε2(ω, s) ds

∥∥∥∥∞
< ∞,

∥∥∥∥
∫ T

0

∣∣ε3(ω, s)
∣∣2 ds

∥∥∥∥∞
< ∞, respectively.

(H1)’ Assume that

f (·, ·, ·, ·) : � × [0, T] ×R×R
d →R,

and f satisfies the following condition:

E

[∫ T

0

∣∣f (s, 0, 0)
∣∣2 ds

]
< ∞.

(H2)’ For all s ∈ [0, T], y, y′ ∈R, z, z′ ∈ R
d , we have

∣∣f (s, y, z) – f
(
s, y′, z′)∣∣2 ≤ ε1(s)ρ

(∣∣y – y′∣∣2) + ε2(s)
∣∣y – y′∣∣2 + C

∣∣z – z′∣∣2,

where C > 0 is a constant and ε1(s) is an F-adapted positive stochastic process
satisfying ‖ ∫ T

0 ε1(s) ds‖∞ < ∞.
(H3)’ Assume that ξ (j) ∈ L2

FT
(�;R), (Y (j), Z(j)) ∈ S2

F
(0, T ;R) × L2

F
(0, T ;Rd), j = 1, 2.

Theorem 4.3 Assume that f1, f2 satisfy (H1)’, (H2)’ and the condition (H3)’ holds. If ξ (1) ≤
ξ (2) and f1(t, y, z) ≤ f2(t, y, z) for all t ∈ [0, T], y ∈R, z ∈R

d , we have

Y (1)(t) ≤ Y (2)(t), a.e., a.s.

Proof Set

Ŷ (t) = Y (1)(t) – Y (2)(t), Ẑ(t) = Z(1)(t) – Z(2)(t).

Using Itô’s formula to |Ŷ +(t)|2, we have

eβt∣∣Ŷ +(t)
∣∣2 + E

[∫ T

t
βeβs∣∣Ŷ +(s)

∣∣2 ds|Ft

]
+ E

[∫ T

t
1Ŷ +(t)>0eβs∣∣Ẑ(s)

∣∣2 ds|Ft

]

≤ λE

[∫ T

t
eβs∣∣Ŷ +(s)

∣∣2 ds|Ft

]
+

1
λ
E

[∫ T

t
1Ŷ +(s)>0eβs∣∣f1

(
s, Y1(s), Z1(s)

)
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– f1
(
s, Y2(s), Z2(s)

)∣∣2 ds|Ft

]

+ C′
E

{∫ T

t
eβsε2(s)E

[∫ T

s

∣∣ε3(r)
∣∣2∣∣Ŷ +(r)

∣∣2 dr|Fs

]
ds

∣∣∣∣Ft

}

+ E

{∫ T

t
eβsε2(s)

∣∣Ŷ +(s)
∣∣2) ds|Ft

}

≤ λE

[∫ T

t
eβs∣∣Ŷ +(s)

∣∣2 ds|Ft

]
+ C′

E

[∫ T

t
eβsε1(s)ρ

(∣∣Ŷ +(s)
∣∣2)ds|Ft

]

+
C′

λ
E

[∫ T

t
1Ŷ +(s)>0eβs∣∣Ẑ(s)

∣∣2 ds|Ft

]

+ C′
E

{∫ T

t
eβsε2(s)E

[∫ T

s

∣∣ε3(r)
∣∣2∣∣Ŷ +(r)

∣∣2 dr|Fs

]
ds

∣∣∣∣Ft

}

+ E

{∫ T

t
eβsε2(s)

∣∣Ŷ +(s)
∣∣2) ds|Ft

}
.

Letting λ = 2C′ and β > λ, then we obtain

∣∣Ŷ +(t)
∣∣2 ≤ C′

E

[∫ T

t
ε1(s)ρ

(∣∣Ŷ +(s)
∣∣2)ds|Ft

]

+ C′
E

{∫ T

t
eβsε2(s)E

[∫ T

s

∣∣ε3(r)
∣∣2∣∣Ŷ +(r)

∣∣2 dr|Fs

]
ds

∣∣∣∣Ft

}

+ E

{∫ T

t
eβsε2(s)

∣∣Ŷ +(s)
∣∣2) ds|Ft

}
.

So, according to Theorem 3.7, we obtain that Ŷ +(t) = 0, a.s., that is to say,

Y (1)(t) ≤ Y (2)(t), a.e., a.s. �

5 Conclusion
In this paper, we mainly studied several different forms of backward stochastic Bellman–
Bihari’s inequality. The proposed scheme is based on studying the method of backward
stochastic Gronwall’s inequalities and forward Bellman–Bihari’s inequalities. As far as
we know, there is little study on backward stochastic Bellman–Bihari’s inequality. Just as
backward stochastic Gronwall’s inequalities including some essential features compared
with forward stochastic Gronwall’s inequalities, backward stochastic Bellman–Bihari’s in-
equalities also enjoy some essential different features, which can be applied to solve some
problems on BSDEs. Our further interests will lie on more applications by using backward
stochastic Bellman–Bihari’s inequalities.
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