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Abstract
In this paper, a second-order hyperbolic equation is solved by a two-grid algorithm
combined with the expanded mixed finite element method. The error estimate of the
expanded mixed finite element method with discrete-time scheme is demonstrated.
Moreover, we present a two-grid method and analyze its convergence. It is shown
that the algorithm can achieve asymptotically optimal approximation as long as the
mesh sizes satisfy H =O(h

1
2 ). Finally, some numerical experiments are provided to

illustrate the efficiency and accuracy of the proposed method.
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1 Introduction
Hyperbolic equations have been one of the principal tools in the nature. They are very sig-
nificant for many physical problems, such as fluid dynamics and aerodynamics, the theory
of elasticity, optics, electromagnetic waves, direct and inverse scattering, and the general
theory of relativity [1–3]. In this paper, we consider the following hyperbolic equation:

⎧
⎪⎪⎨

⎪⎪⎩

utt – ∇ · (K∇u) = f (u), (x, t) ∈ � × J ,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �,

u(x, t) = 0, (x, t) ∈ ∂� × J ,

(1.1)

where � is a bounded polygonal domain in R
2 with boundary ∂�, J = (0, T] and T > 0

is some final time. Let u denote the sound pressure, f is the external force, and K is the
coefficient. Let utt and ut denote ∂2u

∂t2 and ∂u
∂t , respectively. Moreover, throughout this paper

we assume that
(i) For some integer r ≥ 0, there exists a constant M0 such that

‖utt‖L2(Hr+1) + ‖ut‖L2(Hr+1) + ‖u‖L2(Hr+2∩W r,∞) ≤ M0.

(ii) The function K is a square-integrable, symmetric, uniformly positive-definite
tensor defined on �. Additionally, we assume that there exist constants K∗, K∗ > 0
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for every x ∈ �̄, and any vector y ∈R
2 such that

K∗|y|2 ≤ yT Ky ≤ K∗|y|2, ∀y ∈R
2.

(iii) The function f = f (u), f : �̄ ×R →R is a three times continuously differentiable
function with bounded derivatives through the third order. Moreover, there exists a
bound M1 such that

|f |,
∣
∣
∣
∣
∂f
∂t

∣
∣
∣
∣,

∣
∣
∣
∣
∂f
∂u

∣
∣
∣
∣,

∣
∣
∣
∣
∂2f
∂u2

∣
∣
∣
∣ ≤ M1.

Many papers have been written about numerical schemes for hyperbolic equations, see
[1–8, 13, 21–25] and the references cited therein. Mixed finite element method is such
a popular approach and has been widely used in porous media [4, 7, 8]. For the standard
mixed methods, problem (1.1) is often rewritten by introducing a new variable p = –K∇u,
or equivalently K–1p = –∇u. In this paper, we consider a variant of the mixed method, the
expanded mixed finite element method (EMFEM), proposed by Arbogast et al. [9]. This
approach expands the standard mixed formulation in the sense that three variables are
explicitly treated; i.e., the unknown scalar, its gradient, and its flux (the coefficient times
the gradient). The EMFEM enables us to compute gradient of pressure directly. In the
past two decades, expanded mixed method has been developed and some extensions have
been achieved. Chen [10, 11] analyzed the linear/quasilinear elliptic equations by EMFEM.
Woodward et al. [12] gave a detailed analysis of the EMFEM for second-order parabolic
equation and obtained optimal error estimates for nonlinear problem. Zhou et al. [13]
proposed an analysis of EMFEM applied to hyperbolic equations. Recently, Sharma et al.
[14] developed and applied the EMFEM for a class of nonlinear and nonlocal parabolic
problem for the case of the lowest order RT element.

As we know, the resulting algebraic system of equations is a large system of nonlinear
equations using the EMFE approximation for (1.1). Therefore, it is necessary for us to study
an effective algorithm for this essential system. Two-grid algorithm was introduced by Xu
[15, 16] for the nonsymmetric linear and nonlinear elliptic problems. It is a simple but ef-
fective algorithm that has been widely applied to nonlinear problems of various types. For
instance, Dawson et al. [17] applied a two-grid method for a class of nonlinear parabolic
equations by EMFEM. Wu et al. [18] studied a two-grid EMFEM for solving semilinear
reaction-diffusion equations. Chen et al. [19] constructed and analyzed three-steps al-
gorithm by using two-grid method for EMFE solution of parabolic equations. Recently,
Hou et al. [20] analyzed the superconvergence property of two-grid EMFEM for semilin-
ear parabolic integro-differential equations. Furthermore, some other research works can
also be found, such as [21–26].

To the best of our knowledge, there is no two-grid method convergence analysis for (1.1)
in the literature that is combined with EMFEM. In this paper, based on Raviart–Thomas
mixed finite spaces, we propose the two-grid method and the corresponding error esti-
mates which partly fill this gap. Our purpose is two fold. First of all, we apply EMFEM
and construct fully discrete approximation of (u, p̃, p). Secondly, we use the two-grid al-
gorithm to solve the fully discrete expanded-mixed-method equations. For the purpose of
obtaining the optimal approximation, we choose proper relationship between the coarse
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grid mesh size H and the fine grid mesh size h. It is showed that coarse space can be ex-
tremely coarse and asymptotically optimal approximation can be achieved as long as the
mesh sizes satisfy H = O(h 1

2 ).
The rest of the paper is organized as follows. In Sect. 2, we introduce some notations

and approximation results that are used throughout the paper. In Sect. 3, we construct
the EMFEM for (1.1) and derive the error estimates in L2-norm. In Sect. 4, we propose
the two-grid method and analyze the convergence. In Sect. 5, two numerical examples are
used to confirm the theoretical results.

Throughout this paper, let C be a generic positive constant independent of any functions
and numerical discretization parameters.

2 Notation and approximation results
We denote the standard Lebesgue space defined on � by Lp(�) for p ≥ 1 with the norm
‖ · ‖p. We shall also use the standard Sobolev space W m,p(�) with the norm ‖ · ‖m,p given
by ‖φ‖p

m,p =
∑

|α|≤m ‖Dαφ‖p
Lp(�). To simplify the notation, for p = 2, we denote Hm(�) =

W m,2(�) and write ‖ · ‖m = ‖ · ‖m,2, ‖ · ‖ = ‖ · ‖0,2.
Let

W = L2(�),

V = H(div;�) =
{

v : v ∈ (
L2(�)

)2,∇ · v ∈ L2(�)
}

,

with the norm defined by ‖v‖H(div;�) ≡ (‖v‖2 + ‖∇ · v‖2)1/2.
Let Th be a quasi-uniform family of finite element partitions of �, where h is the maxi-

mal element diameter. We consider finite-dimensional subspaces Wh and Vh of W and V ,
respectively. They are Raviart–Thomas spaces of index k (RTk) [27] or Brezzi–Douglas–
Marini spaces of index k (BDMk) [28], where k is a fixed nonnegative integer associated
with Th. The following inclusion holds for the RTk spaces or BDMk spaces [27, 28]

∇ · vh ∈ Wh, ∀vh ∈ Vh. (2.1)

The analysis employs standard L2 projections onto the spaces Wh and Vh. Denote by
(φ̂, ψ̂) ∈ Wh × Vh the L2 projection of (φ,ψ), defined by the conditions

(φ, wh) = (φ̂, wh), ∀wh ∈ Wh, (2.2)

(ψ , vh) = (ψ̂ , vh), ∀vh ∈ Vh. (2.3)

Let �h be the well-known Fortin projection of (H1(�))2 into Vh such that

(∇ · z, wh) = (∇ · �hz, wh), ∀wh ∈ Wh. (2.4)

These projections obey the following identities:

(∂φ/∂t, wh) = (∂φ̂/∂t, wh), ∀wh ∈ Wh,
(
∂2φ/∂t2, wh

)
=

(
∂2φ̂/∂t2, wh

)
, ∀wh ∈ Wh,

(φ,∇ · vh) = (φ̂,∇ · vh), ∀vh ∈ Vh.

(2.5)
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From Refs. [27, 28], there are approximation properties: for φ ∈ W k+1,q(�) and z ∈
(W k+1,q(�))2,

‖φ̂‖0,q ≤ C‖φ‖0,q, 2 ≤ q < ∞, (2.6)

‖φ – φ̂‖0,q ≤ C‖φ‖r,qhr , 0 ≤ r ≤ k + 1, (2.7)

‖z – �hz‖0,q ≤ C‖z‖r,qhr , 1/q < r ≤ k + 1, (2.8)
∥
∥∇ · (z – �hz)

∥
∥

0,q ≤ C‖∇ · z‖r,qhr , 0 ≤ r ≤ k + 1. (2.9)

3 A priori error estimates of EMFEM
Introduce the auxiliary variables p̃ = –∇u, p = K p̃ to obtain the following first-order sys-
tem for (1.1):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt + ∇ · p = f (u), (x, t) ∈ � × J ,

p̃ + ∇u = 0, (x, t) ∈ � × J ,

p – K p̃ = 0, (x, t) ∈ � × J ,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ �,

u(x, t) = 0, (x, t) ∈ ∂� × J .

(3.1)

The expanded mixed weak formulation of (3.1) is to find (u, p̃, p) : J 
→ W × V × V such
that

(utt , w) + (∇ · p, w) =
(
f (u), w

)
, ∀w ∈ W , (3.2)

(p̃, v) – (∇ · v, u) = 0, ∀v ∈ V, (3.3)

(p, v) – (K p̃, v) = 0, ∀v ∈ V, (3.4)

with u(0) = u0 and ut(0) = u1.
Let {tn | tn = nτ ; 0 ≤ n ≤ N} be a uniform partition of the time interval with the time step

τ = T/N . We denote ϕn = ϕ(·, tn). For a sequence of functions {ϕn}N
n=0, we describe some

of the notations which will be used in our analysis:

ϕn+ 1
2 =

ϕn+1 + ϕn

2
, ϕn, 1

2 =
ϕn+1 + ϕn–1

2
,

∂tϕ
n+ 1

2 =
ϕn+1 – ϕn

τ
, ∂tϕ

n =
ϕn+1 – ϕn–1

2τ
,

∂ttϕ
n =

ϕn+1 – 2ϕn + ϕn–1

τ 2 .

Then, it is easy to verify the following relations:

∂tϕ
n =

∂tϕ
n+ 1

2 + ∂tϕ
n– 1

2

2
, ∂ttϕ

n =
∂tϕ

n+ 1
2 – ∂tϕ

n– 1
2

τ
.

Now, by the above some notations we can establish the following discrete time EMFE
approximation of problem (3.2)–(3.4).
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Fully-discrete EMFEM: Given initial value (u0
h, p̃0

h, p0
h) ∈ Wh × Vh × Vh such that

(
u0

h, wh
)

= (u0, wh), ∀wh ∈ Wh, (3.5)
(

p̃0
h, vh

)
= (u0,∇ · vh), ∀vh ∈ Vh, (3.6)

(
p0

h, vh
)

= (–K∇u0, vh), ∀vh ∈ Vh, (3.7)

and (u1
h, p̃1

h, p1
h) ∈ Wh × Vh × Vh such that

(
u1

h – u–1
h

2τ
, wh

)

= (u1, wh), ∀wh ∈ Wh, (3.8)

(
p̃1

h – p̃–1
h

2τ
, wh

)

= (u1,∇ · vh), ∀vh ∈ Vh, (3.9)

(
p1

h – p–1
h

2τ
, wh

)

= (–K∇u1, vh), ∀vh ∈ Vh, (3.10)

for n ≥ 0, find (un+1
h , p̃n+1

h , pn+1
h ) ∈ Wh × Vh × Vh such that

(
∂ttun

h, wh
)

+
(∇ · p

n, 1
2

h , wh
)

=
(
f (uh)n, 1

2 , wh
)
, ∀wh ∈ Wh, (3.11)

(
p̃n+1

h , vh
)

–
(∇ · vh, un+1

h
)

= 0, ∀vh ∈ Vh, (3.12)
(
K p̃n+1

h , vh
)

–
(

pn+1
h , vh

)
= 0, ∀vh ∈ Vh. (3.13)

Equations (3.8) and (3.10) arise naturally by defining two fictitious values u–1
h and p–1

h
satisfying the conditions

u–1
h = u1

h – 2τu1,

p–1
h = –K∇u–1

h = –K∇(
u1

h – 2τu1
)
,

and considering (3.11) with n = 0.
As in [29], we use the Sobolev embedding inequality

‖uh‖0,p ≤ C0‖∇uh‖, 1 ≤ p < ∞, (3.14)

where C0 is a constant only depending upon the domain and p.

Theorem 3.1 Let (un
h, p̃n

h, pn
h) ∈ Wh × Vh × Vh be the solution of (3.5)–(3.13). If u0

h = û0,
u1

h = û1, and τ < min{ 1
2 , 1

6M2
1C2

0
}, then for 1 ≤ n ≤ N , we have

sup
n

{∥
∥un – un

h
∥
∥ +

∥
∥p̃n – p̃n

h
∥
∥ +

∥
∥pn – pn

h
∥
∥
} ≤ C

(
hk+1 + τ 2), (3.15)

where k is associated with the degree of the finite element polynomial.

Proof From (3.2)–(3.4), we see that

(
un, 1

2
tt , wh

)
+

(∇ · pn, 1
2 , wh

)
=

(
f (u)n, 1

2 , wh
)
, ∀wh ∈ Wh, (3.16)



Wang and Wang Journal of Inequalities and Applications        (2021) 2021:171 Page 6 of 15

(
p̃n+1, vh

)
–

(∇ · vh, un+1) = 0, ∀vh ∈ Vh, (3.17)
(
K p̃n+1, vh

)
–

(
pn+1, vh

)
= 0, ∀vh ∈ Vh. (3.18)

Let μn = ûn –un
h , χn = ̂̃p

n
– p̃n

h , χn = �hpn – pn
h , ξn = un – ûn, ηn = p̃n –̂̃p

n
, and η = pn –�hpn.

Using (3.11)–(3.13) and (3.16)–(3.18), we get the error equations:

(
∂ttμ

n, wh
)

+
(∇ · χn, 1

2 , wh
)

=
(
∂ttun – un, 1

2
tt , wh

)
–

(
∂ttξ

n, wh
)

+
((

f (u) – f (uh)
)n, 1

2 , wh
)
, ∀wh ∈ Wh, (3.19)

(
χn+1, vh

)
–

(
μn+1,∇ · vh

)
= 0, ∀vh ∈ Vh, (3.20)

(
Kχn+1, vh

)
–

(
χn+1, vh

)
=

(
ηn+1, vh

)
–

(
Kηn+1, vh

)
, ∀vh ∈ Vh. (3.21)

Subtracting (3.20) from itself, with n + 1 replaced with n – 1, we get

(
χn+1 – χn–1, vh

)
–

(
μn+1 – μn–1,∇ · vh

)
= 0, ∀vh ∈ Vh. (3.22)

It follows from (3.21) that

(
K

(
χn+1 + χn–1), vh

)
–

(
χn+1 + χn–1, vh

)

=
(
ηn+1 + ηn–1, vh

)
–

(
K

(
ηn+1 + ηn–1), vh

)
, ∀vh ∈ Vh.

(3.23)

Let wh = ∂tμ
n in (3.19), vh = χ

n, 1
2

2τ
in (3.22), and vh = ∂tχn

2 in (3.23), and combine the three
resulting equations to get

(
∂ttμ

n, ∂tμ
n) +

(
∂tχ

n, Kχn, 1
2
)

=
1

2τ

(∥
∥∂tμ

n+ 1
2
∥
∥2 –

∥
∥∂tμ

n– 1
2
∥
∥2) +

1
4τ

(∥
∥K

1
2 χn+1∥∥2 –

∥
∥K

1
2 χn–1∥∥2)

=
(
∂ttun – un, 1

2
tt , ∂tμ

n) –
(
∂ttξ

n, ∂tμ
n) +

((
f (u) – f (uh)

)n, 1
2 , ∂tμ

n)

+
(
ηn, 1

2 , ∂tχ
n) –

(
Kηn, 1

2 , ∂tχ
n)

:=
5∑

i=1

Ai.

(3.24)

For A1, we note that ∂ttun = un+1–2un+un–1

τ2 , and use Taylor series to expand un+1 and un–1 at
un as follows:

un+1 = un + τ
∂un

∂t
+

τ 2

2
∂2un

∂t2 +
τ 3

6
∂3un

∂t3 +
1
6

∫ tn+1

tn

(tn+1 – t)3 ∂4u
∂t4 dt,

un–1 = un – τ
∂un

∂t
+

τ 2

2
∂2un

∂t2 –
τ 3

6
∂3un

∂t3 +
1
6

∫ tn

tn–1

(tn–1 – t)3 ∂4u
∂t4 dt.

Then we have

un+1 + un–1 = 2un + τ 2 ∂2un

∂t2 +
1
6

∫ τ

–τ

(|t| – τ
)3 ∂4u

∂t4 (tn + t) dt. (3.25)
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It follows from (3.25) that

∂ttun – un
tt =

1
6τ 2

∫ τ

–τ

(|t| – τ
)3 ∂4u

∂t4 (tn + t) dt.

Therefore

∥
∥∂ttun – un

tt
∥
∥2 ≤ Cτ 2

∫

�

[∫ tn+τ

tn–τ

∂4u
∂t4 (t)

]2

dx

≤ Cτ 3
∫ tn+τ

tn–τ

∥
∥
∥
∥
∂4u
∂t4

∥
∥
∥
∥

2

dt

≤ Cτ 4
∥
∥
∥
∥
∂4u
∂t4

∥
∥
∥
∥

2

L∞(L2)
.

Using Young’s inequality, we have

A1 ≤ Cτ 4
∥
∥
∥
∥
∂4u
∂t4

∥
∥
∥
∥

2

L∞(L2)
+ ε1

∥
∥∂tμ

n∥∥2. (3.26)

For the second term A2, using the property of the L2 projection and Young’s inequality, we
see that

A2 =
(
ξn

tt – ξn
tt – ∂ttξ

n, ∂tμ
n)

≤ C
{

h2k+2 + τ 4
∥
∥
∥
∥
∂4u
∂t4

∥
∥
∥
∥

2

L∞(L2)

}

+ ε2
∥
∥∂tμ

n∥∥2.
(3.27)

For the third term A3, by assumption (iii) and (2.7), we obtain

A3 =
((

f (u) – f (uh)
)n, 1

2 , ∂tμ
n)

≤ (
M1

(
un, 1

2 – ûn, 1
2 + ûn, 1

2 – un, 1
2

h
)
, ∂tμ

n)

≤ Ch2k+2 +
M2

1
2

(∥
∥μn+1∥∥2 +

∥
∥μn–1∥∥2) + ε3

∥
∥∂tμ

n∥∥2.

(3.28)

For the terms A4 and A5, applying Young’s inequality, assumption (ii), and (2.8), we have

A4 + A5 =
(
ηn, 1

2 , ∂tχ
n) –

(
Kηn, 1

2 , ∂tχ
n)

≤ C
{∥
∥ηn+1∥∥2 +

∥
∥ηn–1∥∥2 +

∥
∥ηn+1∥∥2 +

∥
∥ηn–1∥∥2} + (ε4 + ε5)

∥
∥∂tχ

n∥∥2

≤ Ch2k+2 + (ε4 + ε5)
∥
∥∂tχ

n∥∥2.

(3.29)

From (3.24), (3.26)–(3.29), choosing ε1 +ε2 +ε3 = 1 and ε4 +ε5 = ε > 0, ε is a small constant,
we have

1
2τ

(∥
∥∂tμ

n+ 1
2
∥
∥2 –

∥
∥∂tμ

n– 1
2
∥
∥2) +

1
4τ

(∥
∥K

1
2 χn+1∥∥2 –

∥
∥K

1
2 χn–1∥∥2)

≤ C
{

h2k+2 + τ 4} +
M2

1
2

(∥
∥μn+1∥∥2 +

∥
∥μn–1∥∥2) +

∥
∥∂tμ

n∥∥2 + ε
∥
∥∂tχ

n∥∥2.
(3.30)
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Multiplying both sides of (3.30) by 4τ and summing from 1 to N , we get

2
∥
∥∂tμ

N+ 1
2
∥
∥2 – 2

∥
∥∂tμ

1
2
∥
∥2 +

∥
∥K

1
2 χN+1∥∥2 +

∥
∥K

1
2 χN∥

∥2 –
∥
∥K

1
2 χ1∥∥2 –

∥
∥K

1
2 χ0∥∥2

≤ C
{

h2k+2 + τ 4} + 2M2
1τ

N∑

n=1

(∥
∥μn+1∥∥2 +

∥
∥μn–1∥∥2) + 4τ

N∑

n=1

∥
∥∂tμ

n∥∥2

+ 4ετ

N∑

n=1

∥
∥∂tχ

n∥∥2.

(3.31)

With the proper choice of the initial functions u0
h = û0 and u1

h = û1, we have

∂tμ
1
2 = 0, χ0 = 0.

Taking n = 0 in (3.20) and choosing vh = χ1, we get

χ1 = 0.

In view of ‖∂tμ
n‖2 ≤ ‖∂tμ

n+ 1
2 ‖2 + ‖∂tμ

n– 1
2 ‖2, and using assumption (ii), (3.31) can be

rewritten as follows:

(2 – 4τ )
∥
∥∂tμ

N+ 1
2
∥
∥2 +

∥
∥χN+1∥∥2 +

∥
∥χN∥

∥2

≤ C
{

h2k+2 + τ 4} + 2M2
1τ

N∑

n=1

(∥
∥μn+1∥∥2 +

∥
∥μn–1∥∥2) + 4τ

N–1∑

n=1

∥
∥∂tμ

n+ 1
2
∥
∥2

+ 4ετ

N∑

n=1

∥
∥∂tχ

n∥∥2.

(3.32)

By using the result in (3.14), we see that

∥
∥μn+1∥∥ ≤ C0

∥
∥χn+1∥∥. (3.33)

Let vh = χn+1 ∈ Vh in (3.21), we have

∥
∥χn+1∥∥2 ≤ C

∥
∥χn+1∥∥2. (3.34)

Substitute (3.33) and (3.34) into (3.32), we obtain

(2 – 4τ )
∥
∥∂tμ

N+ 1
2
∥
∥2 +

(
1

3C2
0h2 – 2M2

1τ

)
∥
∥μN+1∥∥2

+
1

3C1

∥
∥χN+1∥∥2 +

1
3
∥
∥χN+1∥∥2 +

∥
∥χN∥

∥2

≤ C
{

h2k+2 + τ 4} + Cτ

N∑

n=0

∥
∥μn∥∥2 + 4τ

N–1∑

n=1

∥
∥∂tμ

n+ 1
2
∥
∥2 + 4ετ

N∑

n=1

∥
∥∂tχ

n∥∥2.

(3.35)

Applying the discrete Gronwall’s inequality, when τ < min{ 1
2 , 1

6M2
1C2

0
}, we see that

∥
∥∂tμ

N+ 1
2
∥
∥2 +

∥
∥μN+1∥∥2 +

∥
∥χN+1∥∥2 +

∥
∥χN+1∥∥2 ≤ C

{
h2k+2 + τ 4}. (3.36)
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Thus, combining (2.7), (2.8), (3.36) and using the triangle inequality, we can derive
(3.15). �

4 A priori error estimates of two-grid method
In this section, we present a two-grid algorithm with expanded mixed element for (3.5)–
(3.13). The basic ingredient in our approach is construction of two quasi-uniform trian-
gulation of �, TH , and Th, with different mesh sizes H and h (h � H < 1). We introduce
the corresponding mixed finite element spaces WH × VH × VH and Wh × Vh × Vh, which
satisfy WH × VH × VH ⊂ Wh × Vh × Vh. They will be called the coarse grid and fine grid
spaces, respectively. Our two-grid algorithm is as follows.

Algorithm 1 Step 1: On the coarse grid TH , given the initial value (u0
H , p̃0

H , p0
H ) ∈ WH ×

VH × VH such that

(
u0

H , wH
)

= (u0, wH ), ∀wH ∈ WH , (4.1)
(

p̃0
H , vH

)
= (u0,∇ · vH ), ∀vH ∈ VH , (4.2)

(
p0

H , vH
)

= (–K∇u0, vH ), ∀vH ∈ VH , (4.3)

and (u1
H , p̃1

H , p1
H ) ∈ WH × VH × VH such that

(
u1

H – u–1
H

2τ
, wH

)

= (u1, wH ), ∀wH ∈ WH , (4.4)

(
p̃1

H – p̃–1
H

2τ
, wH

)

= (u1,∇ · vH ), ∀vH ∈ VH , (4.5)

(
p1

H – p–1
H

2τ
, wH

)

= (–K∇u1, vH ), ∀vH ∈ VH , (4.6)

for n ≥ 0, find (un+1
H , p̃n+1

H , pn+1
H ) ∈ WH × VH × VH , solve the following semi-linear system:

(
∂ttun

H , wH
)

+
(∇ · p

n, 1
2

H , wH
)

=
(
f (uH )n, 1

2 , wH
)
, ∀wH ∈ WH , (4.7)

(
p̃n+1

H , vH
)

–
(∇ · vH , un+1

H
)

= 0, ∀vH ∈ VH , (4.8)
(
K p̃n+1

H , vH
)

–
(

vH , pn+1
H

)
= 0, ∀vH ∈ VH . (4.9)

Step 2: On the fine grid Th, given the initial value (U0
h , ˜P

0
h,P0

h) ∈ Wh × Vh × Vh such that

(
U0

h , wh
)

= (u0, wh), ∀wh ∈ Wh, (4.10)
(
˜P

0
h, vh

)
= (u0,∇ · vh), ∀vh ∈ Vh, (4.11)

(
P0

h, vh
)

= (–K∇u0, vh), ∀vh ∈ Vh, (4.12)

and (U1
h , ˜P

1
h,P1

h) ∈ Wh × Vh × Vh such that

(U1
h – U–1

h
2τ

, wh

)

= (u1, wh), ∀wh ∈ Wh, (4.13)
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(
˜P

1
h – ˜P

–1
h

2τ
, wh

)

= (u1,∇ · vh), ∀vh ∈ Vh, (4.14)

(P1
h – P–1

h
2τ

, wh

)

= (–K∇u1, vh), ∀vh ∈ Vh, (4.15)

for n ≥ 0, find (Un+1
h , ˜P

n+1
h ,Pn+1

h ) ∈ Wh × Vh × Vh, solve the following linear system:

(
∂ttUn

h , wh
)

+
(∇ ·Pn, 1

2
h , wh

)
=

((
f (uH ) + f ′(uH )(Uh – uH )

)n, 1
2 , wh

)
, ∀wh ∈ Wh, (4.16)

(
˜P

n+1
h , vh

)
–

(∇ · vh,Un+1
h

)
= 0, ∀vh ∈ Vh, (4.17)

(
K ˜P

n+1
h , vh

)
–

(
vh,Pn+1

h
)

= 0, ∀vh ∈ Vh. (4.18)

We note that, for n = 0 in (4.16), the values U–1
h and P–1

h can be determined by (4.13)
and (4.15).

Now we consider the error estimate for the two-grid algorithm. Obviously, Theorem 3.1
holds for the solution of the coarse mesh with h = H . In the following, we derive the error
estimate of the fine grid.

Theorem 4.1 Let (Un
h , ˜P

n
h,Pn

h) ∈ Wh × Vh × Vh be the solution of (4.10)–(4.18). Assume
that (i)–(iii) hold and take U0

h = û0, U1
h = û1, τ < min{ 1

2 , 1
6C02M2

1
}, then for 1 ≤ n ≤ N , there

exists a positive constant C such that

sup
n

{∥
∥un – Un

h
∥
∥ +

∥
∥p̃n – ˜P

n
h
∥
∥ +

∥
∥pn – Pn

h
∥
∥
} ≤ C

(
hk+1 + H2k+2 + τ 2),

where k is associated with the degree of the finite element polynomial.

Proof Taking βn = ûn – Un
h , γ n = ̂̃p

n
– ˜P

n
h , and γ n = �hpn – Pn

h . Let us first note the fol-
lowing error equations from (3.16)–(3.18) and (4.16)–(4.18):

(
∂ttβ

n, wh
)

+
(∇ · γ n, 1

2 , wh
)

=
(
∂ttun – un, 1

2
tt , wh

)
–

(
∂ttξ

n, wh
)

+
(
f (u)n, 1

2 , wh
)

–
((

f (uH ) + f ′(uH )(Uh – uH )
)n, 1

2 , wh
)
, ∀wh ∈ Wh, (4.19)

(
γ n+1, vh

)
–

(
βn+1,∇ · vh

)
= 0, ∀vh ∈ Vh, (4.20)

(
Kγ n+1, vh

)
–

(
γ n+1, vh

)
=

(
ηn+1, vh

)
–

(
Kηn+1, vh

)
, ∀vh ∈ Vh. (4.21)

We now rewrite terms on the right-hand side of (4.19). A Taylor expansion of f about uH

yields

(
f (u)n, 1

2 , wh
)

–
((

f (uH ) + f ′(uH )(Uh – uH )
)n, 1

2 , wh
)

=
(

f (uH )n, 1
2 +

(
f ′(uH )(u – uH )

)n, 1
2 +

1
2
(
f ′′(u∗)(u – uH )2)n, 1

2 , wh

)

–
((

f (uH ) + f ′(uH )(Uh – uH )
)n, 1

2 , wh
)

=
((

f ′(uH )(u – Uh)
)n, 1

2 , wh
)

+
(

1
2
(
f ′′(u∗)(u – uH )2)n, 1

2 , wh

)
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for some function u∗. By (4.20) and (4.21), we have

(
γ n+1 – γ n–1, vh

)
–

(
βn+1 – βn–1,∇ · vh

)
= 0, ∀vh ∈ Vh, (4.22)

(
K

(
γ n+1 + γ n–1), vh

)
–

(
γ n+1 + γ n–1, vh

)
=

(
ηn+1 + ηn–1, vh

)

–
(
K

(
ηn+1 + ηn–1), vh

)
, ∀vh ∈ Vh. (4.23)

Choose wh = ∂tβ
n, vh = γ

n, 1
2

2τ
, and vh = ∂tγ n

2 as test functions in (4.19), (4.22), and (4.23),
respectively. Then, add the resulting equations to obtain

(
∂ttβ

n, ∂tβ
n) +

(
∂tγ

n, Kγ n, 1
2
)

=
1

2τ

(∥
∥∂tβ

n+ 1
2
∥
∥2 –

∥
∥∂tβ

n– 1
2
∥
∥2) +

1
4τ

(∥
∥K

1
2 γ n+1∥∥2 –

∥
∥K

1
2 γ n–1∥∥2)

=
(
∂ttun – un, 1

2
tt , ∂tβ

n) –
(
∂ttξ

n, ∂tβ
n) +

(
ηn, 1

2 , ∂tγ
n) –

(
Kηn, 1

2 , ∂tγ
n)

+
((

f ′(uH )(u – Uh)
)n, 1

2 , ∂tβ
n) +

(
1
2
(
f ′′(u∗)(u – uH )2)n, 1

2 , ∂tβ
n
)

:=
6∑

i=1

Ii.

(4.24)

In the same way as the estimate of (3.24), we get

I1 + I2 ≤ C
{

h2k+2 + τ 4
∥
∥
∥
∥
∂4u
∂t4 (t)

∥
∥
∥
∥

2

L∞(L2)

}

+ ε6
∥
∥∂tβ

n∥∥2,

I3 + I4 ≤ Ch2k+2 + ε
∥
∥∂tγ

n∥∥2.

(4.25)

The last two terms on the right-hand side of (4.24) can be bound using (2.7) and (3.15), we
see that

I5 ≤ Ch2k+2 +
M2

1
2

(∥
∥βn+1∥∥2 +

∥
∥βn–1∥∥2) + ε7

∥
∥∂tμ

n∥∥2,

I6 ≤ C
(∥
∥(u – uH )2∥∥

)n, 1
2
∥
∥∂tμ

n∥∥ ≤ C
{

H4k+4 + τ 4} + ε8
∥
∥∂tμ

n∥∥2.
(4.26)

From (4.24)–(4.26), set
∑8

i=6 εi = 1, we find that

1
2τ

(∥
∥∂tβ

n+ 1
2
∥
∥2 –

∥
∥∂tβ

n– 1
2
∥
∥2) +

1
4τ

(∥
∥K

1
2 γ n+1∥∥2 –

∥
∥K

1
2 γ n–1∥∥2)

≤ C
{

h2k+2 + H4k+4 + τ 4} +
M2

1
2

(∥
∥βn+1∥∥2 +

∥
∥βn–1∥∥2) +

∥
∥∂tμ

n∥∥2 + ε
∥
∥∂tγ

n∥∥2.
(4.27)

Multiplying by 4τ and summing (4.27) from n = 1 to N , the resulting equation becomes

2
∥
∥∂tβ

N+ 1
2
∥
∥2 – 2

∥
∥∂tβ

1
2
∥
∥2 +

∥
∥K

1
2 γ N+1∥∥2 +

∥
∥K

1
2 γ N∥

∥2 –
∥
∥K

1
2 γ 1∥∥2 –

∥
∥K

1
2 γ 0∥∥2
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≤ C
{

h2k+2 + H4k+4 + τ 4} + 2M2
1τ

N∑

n=1

(∥
∥βn+1∥∥2 +

∥
∥βn–1∥∥2) + 4τ

N∑

n=1

∥
∥∂tβ

n∥∥2 (4.28)

+ 4ετ

N∑

n=1

∥
∥∂tγ

n∥∥2.

In the following, similar to the estimates of (3.33) and (3.34), we have

∥
∥βn+1∥∥ ≤ C0

∥
∥γ n+1∥∥,

∥
∥γ n+1∥∥2 ≤ C

∥
∥γ n+1∥∥2.

(4.29)

By the initial conditions U0
h = û0 and U1

h = û1, we can easily obtain

∂tβ
1
2 = 0, γ 0 = γ 1 = 0. (4.30)

Combining (4.28)–(4.30) results in

(2 – 4τ )
∥
∥∂tβ

N+ 1
2
∥
∥2 +

(
1 – 2M2

1τ
)∥
∥βN+1∥∥2 +

∥
∥γ N+1∥∥2 +

∥
∥γ N+1∥∥2 +

∥
∥γ N∥

∥2

≤ C
{

h2k+2 + H4k+4 + τ 4} + Cτ

N∑

n=0

∥
∥βn∥∥2

+ 4τ

N–1∑

n=1

∥
∥∂tβ

n+ 1
2
∥
∥2 + 4ετ

N∑

n=1

∥
∥∂tγ

n∥∥2.

(4.31)

When τ < min{ 1
2 , 1

6C02M2
1
}, the discrete Gronwall’s lemma yields

∥
∥∂tβ

N+ 1
2
∥
∥2 +

∥
∥βN+1∥∥2 +

∥
∥γ N+1∥∥2 +

∥
∥γ N+1∥∥2 ≤ C

{
h2k+2 + H4k+4 + τ 4}. (4.32)

The final result is obtained by using (2.7), (2.8), (4.32) and the triangle inequality. �

Remark 4.1 From Theorem 4.1, we see that the optimal error estimate is O(τ 2 + hk+1)
in L2-norm by taking H = O(h1/2). This result is consistent with the optimal error result
(3.15) obtained for EMFE system (3.5)–(3.13).

5 Numerical experiments
In this section, we give some numerical experiments to support the analysis developed
in the paper and to assess the merit of the two-grid method when compared with the
EMFEM. In the numerical examples reported below, we choose RTk (k = 0,1) as the ap-
proximation space. The domain � is uniformly divided into two families TH and Th of
triangular elements with H = h1/2. In order to obtain the convergence rate of space mesh
size, J is also uniformly divided so that τ is a small time step.

Example 1 We consider the following hyperbolic problem:

⎧
⎪⎪⎨

⎪⎪⎩

utt – ∇ · (K∇u) – u5 = g, (x, t) ∈ � × J ,

u(x, 0) = u0, ut(x, 0) = u1, x ∈ �,

u = 0, (x, t) ∈ ∂� × J ,



Wang and Wang Journal of Inequalities and Applications        (2021) 2021:171 Page 13 of 15

Table 1 Errors and computational time of the EMFEM with RT1 element

h ‖u – uh‖ ‖p̃ – p̃h‖ ‖p – ph‖ Computing time (s)

2–2 1.8758e–2 9.4517e–2 9.4822e–2 0.54
2–4 1.3067e–3 6.6139e–3 6.6214e–3 5.27
2–6 9.2041e–5 4.6862e–4 4.6851e–4 121.78
2–8 6.3792e–6 3.2754e–5 3.2967e–5 1470.35
Rates 2.0 2.0 2.0

Table 2 Errors and computational time of the two-grid method with RT1 element

(H,h) ‖u –Uh‖ ‖p̃ – ˜Ph‖ ‖p –Ph‖ Computing time (s)

(2–1, 2–2) 1.8843e–2 9.4908e–2 9.5169e–2 0.71
(2–2, 2–4) 1.3341e–3 6.8325e–3 6.9089e–3 1.95
(2–3, 2–6) 9.3167e–5 4.8378e–4 4.8919e–4 29.84
(2–4, 2–8) 6.5058e–6 3.4161e–5 3.4732e–5 377.51
Rates 2.0 2.0 2.0

where � = (0, 1)2, J = (0, 1], x = (x1, x2)T , and

K =

(
x2

1 + 1 0
0 x2

2 + 1

)

.

The functions g , u0, and u1 are computed from the exact solution u(x, t) = e–t sin(πx1) ×
sin(πx2).

We use Raviart–Thomas spaces of index k = 1 (RT1). The error results, convergence
rates, and computational time obtained with τ = 1.0e–3 by the EMEFM and the two-grid
method are presented in Tables 1 and 2.

From the numerical results in Tables 1 and 2, we can easily observe that the proposed two
methods are of second-order accuracy in L2-norm, which coincides with our theoretical
analysis. Moreover, by comparing with the last columns of two tables, it is easy to see that
given the same accuracy the two-grid method is much more efficient than the EMFEM.

Example 2 We consider the following hyperbolic problem:

⎧
⎪⎪⎨

⎪⎪⎩

utt – ∇ · (K∇u) – sin u + u2 = g, (x, t) ∈ � × J ,

u(x, 0) = u0, ut(x, 0) = u1, x ∈ �,

u = 0, (x, t) ∈ ∂� × J ,

where � = (0, 1)2, J = (0, 1], x = (x1, x2)T , and

K =

(
x2

1 + 1 0
0 x2

2 + 1

)

.

The functions g , u0, and u1 are chosen so that the exact solution u(x, t) = e–t(x4
1 – x3

1)(x2
2 –

x2).
We consider the lowest Raviart–Thomas spaces of index k = 0 (RT0). The numerical

results and computational time obtained with τ = 1.0e–3 are shown in Tables 3 and 4. It
can be seen from Tables 3 and 4 that ‖u – Uh‖, ‖p̃ – ˜Ph‖, and ‖p – Ph‖ are convergent at
the rate of O(h), which is in accordance with the theoretical analysis.
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Table 3 Errors and computational time of the EMFEM with RT0 element

h ‖u – uh‖ ‖p̃ – p̃h‖ ‖p – ph‖ Computing time (s)

2–2 4.2443e–3 1.5198e–2 1.5957e–2 0.37
2–4 1.1176e–3 4.0412e–3 4.2548e–3 4.92
2–6 2.9495e–4 1.0679e–3 1.1212e–3 96.09
2–8 7.6126e–5 2.8173e–4 2.9416e–4 816.48
Rates 1.0 1.0 1.0

Table 4 Errors and computational time of the two-grid method with RT0 element

(H,h) ‖u –Uh‖ ‖p̃ – ˜Ph‖ ‖p –Ph‖ Computing time (s)

(2–1, 2–2) 4.4721e–3 1.6902e–2 1.7111e–2 0.58
(2–2, 2–4) 1.1817e–3 4.4975e–3 4.5216e–3 1.61
(2–3, 2–6) 3.0799e–4 1.1758e–3 1.1948e–3 23.76
(2–4, 2–8) 7.9547e–5 3.0644e–4 3.1401e–4 227.14
Rates 1.0 1.0 1.0
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