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Abstract
In this paper, we investigate the existence uniqueness of mild solutions for a class of
ψ -Caputo fractional stochastic evolution equations with varying-time delay driven by
fBm, which seems to be the first theoretical result of the ψ -Caputo fractional
stochastic evolution equations. Alternative conditions to guarantee the existence
uniqueness of mild solutions are obtained using fractional calculus, stochastic
analysis, fixed point technique, and noncompact measure method. Moreover, an
example is presented to illustrate the effectiveness and feasibility of the obtained
abstract results.
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1 Introduction
Fractional differential equations grew to be a popular research topic for their wide applica-
tions in engineering, mathematics, physics, bio-engineering, and other applied sciences.
Considerable work has been done in this area in recent years, both in theory and applica-
tions. Citing all papers and books of this field will be impossible. Therefore, here we only
recommend the readers interested in this area refer to [1, 3, 8–12, 16, 21, 24, 27–29, 33–35]
for more details on the theory and applications of fractional differential equations.

In particular, Kiryakova [18] proposed a theory of generalized fractional calculus (gen-
eralizations of fractional integrals and derivatives) and discussed its applications. We
can find generalized fractional integrals and derivatives with specific functions ψ(t) and
with weights w(t) in [18] and [25]. To be specific, it can be easily noticed that when
ψ(t) = t, w(t) = 1, ψ-Riemann–Liouville fractional derivative coincides with the classi-
cal Riemann–Liouville fractional derivative, ψ-Caputo fractional derivative is actually the
classical Caputo fractional derivative. When ψ(t) = ln t, w(t) = 1, ψ-Riemann–Liouville
fractional derivative coincides with the Hadamard fractional derivative. On the other
hand, Almeida [2] studied some properties of ψ-Caputo fractional derivative by consid-
ering the Caputo fractional derivative of a function with respect to another function ψ .
The advantage of this new definition of the fractional derivative is that a higher accuracy
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of the model could be achieved with the choice of a suitable function ψ . In addition, by
applying Laplace transform and probability density functions, Suechoei and Sa Ngiamsun-
thorn [26] studied the local and global existence and uniqueness of mild solutions to the
following fractional evolution equation of the form:

⎧
⎨

⎩

C
0 Dψ

α x(t) = Ax(t) + f (t, x(t)), t ∈ (0, b],

x(0) = x0,
(1.1)

where C
0 Dψ

α considered in this work is in the sense of Caputo fractional derivative with
respect to a function ψ which is more general than the classic Caputo fractional deriva-
tive. A is the infinitesimal generator of a uniformly bounded C0-semigroup {S(t)}t≥0 on a
Banach space X, f : [0, +∞) × X → X is a given function satisfying some assumptions.

Stochastic differential equations have a wide variety of applications in many fields such
as economics, finance, engineering, and social sciences, thus they are viewed as better
tools for describing the real-life phenomena than ordinary differential equations since
noise or stochastic perturbation is unavoidable in nature as well as in man-made systems,
see [4, 6, 7, 22, 31, 32]. Recently, the stochastic differential equations driven by fBm have
been investigated by many authors, see [5, 13, 15, 19, 20, 23, 30, 36] and the references
therein.

However, it should be stressed that the existence uniqueness of mild solutions for ψ-
Caputo fractional stochastic evolution equations is fairly scarce in contrast with the clas-
sical Caputo fractional stochastic evolution equations. This is greatly attributed to the
relatively poor understanding of ψ-Caputo fractional derivative. In addition, many works
focused on fractional stochastic evolution equations through various fixed point theo-
rems when the corresponding semigroups are compact, which is convenient to obtain
the corresponding compact resolvent operators. But for the case that the corresponding
semigroups are noncompact, there are few results. Especially, there are no results con-
sidering the ψ-Caputo fractional stochastic differential equations driven by fBm. There-
fore, inspired by the above discussions, the scope of this work is to study the existence
uniqueness of mild solutions for the following ψ-Caputo fractional stochastic evolution
equations with varying-time delay driven by fBm with the corresponding semigroup be
compact or not:

⎧
⎨

⎩

C
0 Dψ

α x(t) = Ax(t) + f (t, x(t – r(t))) + σ (t)
dBH

Q (t)
dt , t ∈ J = [0, b],

x(t) = φ(t), t ∈ [–τ , 0],
(1.2)

where C
0 Dψ

α is ψ-Caputo fractional derivative of order 1
2 < α ≤ 1; x(·) takes values in a

separable Hilbert space X; A : D(A) ⊂ X → X is the infinitesimal generator of a C0 semi-
group {S(t)}t≥0 on a real separable Hilbert space X. Let Y be another separable Hilbert
space. Let L(X, Y ) denote the space of all bounded linear operators from X to Y . For con-
venience, we use the notation ‖ · ‖ to denote the norms in X, Y and L(X, Y ) when no
confusion possibly arises. f : J × X → X is a function satisfying some specific assumptions
given in (H2). BH is a fractional Brownian motion with Hurst parameter H ∈ ( 1

2 , 1). The
initial data φ ∈ C([–τ , 0],L2(�, X)), where L2(�, X) denote the collection of all strongly-
measurable, square-integrable, X-valued random variables. Obviously, L2(�, X) is a Ba-
nach space equipped with the norm ‖x(·)‖L2(�,X) = (E|x(·)|) 1

2 . Let C := C([–r, b],L2(�, X))
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be the Banach space of all continuous functions ξ from [–τ , b] into L2(�, X), equipped
with the supremum norm ‖ξ‖C = supy∈[–τ ,b](E‖ξ (y)‖2) 1

2 . In the sequel, L0
2(�, X) denotes

the space of F0-measurable, X-valued, and square integrable stochastic process.
The paper is organized in the following way. In Sect. 2, we give some notations and

useful concepts about fBm and fractional calculus. Section 3 aims to establish the existence
of mild solutions for system (1.2) with Hurst parameter H ∈ (1/2, 1) by using the fixed
point theorem and noncompact measure. In Sect. 4, we give an example to illustrate the
application of the obtained abstract results. The conclusion is given in Sect. 5.

2 Preliminaries
In this section, we introduce some notations, definitions, preliminary facts for further
convenience.

Before going further, we begin by recalling some basic facts about fBm and Wiener in-
tegral with respect to fBm.

Let (�,F , P) be a complete probability space. Consider a time interval [0, b] with arbi-
trary fixed horizon b, and let {BH (t), t ∈ J} be one-dimensional fBm with Hurst parameter
H ∈ (0, 1). This means by definition that BH is a continuous centered Gaussian process
with covariance function

RH (s, t) =
1
2
(
t2H + s2H – |t – s|2H)

.

In the rest of the paper, we always assume 1
2 < H < 1. Consider the square integrable

kernel given by

KH (s, t) = cH s
1
2 –H

∫ t

s
(u – s)uH– 1

2 du,

where cH = [ H(2H–1)
β(2–2H,H– 1

2 )
] 1

2 , t > s, β(·, ·) denotes the beta function. We take KH (s, t) = 0 for
t ≤ s, then it is easy to verify that

∂KH

∂t
(t, s) = cH

(
t
s

)H– 1
2

(t – s)H– 3
2 .

We now consider an fBM {BH (t), t ∈ [0, b]}. We denote by ξ the set of step functions
on [0, b]. Let H be a Hilbert space defined as the closure of ξ with respect to the scalar
product

〈1[0,t], 1[0,s]〉H = RH (t, s).

The mapping 1[0,t] → {BH (t)} can be extended to an isometry between H and the first
Wiener chaos of the fBm s̄panL2(�){BH(t), t ∈ J}, and we will denote by BH(ϕ) the image of
ϕ under this isometry.

Let us define the linear operator K∗
H from ξ to L2([0, b]) by

(
K∗

Hϕ
)
(s) =

∫ t

s
ϕ(t)

∂KH

∂t
(t, s) dt.

Then K∗
H is an isometry between H and L2([0, b]).
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Consider the process ω = ω(t), t ∈ [0, b] defined by

ω(t) = BH((
K∗

H
)–11[0,b])

)
.

Then ω is a Wiener process, and BH has the integral representation

BH (t) =
∫ t

0
KH (t, s) dω(s).

Assume that there exists a complete orthogonal system {en}∞n=1 in Y . Let Q ∈ L(Y , Y ) be
an operator with finite trace trQ =

∑∞
n=1 λn < ∞(λn ≥ 0) such that Qen = λnen. The infinite

dimensional fBM on Y can be defined by using covariance operator Q as

BH (t) = BH
Q (t) =

∞∑

n=1

√
λnϕenBH

n (t),

where BH
n (t) are one-dimensional standard fractional Brownian motions mutually inde-

pendent on (�,F , P). Consider the space L0
2 := L0

2(Y , X) of all Q-Hilbert–Schmidt opera-
tors ϕ : Y → X. We recall that ϕ ∈ L(Y , X) is called a Q-Hilbert–Schmidt operator if

‖ϕ‖2
L0

2
:=

∞∑

n=1

‖√λnϕen‖2 < ∞, (2.1)

and that the space L0
2 equipped with the inner product 〈ϕ,ψ〉L0

2
=

∑∞
n=1〈ϕen,ψen〉 is a

separable Hilbert space.
Let (φ(s))s∈[0,b] be a deterministic function with values in L0

2(Y , X). The stochastic inte-
gral of φ with respect to BH is defined by

∫ t

0
φ(s) dBH(s) =

∞∑

n=1

∫ t

0

√
λn

(
K∗

H (φen)
)
(s) dBn(s).

Now we state some essential facts of fractional operators and Kuratowski′s measure.

Definition 2.1 ([17] ψ-Riemann–Liouville fractional integral) Let α > 0, f be an inte-
grable function defined on [a, b] and ψ ∈ C1([a, b]) be an increasing function with ψ ′(t) 
= 0
for all t ∈ [a, b]. The ψ-Riemann–Liouville fractional integral operator of order α of a func-
tion f is defined by

(
aIα

ψ f
)
(t) =

1
�(α)

∫ t

a

(
ψ(t) – ψ(s)

)α–1f (s)ψ ′(s) ds. (2.2)

It is obvious that when ψ(t) = t, (2.2) is the classical Riemann–Liouville fractional oper-
ator. When ψ(t) = ln t, (2.2) is the Hadamard fractional operator.

Lemma 2.1 ([13]) If ϕ : [0, b] → L0
2(Y , X) satisfies

∫ b
0 ‖ϕ(s)‖2

L0
2

< ∞, then the aforemen-
tioned sum in (2.1) is well defined as an X-valued random variable, and we have

E
∥
∥
∥
∥

∫ t

0
ϕ(s) dBH (s)

∥
∥
∥
∥

2

≤ c0H(2H – 1)t2H–1
∫ t

0

∥
∥ϕ(s)

∥
∥2
L0

2
ds.
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Definition 2.2 ([17] (ψ-Riemann–Liouville fractional derivative)) Let n – 1 < α < n, f be
an integrable function defined on [a, b] and ψ ∈ C1([a, b]) be an increasing function with
ψ ′(t) 
= 0 for all t ∈ [a, b]. The ψ-Riemann–Liouville fractional derivative of order α of a
function f is defined by

(
aDα

ψ f
)
(t) =

(
1

ψ ′(t)
d
dt

)n(
aIn–α

ψ f
)
(t) =

( 1
ψ ′(t)

d
dt )n

�(n – α)

∫ t

a

(
ψ(t) – ψ(s)

)n–α–1f (s) ds,

where n = α + 1.
From the definition, when α = n ∈ N, we have (aDα

ψ f )(t) = ( 1
ψ ′(t)

d
dt )nf (t).

Lemma 2.2 ([2])
(i) aIα

ψ (ψ(x) – ψ(a))β–1(t) = �(β)
�(β+α) (ψ(t) – ψ(a))β+α–1;

(ii) aDα
ψ (ψ(x) – ψ(a))β–1(t) = �(β)

�(β–α) (ψ(t) – ψ(a))β+α–1.

Definition 2.3 ((ψ-Caputo fractional derivative [17])) Let n – 1 < α < n, f ∈ Cn([a, b]) and
ψ ∈ Cn([a, b]) be an increasing function with ψ ′(t) 
= 0 for all t ∈ [a, b]. The ψ-Caputo
fractional derivative of order α of a function f is defined by

(C
a Dα

ψ f
)
(t) =

(
aIn–α

ψ f [n])(t) =
1

�(n – α)

∫ t

a

(
ψ(t) – ψ(s)

)n–α–1f [n](s)ψ ′(s) ds,

where n = [α] + 1 and f [n](t) := ( 1
ψ ′(t)

d
dt )nf (t) on [a, b].

From the definition, it is clear that, when α = n ∈N,

C
a Dα

ψ f (t) = f [n](t).

Theorem 2.1 ([2]) Let f ∈ Cn([a, b]) and α > 0. Then we have

aIα
ψ

(C
a Dα

ψ f (t)
)

= f (t) –
n–1∑

k=0

f [k](a+)
k!

(
ψ(t) – ψ(a)

)k .

In particular, given α ∈ (0, 1), we have aIα
ψ (C

a Dα
ψ f (t)) = f (t) – f (a).

Definition 2.4 ([32]) Let X be a Banach space and �x be the bounded set of X. The Kura-
towski measure of noncompactness is the map α : �x → [0,∞) defined by α(D) = inf{d >
0 : D ⊆ ⋃n

i=1 Di and diam(Di) ≤ d}, here D ∈ �x.

Lemma 2.3 ([33]) The noncompact measure α(·) satisfies:
(i) for all bounded subsets D1, D2 of X , D1 ⊆ D2 implies α(D1) ≤ α(D2);

(ii) α{{x} ∪ D} = α(D) for every x ∈ X and every nonempty subset D ∈ X ;
(iii) α(D1) = 0 if and only if D1 is relatively compact in X ;
(iv) α(D1 + D2) ≤ α(D1) + α(D2), where D1 + D2 = {x + y : x ∈ D1, y ∈ D2};
(v) α(D1 ∪ D2) ≤ max{α(D1),α(D2)};

(vi) α(λD) ≤ |λ|α(D) for any λ ∈R;
(vii) α(U + x) = α(U) for any x ∈ X ;

(viii) If the map Q : D(Q) ⊂ H → X is Lipschitz continuous with constant k, then
α(Q(S)) ≤ kα(S) for any bounded subset S ⊂ D(Q), where X is a Banach space.
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For any W ∈ C(I, X), we define
∫ t

0 W (s) ds = {∫ t
0 u(s) ds : u ∈ W } for t ∈ J , where W (s) =

{u(s) ∈ X : u ∈ W }.
We use α(·) and αC(·) to denote the Kuratowski measure of noncompactness on the

bounded set of X and C([–τ , b], X), respectively. For any D ⊂ C([–τ , b], X) and t ∈ [0, b], set
D(t) = {u(t)|u ∈ D}, then D(t) ⊂ X. If D ⊂ C([–τ , b], X) is bounded, then D(t) is bounded
in X and α(D(t)) ≤ αC(D).

Lemma 2.4 ([33]) Let D ⊂ C([–τ , b], X) be bounded and equicontinuous. Then α(D(t)) is
continuous on [–τ , b], and αC(D) = maxt∈[–τ ,b] α(D(t)).

Lemma 2.5 ([33]) Let X be a Banach space, and let D ⊂ X be bounded. Then there exists
a countable set D0 ⊂ D such that α(D) ≤ 2α(D0).

Lemma 2.6 ([14]) Let X be a Banach space. If D = {un}∞n=1 ⊂ C([–τ , b], X) is a countable
set and there exists a function m ∈ L1([–τ , b],R+) such that, for every n ⊂N,

∥
∥un(t)

∥
∥ ≤ m(t), a.e. t ∈ [–τ , b].

Then α(D(t)) is Lebesgue integral on [–τ , b], and

α

({∫ b

0
un(t) dt|n ∈ N

})

≤ 2
∫ b

0
α
(
D(t)

)
dt.

Lemma 2.7 ((Sadovskii fixed point theorem [18])) Let X be a Banach space. Assume that
D ⊂ X is a bounded closed and convex set on X and Q : D → D is a condensing operator.
Then Q has at least one fixed point in D.

For C0 semigroup {S(t)}t≥0, the following property will be used:
There is M ≥ 1 such that

M := sup
t∈[0,+∞)

S(t) < ∞. (2.3)

Lemma 2.8 The system

⎧
⎨

⎩

C
0 Dψ

α x(t) = Ax(t) + f (t, x(t – r(t))) + σ (t)
dBH

Q (t)
dt , t ∈ J ,

x(t) = φ(t), t ∈ [–τ , 0],
(2.4)

is equivalent to the integral equation

x(t) = φ(0) +
1

�(α)

∫ t

0

(
ψ(t) – ψ(s)

)α–1[Ax(s) + f
(
s, x

(
s – r(s)

))]
ψ ′(s) ds

+
1

�(α)

∫ t

0

(
ψ(t) – ψ(s)

)α–1
ψ ′(s)σ (s) dBH

Q (s), t ∈ J . (2.5)

Proof We can readily obtain the result from Definition 2.3 and Theorem 2.1. Here we omit
it. �
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Lemma 2.9 If

x(t) = φ(0) +
1

�(α)

∫ t

0

(
ψ(t) – ψ(s)

)α–1[Ax(s) + f
(
s, x

(
s – r(s)

))]
ψ ′(s) ds

+
1

�(α)

∫ t

0

(
ψ(t) – ψ(s)

)α–1
ψ ′(s)σ (s) dBH

Q (s), (2.6)

then we have

x(t) = Sψ
α (t, 0)φ(0) +

∫ t

0

(
ψ(t) – ψ(s)

)α–1Tψ
α (t, s)f (s, x

(
s – r(s)

)
ψ ′(s) ds

+
∫ t

0

(
ψ(t) – ψ(s)

)α–1Tψ
α (t, s)σ (s)ψ ′(s) dBH

Q (s), (2.7)

where

Sψ
α (t, s)x =

∫ ∞

0
φα(θ )S

((
ψ(t) – ψ(s)

)α
θ
)
x dθ ,

Tψ
α (t, s)x = α

∫ ∞

0
θφα(θ )T

((
ψ(t) – ψ(s)

)α
θ
)
x dθ ,

φα is the probability density function defined on (0,∞), that is, φα(θ ) ≥ 0, θ ∈ (0,∞) and
∫ ∞

0 φα(θ ) dθ = 1.

Proof The proof is similar to the proof of Lemma 3.1 in [2], we can obtain the result by
doing the necessary adjustments. We omit it here. �

Lemma 2.10 ([2]) The operators Sψ
α and Tψ

α have the following properties:
(i) For any fixed t ≥ s ≥ 0, Sψ

α (t, s) and Tψ
α (t, s) are bounded linear operators with

‖Sψ
α (t, s)(x)‖ ≤ M‖x‖ and ‖Tψ

α (t, s)(x)‖ ≤ M
�(α)‖x‖ for all x ∈ X .

(ii) The operators Sψ
α and Tψ

α are strongly continuous for all t ≥ s ≥ 0, that is, for every
x ∈ X and 0 ≤ s ≤ t1 < t2 ≤ b, we have

∥
∥Sψ

α (t2, s)x – Sψ
α (t1, s)x

∥
∥ → 0

and

∥
∥Tψ

α (t2, s)x – Tψ
α (t1, s)x

∥
∥ → 0

as t1 – t2 → 0.

3 Main results
In this section, we present and prove the existence of mild solutions for system (1.2). To
develop our results, we first give the concept of mild solution for system (1.2).

Definition 3.1 An Ft-adapted and measurable stochastic process x ∈ L0
2(�, X) is said to

be a mild solution of system (1.2) if
(1) x(t) is measurable, Ft-adapted, and has càdlàg path on 0 ≤ t ≤ b almost everywhere;
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(2) for t ∈ [–τ , 0], x(t) = φ(t);
(3) for each 0 ≤ t ≤ b, x(t) satisfies the following integral equation:

x(t) = Sψ
α (t, 0)φ(0) +

∫ t

0

(
ψ(t) – ψ(s)

)α–1Tψ
α (t, s)f (s, x

(
s – r(s)

)
ψ ′(s) ds

+
∫ t

0

(
ψ(t) – ψ(s)

)α–1Tψ
α (t, s)σ (s)ψ ′(s) dBH

Q (s).

For further convenience, set M2

�2(α)ψ
′(b) (ψ(b)–ψ(0))2α–1

2α–1 = M1.

Before stating and proving the main results, we introduce the following hypotheses:
(H0) Semigroup S(t) is compact for each t > 0;
(H1) Function ψ(t) ∈ C2(J ,R) and ψ ′′(t) > 0,ψ ′(t) > 0 for ∀t ∈ J ;
(H2) (2a) For each x ∈ X, the function f (·, x) : J → X is strongly measurable with respect

to t, and for each t ∈ J , the function f (t, ·) : X → X is continuous with respect to x;
(2b) There exist a continuous nondecreasing function μ : [0,∞) → (0,∞) and constant

L such that, for any (t, x) ∈ J × X, we have

E
∥
∥f

(
t, x

(
t – r(t)

))∥
∥2 ≤ L

(
1 + μ

(‖x‖2
C
))

, lim
r→∞ inf

μ(r)
r

= � < ∞;

(H3) The function σ : J →L0
2(X, Y ) satisfies

sup
t∈J

∥
∥σ (s)

∥
∥2
L0

2
< ∞, ∀t ∈ J .

We define the operator � : C → C as follows:

(�x)(t) = Sψ
α (t, 0)φ(0) +

∫ t

0

(
ψ(t) – ψ(s)

)α–1Tψ
α (t, s)f (s, x

(
s – r(s)

)
ψ ′(s) ds

+
∫ t

0

(
ψ(t) – ψ(s)

)α–1Tψ
α (t, s)σ (s)ψ ′(s) dBH

Q (s).

According to assumptions (H1) and (H2) and Lemma 2.10, we can obtain

E
∥
∥
∥
∥

∫ t

0

(
ψ(t) – ψ(s)

)α–1Tψ
α (t, s)f

(
s, x

(
s – r(s)

))
ψ ′(s) ds

∥
∥
∥
∥

2

≤ M2

�2(α)
E
∥
∥
∥
∥

∫ t

0

(
ψ(t) – ψ(s)

)α–1f
(
s, x

(
s – r(s)

))
ψ ′(s) ds

∥
∥
∥
∥

2

≤ M2

�2(α)

∫ t

0
E
∥
∥
(
ψ(t) – ψ(s)

)α–1f
(
s, x

(
s – r(s)

))
ψ ′(s)

∥
∥2 ds

≤ M2

�2(α)

∫ t

0

(
ψ(t) – ψ(s)

)2α–2E
∥
∥f

(
s, x

(
s – r(s)

))∥
∥2(

ψ ′(s)
)2 ds

≤ M2

�2(α)
ψ ′(b)

(ψ(t) – ψ(s))2α–1

2α – 1
L(1 + μ

(‖x‖2
C
)

≤ M2

�2(α)
ψ ′(b)

(ψ(b) – ψ(0))2α–1

2α – 1
L(1 + μ

(‖x‖2
C
)
.
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Now, from assumptions (H1) and (H3), we can get

E
∥
∥
∥
∥

∫ t

0

(
ψ(t) – ψ(s)

)α–1Tψ
α (t, s)σ (s)ψ ′(s) dBH

Q (s)
∥
∥
∥
∥

2

≤ M2

�2(α)
E
∥
∥
∥
∥

∫ t

0

(
ψ(t) – ψ(s)

)α–1
σ (s)ψ ′(s) dBH

Q (s)
∥
∥
∥
∥

2

≤ c0H(2H – 1)t2H–1 M2

�2(α)

∫ t

0
E
∥
∥
(
ψ(t) – ψ(s)

)α–1
σ (s)ψ ′(s)

∥
∥2 ds

≤ c0H(2H – 1)t2H–1 M2

�2(α)

∫ t

0

(
ψ(t) – ψ(s)

)2α–2E
∥
∥σ (s)

∥
∥2(

ψ ′(s)
)2 ds

≤ c0H(2H – 1)b2H–1 M2

�2(α)
ψ ′(b)

(ψ(t) – ψ(s))2α–1

2α – 1
sup
t∈J

∥
∥σ (s)

∥
∥2
L0

2

≤ c0H(2H – 1)b2H–1 M2

�2(α)
ψ ′(b)

(ψ(b) – ψ(0))2α–1

2α – 1
sup
t∈J

∥
∥σ (s)

∥
∥2
L0

2
.

In the following, we give the first existence result for system (1.2) with the corresponding
semigroup be compact.

Theorem 3.1 Suppose that hypotheses (H0)–(H3) hold, then system (1.2) has at least one
mild solution defined on J provided that 3M1L� < 1.

Proof Denote Bq = {x ∈ C,‖x‖2
C ≤ q}, obviously, Bq is a bounded, closed, convex set in C .

We divide the proof into three steps.
Step 1. We shall show that there exists a constant r = r(a) such that �(Br) ⊂ Br .
In fact, if it is not true, then for each positive constant r there exists some x̂ ∈ Br such

that �(x̂) /∈ Br , i.e.,

r < E
∥
∥�(x̂)

∥
∥2

≤ 3E
∥
∥Sψ

α (t, 0)φ(0)
∥
∥2

+ 3E
∥
∥
∥
∥

∫ t

0

(
ψ(t) – ψ(s)

)α–1Tψ
α (t, s)ψ ′(s)f

(
s, x̂

(
s – r(s)

))
ds

∥
∥
∥
∥

2

+ 3E
∥
∥
∥
∥

∫ t

0

(
ψ(t) – ψ(s)

)α–1Tψ
α (t, s)ψ ′(s)σ (s) dBH

Q (s)
∥
∥
∥
∥

2

≤ 3M2φ2(0) + 3
M2

�2(α)
ψ ′(b)

(ψ(b) – ψ(0))2α–1

2α – 1
L(1 + μ

(‖x̂‖2
C
)

+ 3c0H(2H – 1)b2H–1 M2

�2(α)
ψ ′(b)

(ψ(b) – ψ(0))2α–1

2α – 1
sup
t∈J

∥
∥σ (s)

∥
∥2
L0

2
.

Dividing both sides by r and taking r → ∞, we get

3
M2

�2(α)
ψ ′(b)

(ψ(b) – ψ(0))2α–1

2α – 1
L� = 3M1L� > 1,

which is a contradiction to the hypotheses of Theorem 3.1. Thus, there exists r such that
� maps Br into itself.
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Step 2. � is continuous on Br .
For any xn, x ∈ Br , n = 1, 2,..., with limn→∞ ‖xn – x‖2

C = 0, we get limn→∞ xn(t) = x(t) for
t ∈ J . Thus, by assumption (H2), we can easily get � is continuous on Br .

Step 3. � is a completely continuous operator.
We subdivide Step 3 into three claims.
Claim 1. � maps bounded sets into uniformly bounded sets in C .
Actually, we only need to show that there exists a positive constant � such that, for each

x ∈ Br , one has ‖�x‖C ≤ �. As a matter of fact, for each t ∈ J , Step 1 enables us to obtain
this assertion.

Claim 2. �(Br) is equicontinuous on Br .
For ∀x ∈ Br , let 0 = t1 < t2 ≤ b. Taking (H2), (H3) and the strong continuity of {Sψ

α (t)}t≥0

into account, we get as t2 → 0,

E
∥
∥(�x)(t2) – (�x)(0)

∥
∥2

≤ 3E
∥
∥Sα

ψ (t2, 0) – Sα
ψ (0, 0)

∥
∥2

+ 3E
∥
∥
∥
∥

∫ t2

0

(
ψ(t2) – ψ(s)

)α–1Tψ
α (t2 – s)f

(
s, x

(
s – r(s)

))
ψ ′(s) ds

∥
∥
∥
∥

2

+ 3E
∥
∥
∥
∥

∫ t2

0

(
ψ(t2) – ψ(s)

)α–1Tψ
α (t2 – s)σ (s)ψ ′(s) dBH

Q (s)
∥
∥
∥
∥

2

≤ 3E
∥
∥Sα

ψ (t2, 0) – Sα
ψ (0, 0)

∥
∥2

+ 3
M2

�2(α)
(ψ(t2) – ψ(0))2α–1

2α – 1
ψ ′(b)L(1 + μ

(‖x‖2
C
)

+ 3
M2

�2(α)
(ψ(t2) – ψ(0))2α–1

2α – 1
ψ ′(b)

∥
∥σ (s)

∥
∥2
L0

2
→ 0.

For 0 < t1 < t2 ≤ b, from the strong continuity of {Tψ
α (t)}t≥0, there exist arbitrarily small

constants δ, τ > 0 such that as long as |t2 – t1| < δ, we have ‖Tψ
α (t1) – Tψ

α (t2)‖ < τ . Then,
for ∀x ∈ Br , we can obtain

E
∥
∥(�x)(t2) – (�x)(t1)

∥
∥2

≤ 7E
∥
∥Sα

ψ (t2, 0) – Sα
ψ (t1, 0)

∥
∥2

+ 7E
∥
∥
∥
∥

∫ t1

0

[(
ψ(t2) – ψ(s)

)α–1 –
(
ψ(t1) – ψ(s)

)α–1]Tψ
α (t2 – s)

× f
(
s, x

(
s – r(s)

))
ψ ′(s) ds

∥
∥
∥
∥

2

+ 7E
∥
∥
∥
∥

∫ t1

0

[(
ψ(t2) – ψ(s)

)α–1 –
(
ψ(t1) – ψ(s)

)α–1]Tψ
α (t2 – s)

× σ (s)ψ ′(s) dBH
Q (s)

∥
∥
∥
∥

2

+ 7E
∥
∥
∥
∥

∫ t1

0

(
ψ(t1) – ψ(s)

)α–1[Tψ
α (t2 – s) – Tψ

α (t1 – s)
]

× f
(
s, x

(
s – r(s)

))
ψ ′(s) ds

∥
∥
∥
∥

2
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+ 7E
∥
∥
∥
∥

∫ t1

0

(
ψ(t1) – ψ(s)

)α–1[Tψ
α (t2 – s) – Tψ

α (t1 – s)
]
σ (s)ψ ′(s) dBH

Q (s)
∥
∥
∥
∥

2

+ 7E
∥
∥
∥
∥

∫ t2

t1

(
ψ(t2) – ψ(s)

)α–1Tψ
α (t2 – s)f

(
s, x

(
s – r(s)

))
ψ ′(s) ds

∥
∥
∥
∥

2

+ 7E
∥
∥
∥
∥

∫ t2

t1

(
ψ(t2) – ψ(s)

)α–1Tψ
α (t2 – s)σ (s)ψ ′(s) dBH

Q (s)
∥
∥
∥
∥

2

≤ 7E
∥
∥Sα

ψ (t2, 0) – Sα
ψ (t1, 0)

∥
∥2

+ 7
∫ t1

0

∥
∥
(
ψ(t2) – ψ(s)

)α–1 –
(
ψ(t1) – ψ(s)

)α–1∥∥2∥∥Tψ
α (t2 – s)

∥
∥2

× E
∥
∥f

(
s, x

(
s – r(s)

))∥
∥2(

ψ ′(s)
)2 ds

+ 7
∫ t1

0

∥
∥
(
ψ(t2) – ψ(s)

)α–1 –
(
ψ(t1) – ψ(s)

)α–1∥∥2∥∥Tψ
α (t2 – s)

∥
∥2

× ∥
∥σ (s)

∥
∥2(

ψ ′(s)
)2 dBH

Q (s)

+ 7
∥
∥Tψ

α (t2 – s) – Tψ
α (t1 – s)

∥
∥2

ψ ′(b)
(ψ(b))2α–1

2α – 1
L
(
1 + μ

(‖x‖2
C
))

+ 7
∥
∥Tψ

α (t2 – s) – Tψ
α (t1 – s)

∥
∥2

ψ ′(b)
(ψ(b))2α–1

2α – 1
sup
t∈J

∥
∥σ (s)

∥
∥2
L0

2

+ 7
M2

�2(α)

∫ t2

t1

(t2 – s)2(α–1)E
∥
∥f

(
s, x

(
s – r(s)

))∥
∥2(

ψ ′(s)
)2 ds

+ 7
M2

�2(α)

∫ t2

t1

(t2 – s)2(α–1)∥∥σ (s)
∥
∥2
L0

2

(
ψ ′(s)

)2 dBH
Q (s) := 7

7∑

i=1

Ii,

where

I1 = E
∥
∥Sα

ψ (t2, 0) – Sα
ψ (t1, 0)

∥
∥2,

I2 =
∫ t1

0

∥
∥
(
ψ(t2) – ψ(s)

)α–1 –
(
ψ(t1) – ψ(s)

)α–1∥∥2∥∥Tψ
α (t2 – s)

∥
∥2

× E
∥
∥f

(
s, x

(
s – r(s)

))∥
∥2(

ψ ′(s)
)2 ds,

I3 =
∫ t1

0

∥
∥
(
ψ(t2) – ψ(s)

)α–1 –
(
ψ(t1) – ψ(s)

)α–1∥∥2∥∥Tψ
α (t2 – s)

∥
∥2

× ∥
∥σ (s)

∥
∥2(

ψ ′(s)
)2 dBH

Q (s),

I4 =
∥
∥Tψ

α (t2 – s) – Tψ
α (t1 – s)

∥
∥2

ψ ′(b)
(ψ(b))2α–1

2α – 1
L
(
1 + μ

(‖x‖2
C
))

,

I5 =
∥
∥Tψ

α (t2 – s) – Tψ
α (t1 – s)

∥
∥2

ψ ′(b)
(ψ(b))2α–1

2α – 1
sup
t∈J

∥
∥σ (s)

∥
∥2
L0

2
,

I6 =
M2

�2(α)

∫ t2

t1

(
ψ(t2) – ψ(s)

)2(α–1)E
∥
∥f

(
s, x

(
s – r(s)

))∥
∥2(

ψ ′(s)
)2 ds,

I7 =
M2

�2(α)

∫ t2

t1

(
ψ(t2) – ψ(s)

)2(α–1)∥∥σ (s)
∥
∥2
L0

2

(
ψ ′(s)

)2 dBH
Q (s).

We next verify if each term tends to 0 as t2 – t1 → 0.
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For I1, from the strong continuity of {Sψ
α (t)}t≥0, we can draw the conclusion.

For I2, letting t2 – t1 → 0 leads to

I2 ≤
∫ t1

0

[(
ψ(t2) – ψ(s)

)α–1 –
(
ψ(t1) – ψ(s)

)α–1]
ψ ′(s) ds

×
∫ t1

0

[(
ψ(t2) – ψ(s)

)α–1 –
(
ψ(t1) – ψ(s)

)α–1]∥∥Tψ
α (t2 – s)

∥
∥2

× E
∥
∥f

(
s, x

(
s – r(s)

))∥
∥2

ψ ′(s) ds

≤ M2

�2(α)

(
(ψ(t2) – ψ(t1))α – (ψ(t2))α + (ψ(t1))α

α

)2

L(1 + μ
(‖x‖2

C
) → 0.

Similarly, we can get I3 tends to zero as t2 – t1 → 0.
The strong continuity of {Tψ

α (t)}t≥0 leads to ‖Tψ
α (t2 – s) – Tψ

α (t1 – s)‖2 → 0 as t2 – t1 → 0,
thus I4, I5 tend to 0 as t2 – t1 → 0.

In addition, we can derive that, as t2 – t1 → 0,

I6 ≤ M2

�2(α)

∫ t2

t1

(
ψ(t2) – ψ(s)

)2(α–1)E
∥
∥f

(
s, x

(
s – v(s)

))∥
∥2(

ψ ′(s)
)2 ds

≤ M2

�2(α)
ψ ′(b)

(ψ(t2) – ψ(t1))2α–1

2α – 1
L(1 + μ

(‖x‖2
C
) → 0.

Similarly, we can obtain I7 → 0 as t2 – t1 → 0.
Therefore, we derive that � is equicontinuous on Br .
Claim 3. V (t) = {(�x)(t), x ∈ Br} is relatively compact in X.
Let 0 < t ≤ b be fixed, for ∀λ ∈ (0, t) and ∀δ > 0, x ∈ Br , define an operator

(
�λ,δx

)
(t)

=
∫ ∞

0
φα(θ )S

((
ψ(t) – ψ(s)

)α
θ
)
φ(0) dθ

+ α

∫ t–λ

0

∫ ∞

δ

θ
(
ψ(t) – ψ(s)

)α–1
φα(θ )S

((
ψ(t) – ψ(s)

)α
θ
)

× f
(
s, x

(
s – r(s)

))
ψ ′(s) dθ ds

+ α

∫ t–λ

0

∫ ∞

δ

θ
(
ψ(t) – ψ(s)

)α–1
φα(θ )S

((
ψ(t) – ψ(s)

)α
θ
)

× σ (s)ψ ′(s) dθ dBH
Q (s)

=
∫ ∞

0
φα(θ )S

((
ψ(t) – ψ(s)

)α
θ
)
φ(0) dθ

+ αS
(
λαθ

)
∫ t–λ

0

∫ ∞

δ

θ
(
ψ(t) – ψ(s)

)α–1
φα(θ )S

((
ψ(t) – ψ(s)

)α
θ – λαθ

)

× f
(
s, x

(
s – r(s)

))
ψ ′(s) dθ ds

+ αS
(
λαθ

)
∫ t–λ

0

∫ ∞

δ

θ
(
ψ(t) – ψ(s)

)α–1
φα(θ )S

((
ψ(t) – ψ(s)

)α
θ – λαθ

)

× σ (s)ψ ′(s) dθ dBH
Q (s).
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From the compactness of S(λαδ),λαδ > 0, we obtain that, for ∀λ ∈ (0, t) and ∀δ > 0, the set
V ε,δ(t) = {(�λ,δx)(t), x ∈ Br} is relatively compact in X.

Moreover, for each x ∈ Br , from (H1)–(H3), we have

E
∥
∥(�x)(t) –

(
�λ,δx

)
(t)

∥
∥2

= E
∥
∥
∥
∥

∫ t

0

∫ δ

0
αθ

(
ψ(t) – ψ(s)

)α–1
φα(θ )S

((
ψ(t) – ψ(s)

)α
θ
)

× f
(
s, x

(
s – r(s)

))
ψ ′(s) ds

+
∫ t

0

∫ ∞

δ

αθ
(
ψ(t) – ψ(s)

)α–1
φα(θ )S

((
ψ(t) – ψ(s)

)α
θ
)
f
(
s, x

(
s – r(s)

))
ψ ′(s) ds

+
∫ t

0

∫ δ

0
αθ

(
ψ(t) – ψ(s)

)α–1
φα(θ )S

((
ψ(t) – ψ(s)

)α
θ
)
σ (s)ψ ′(s) dBH

Q (s)

+
∫ t

0

∫ ∞

δ

αθ
(
ψ(t) – ψ(s)

)α–1
φα(θ )S

((
ψ(t) – ψ(s)

)α
θ
)
σ (s)ψ ′(s) dBH

Q (s)

–
∫ t–λ

0

∫ ∞

δ

αθ
(
ψ(t) – ψ(s)

)α–1
φα(θ )S

((
ψ(t) – ψ(s)

)α
θ
)
f
(
s, x

(
s – r(s)

))
ψ ′(s) ds

–
∫ t–λ

0

∫ ∞

δ

αθ
(
ψ(t) – ψ(s)

)α–1
φα(θ )S

((
ψ(t) – ψ(s)

)α
θ
)
σ (s)ψ ′(s) dBH

Q (s)
∥
∥
∥
∥

2

≤ 4α2E
∥
∥
∥
∥

∫ t

0

∫ δ

0
θ
(
ψ(t) – ψ(s)

)α–1
φα(θ )S

((
ψ(t) – ψ(s)

)α
θ
)

× f
(
s, x

(
s – r(s)

))
ψ ′(s) ds

∥
∥
∥
∥

2

+ 4α2E
∥
∥
∥
∥

∫ t

0

∫ δ

0
θ
(
ψ(t) – ψ(s)

)α–1
φα(θ )S

((
ψ(t) – ψ(s)

)α
θ
)
σ (s)ψ ′(s) dBH

Q (s)
∥
∥
∥
∥

2

+ 4α2E
∥
∥
∥
∥

∫ t

t–λ

∫ ∞

δ

θ
(
ψ(t) – ψ(s)

)α–1
φα(θ )S

((
ψ(t) – ψ(s)

)α
θ
)

× f
(
s, x

(
s – r(s)

))
ψ ′(s) ds

∥
∥
∥
∥

2

+ 4α2E
∥
∥
∥
∥

∫ t

t–λ

∫ ∞

δ

θ
(
ψ(t) – ψ(s)

)α–1
φα(θ )S

((
ψ(t) – ψ(s)

)α
θ
)
σ (s)ψ ′(s) dBH

Q (s)
∥
∥
∥
∥

2

≤ 4α2M2ψ ′(b)
(ψ(b) – ψ(0))2α–1

2α – 1
L
(
1 + μ

(‖x‖2
C
))

(∫ δ

0
θφα(θ ) dθ

)2

+ 4α2M2ψ ′(b)
(ψ(b) – ψ(0))2α–1

2α – 1
sup
t∈J

∥
∥σ (s)

∥
∥2
L0

2

(∫ δ

0
θφα(θ ) dθ

)2

+ 4α2M2 1
�2(α + 1)

ψ ′(b)
(ψ(t) – ψ(t – λ))2α–1

2α – 1
L
(
1 + μ

(‖x‖2
C
))

+ 4α2M2 1
�2(α + 1)

ψ ′(b)
(ψ(t) – ψ(t – λ))2α–1

2α – 1
sup
t∈J

∥
∥σ (s)

∥
∥2
L0

2
,

where we have used the equality

∫ ∞

0
θξφα(θ ) dθ =

∫ ∞

0

1
θαξ

ψα(θ ) dθ =
�(1 + ξ )
�(1 + αξ )

, ξ ∈ [0, 1].



Yang Journal of Inequalities and Applications        (2021) 2021:170 Page 14 of 18

The right-hand side of the above inequality tends to 0 as λ, δ → 0. So we can obtain
E‖(�x)(t)–(�λ,δx)(t)‖2 → 0 as λ, δ → 0+. Since there are relatively compact sets arbitrarily
close to the set V (t) = {(�x)(t), x ∈ Br}, we consequently derive that V (t) = {(�x)(t), x ∈ Br}
is also a relatively compact set in X.

From Claims 1–3 and the Arzola–Ascoli theorem, we deduce that � is a completely
continuous map, then Schauder’s fixed point theorem enables us to claim that the operator
equation �x = x has at least one fixed point on Br which is just a mild solution for system
(1.2). The proof is complete. �

Compared with Theorem 4.1 in [26], the condition imposed on f is easier to be satisfied
in this theorem.

To establish the existence results when the associated C0-semigroup is not necessary
compact, we first require the following assumptions where Br is still defined as in Theo-
rem 3.1.

(H′
0) S(t) is continuous in the uniform operator topology for t ≥ 0, and {S(t)}t≥0 is uni-

formly bounded, i.e., there exists M > 1 such that supt∈[0,+∞) |S(t)| < M;
(H4) There exists a positive function Lf ∈ L1(J ,R+) such that, for ∀x, y ∈ C ,

E
∥
∥f

(
t, x

(
t – r(t)

))
– f

(
t, y

(
t – r(t)

))∥
∥2 ≤ Lf (t)E

∥
∥x

(
t – r(t)

)
– y

(
t – r(t)

)∥
∥2, ∀t ∈ J .

Next, we present our second existence uniqueness result for system (1.2) based on the
Banach contraction principle in the case that semigroup {S(t)}t>0 is not necessary compact.

Theorem 3.2 Suppose that hypotheses (H′
0), (H1)–(H4) hold, then system (1.2) has a

unique mild solution on Br provided that M1‖Lf (t)‖L1(J ,R+) < 1.

Proof We omit the proof here since it can be easily verified. �

Remark 3.1 The function σ is independent of x(t), t ∈ (–τ , b]. From the functional point
of view, we have α(

∫ T
0 (ψ(t) – ψ(s))α–1Tψ

α (t – s)σ (s)ψ ′(s) dBH
Q (s)) = 0.

To give our last existence results, we require the following assumptions where �, Br are
still defined as in Theorem 3.1.

(H5) There exists a positive function mf ∈ L1(J ,R+) such that, for any bounded closed
subset D ∈ Br , such that α(f (t, D(t)) ≤ mf (t)α(D(t));

(H6)

2M
�(α + 1)

(
ψ(b) – ψ(0)

)α∥
∥mf (t)

∥
∥

L1(J ,R+) < 1.

To end this section, we shall present our last existence uniqueness theorem for system
(1.2).

Theorem 3.3 Suppose that hypotheses (H′
0), (H1)–(H3), (H5), (H6) hold, then system (1.2)

has at least one mild solution on Br .
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Proof Set

(�x)(t) :=
3∑

i=1

(�ixn)(t),

where

(�1xn)(t) = Sψ
α (t, 0)φn(0),

(�2xn)(t) =
∫ t

0

(
ψ(t) – ψ(s)

)α–1Tψ
α (t, s)f

(
s, xn

(
s – r(s)

))
ψ ′(s) ds,

(�3xn)(t) =
∫ t

0

(
ψ(t) – ψ(s)

)α–1Tψ
α (t, s)σ (s)ψ ′(s) dBH

Q (s).

In what follows, we will prove that � : Br → Br is a condensing operator.
For any D ⊂ Br , by Lemma 2.7, there exists a countable set D0 = {un} ⊂ D such that

αC
(
�(D)

) ≤ 2αC
(
�(D0)

)
. (3.1)

Since �(D0) ⊂ �(Br) is equicontinuous, we get from Lemma 2.4 that αC(�(D0)) =
maxt∈J α(�(D0)(t)).

Obviously, we can derive

0 ≤ α
(
�1(D0)(t)

)
= α

(
Sψ

α (t, 0)φ(0)
)

= 0.

Thus α(�1xn)(t) = 0.
By Lemma 2.6 and (H5), we have

α
(
�2(D0)(t)

)
= α

(∫ t

0

(
ψ(t) – ψ(s)

)α–1Tψ
α (t, s)f

(
s, xn

(
s – r(s)

))
ψ ′(s) ds

)

≤ 2M
�(α)

∫ t

0

(
ψ(t) – ψ(s)

)α–1
ψ ′(s)α(f

(
s, xn

(
s – r(s)

))
ds

≤ 2M
�(α)

∫ t

0

(
ψ(t) – ψ(s)

)α–1
ψ ′(s)mf (t)α

(
D(t)

)
ds

≤ 2M
�(α + 1)

(
ψ(t) – ψ(s)

)α∥
∥mf (t)

∥
∥

L1(J ,R+)α
(
D(t)

)

≤ 2M
�(α + 1)

(
ψ(b) – ψ(0)

)α∥
∥mf (t)

∥
∥

L1(J ,R+)α
(
D(t)

)
.

By Remark 3.1, we have α(�3(D0)(t)) = 0. Thus, by Lemma 2.3 and the above inequalities,
we have

α
(
�(D0)(t)

)

≤ α
(
�1(D0)(t)

)
+ α

(
�2(D0)(t)

)
+ α

(
�3(D0)(t)

)

≤ 2M
�(α + 1)

(
ψ(b) – ψ(0)

)α∥
∥mf (t)

∥
∥

L1(J ,R+)α
(
D(t)

)
. (3.2)



Yang Journal of Inequalities and Applications        (2021) 2021:170 Page 16 of 18

Hence, from (3.1), (3.2), and assumption (H6), we deduce that

α
(
�(D)(t)

)
<

2M
�(α + 1)

(
ψ(b) – ψ(0)

)α∥
∥mf (t)

∥
∥

L1(J ,R+)α
(
D(t)

)

< α
(
D(t)

)
.

Thus, � : Br → Br is a condensing operator. It follows from Lemma 2.7 that � has at least
one fixed point in Br which is actually a mild solution of system (1.2). This completes the
proof of Theorem 3.3. �

Remark 3.2 Having compared Theorem 3.1 and Theorem 3.2 with Theorem 3.3, we know
that one can replace the strong restriction condition H0 with H′

0 on the semigroup {S(t)}t≥0

by applying the noncompact measure method. This seems a totally new result in contrast
with earlier works on fractional stochastic evolution equations. Furthermore, the obtained
results can been applied to fractional stochastic partial differential equations of parabolic
type.

Remark 3.3 The above theorems provide existence results of system (1.2) in the case
ψ(t) ∈ C2(J ,R) and ψ ′′(t) > 0,ψ ′(t) > 0,∀t ∈ J , which is relatively restrictive. In fact, when
ψ(t) ∈ C2(J ,R) and ψ ′′(t) < 0,ψ ′(t) > 0,∀t ∈ J , we can also establish the corresponding
existence results of system (1.2) with appropriate modifications of the hypotheses.

4 An example
As an application of our obtained results, we consider the following ψ-Caputo fractional
stochastic evolution equations driven by fBm:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C
0 Dα

ψx(t, z) = xzz(t, z) + c1x( t
2 , z) + e–t dBH

Q (t)
dt , t ∈ J = [0, 1], z ∈ [0,π ],

x(t, 0) = x(t,π ) = 0, t ∈ J = [0, 1],

x(t, z) = φ(t, z), t ∈ [–τ , 0], z ∈ [0,π ],

(4.1)

where C
0 Dα

ψ is the ψ-Caputo fractional derivative of order 3
4 , ψ(t) = et , f (t, x) = c1x( t

2 , z),
σ (t) = e–t , r(t) = t

2 .
We choose the space X = Y = L2[0,π ]. Define an operator A by Av = v′′ with the domain

D(A) = {v ∈ X : v, v′ absolutely continuous, v′′ ∈ X, v(0) = v(π ) = 0}. Then A generates a
strongly continuous semigroup {S(t)}t≥0 which is compact, analytic, and self-adjoint. With
the above choices of A, f ,σ , system (4.1) can be rewritten into the abstract form of system
(1.2).

Furthermore, A has a discrete spectrum, the eigenvalues are –n2, n ∈ N , and the
corresponding orthogonal eigenvectors are given by en(z) =

√
2
π

sin(nz). Then Az =
∑∞

n=1 n2〈z, en〉en. In addition, we know that for each v ∈ X, S(t)v =
∑∞

n=1 e–n2t〈v, en〉en, in
particular, S(·) is a uniformly stable semigroup and ‖S(t)‖ ≤ e–t ≤ 1 := M.

Assume Br = {x|x ∈ X, E‖x‖2 ≤ r}, then for ∀t ∈ [0, 1], x ∈ Br , we have

E
∥
∥f (t, x)

∥
∥2 ≤ c2

1E
∥
∥
∥
∥x

(
t
2

, z
)∥

∥
∥
∥

2

≤ 1 + c2
1E

∥
∥
∥
∥x

(
t
2

, z
)∥

∥
∥
∥

2

≤ 1 + c2
1r := L

(
1 + μ(r)

)
;
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lim
r→∞ inf

μ(r)
r

= � := c2
1, sup

t∈J

∥
∥σ (s)

∥
∥2
L0

2
= sup

t∈J
e–t ≤ 1;

M1 =
M2

�2(α)
(ψ(1) – ψ(0))2α–1

2α – 1
ψ ′(1) =

2
�2( 3

4 )
(e – 1))

1
2 e.

Therefore, (H0)–(H3) are satisfied with M = 1, L = 1,μ(r) = c2
1r,� = c2

1, M1 = 2
�2( 3

4 )
(e –

1)) 1
2 e. On the other hand, we can choose arbitrary constant c1 such that c1 < ( 1

6
�2( 3

4 )
(e–1))

1
2 e

) 1
2 ,

then we have 3M1L� < 1, this implies that all assumptions of Theorem 3.1 are satisfied.
Hence, from Theorem 3.1, we can claim that system (4.1) admits at least one mild solution
on [0, 1].

5 Conclusion
The aim of this manuscript was to achieve sufficient conditions to ensure the existence
and uniqueness of mild solutions for a class of ψ-Caputo fractional stochastic evolution
equations with varying-time delay driven by fBm using the fixed point technique, non-
compact measure method, and stochastic analysis when the associated C0-semigroup is
compact or not. The obtained results generalized the classical Caputo fractional derivative
case. Also, we provided an example to illustrate our results. In addition, one interesting
question is to study simultaneous finite dimensional exact and approximate controllabil-
ity (finite-approximate controllability) of ψ-Caputo fractional stochastic differential in-
clusions driven by fBm or other stochastic noise which will be treated in the future.
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