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Abstract
Let E be a Banach space with dual space E∗, and let K be a nonempty, closed, and
convex subset of E. We generalize the concept of generalized projection operator
“�K : E → K” from uniformly convex uniformly smooth Banach spaces to uniformly
convex uniformly smooth countably normed spaces and study its properties. We
show the relation between J-orthogonality and generalized projection operator �K

and give examples to clarify this relation. We introduce a comparison between the
metric projection operator PK and the generalized projection operator �K in
uniformly convex uniformly smooth complete countably normed spaces, and we give
an example explaining how to evaluate the metric projection PK and the generalized
projection �K in some cases of countably normed spaces, and this example
illustrates that the generalized projection operator �K in general is a set-valued
mapping. Also we generalize the generalized projection operator “πK : E∗ → K” from
reflexive Banach spaces to uniformly convex uniformly smooth countably normed
spaces and study its properties in these spaces.
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1 Introduction
Let E be a Banach space with dual space E∗, and let K be a nonempty, closed, and con-
vex subset of E. The metric projection operator PK : E → K has been used in many top-
ics of mathematics such as: fixed point theory, game theory, and variational inequalities.
In 1996, Alber [1] introduced the generalized projection operators “�K : E → K” and
“πK : E∗ → K” in uniformly convex and uniformly smooth Banach spaces, which are a nat-
ural extension of the classical metric projection operators of Hilbert spaces, and studied
their properties in detail. Also, Alber [1] presented two of the most important applications
of the generalized projection operators: solving variational inequalities by iterative pro-
jection methods and finding a common point of closed convex sets by iterative projection
methods in Banach spaces. In 2005, Li [3] extended the generalized projection operator
πK : E∗ → K from uniformly convex uniformly smooth Banach spaces to reflexive Banach
spaces and studied the properties and applications of the generalized projection operator
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πK based on set-valued mappings. In this paper, we extend the concept of generalized pro-
jection operators “�K : E → K” from uniformly convex uniformly smooth Banach spaces
to uniformly convex uniformly smooth countably normed spaces and “πK : E∗ → K” from
reflexive Banach spaces to uniformly convex uniformly smooth countably normed spaces.
Also, we show the relation between J-orthogonality and generalized projection operators
and give examples to clarify these relations. We present a comparison between metric
projection and generalized projection in uniformly convex uniformly smooth complete
countably normed spaces.

2 Preliminaries
Definition 2.1 ([5, 6]) If E is a normed linear space, then:

(1) It is uniformly convex if for any ε ∈ (0, 2] there exists δ = δ(ε) > 0 such that if x, y ∈ E
with ‖x‖ = 1, ‖y‖ = 1 and ‖x – y‖ ≥ ε, then ‖ x+y

2 ‖ ≤ 1 – δ.
(2) It is smooth if S(E) = {x ∈ E : ‖x‖ = 1} is the unit sphere of E and limt→0

‖x+ty‖–‖x‖
t

exists for each x, y ∈ S(E).
(3) It is uniformly smooth if limt→0

‖x+ty‖–‖x‖
t exists for each x, y ∈ S(E), where S(E) is the

unit sphere of E.

Definition 2.2 (The normalized duality mapping, [8, 11]) If E is a real Banach space with
the norm ‖ ‖, E∗ is the dual space of E, and 〈·, ·〉 is the duality pairing. Then the normalized
duality mapping J from E to 2E∗ is defined by

Jx =
{

j ∈ E∗ : 〈x, j〉 = ‖x‖2 = ‖j‖2}.

The Hahn–Banach theorem guarantees that Jx 
= φ for every x ∈ E. If E is a smooth Banach
space, then the normalized duality mapping is single-valued. We got the following example
in [4] for the normalized duality mapping J in the uniformly convex and uniformly smooth
Banach space �p with p ∈ (1,∞), we have Jx = ‖x‖2–p

�p {x1|x1|p–2, x2|x2|p–2, . . .} ∈ �q = �p∗,
where x = {x1, x2, . . .} ∈ �p such that 1

p + 1
q = 1.

Definition 2.3 (Countably normed space, [4]) If E is a linear space equipped with a count-
able family of pairwise compatible norms, {‖ ‖n, n ∈ N} is said to be countably normed
space. We give an example for the countably normed space the space �p+0 :=

⋂
n �pn for

any choice of a monotonic decreasing sequence pn converging to p for 1 < p < ∞.

Remark 2.4 ([9]) For a countably normed space (E, {‖ ‖n, n ∈ N}), let the completion of E
with respect to the norm ‖ ‖n be En. We may assume that ‖ ‖1 ≤ ‖ ‖2 ≤ ‖ ‖3 ≤ . . . in any
countably normed space, also we have E ⊂ · · · ⊂ En+1 ⊂ En ⊂ · · · ⊂ E1.

Proposition 2.5 ([4]) Let (E, {‖ ‖n, n ∈ N}) be a countably normed space. Then E is com-
plete if and only if E =

⋂
n∈N En. Each Banach space En has a dual, which is a Banach space

denoted by E∗
n and the dual of the countably normed space E is given by E∗ =

⋃
n∈N E∗

n , and
we have the following inclusions:

E∗
1 ⊂ · · · ⊂ E∗

n ⊂ E∗
n+1 ⊂ · · · ⊂ E∗.

Moreover, for f ∈ E∗
n , we have ‖f ‖n ≥ ‖f ‖n+1 for all n ∈N.
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In the following definition, we define uniformly convex uniformly smooth countably
normed spaces “C.S.C.N.”.

Definition 2.6 (C.S.C.N. space, [7]) A countably normed space (E, {‖ ‖n, n ∈N}) is said to
be uniformly convex uniformly smooth if (En,‖ ‖n) is uniformly convex uniformly smooth
for all n ∈N.

Theorem 2.7 ([7]) Let (E, {‖ ‖n, n ∈ N}) be a real uniformly convex complete countably
normed space, and K be a nonempty convex proper subset of E such that K is closed in each
En, then there exists a unique x̄ ∈ K : ‖x – x̄‖n = infy∈K ‖x – y‖n for all n ∈N, and the metric
projection PK : E → K is defined by PK (x) = x̄.

Definition 2.8 (Lyapunov functional, [2]) If E is a smooth Banach space and E∗ is the dual
space of E, then Lyapunov functional ϕ : E × E →R

+ is defined by:

ϕ(y, x) = ‖y‖2 – 2〈y, Jx〉 + ‖x‖2

for all x, y ∈ E, where J is the normalized duality mapping from E to 2E∗ .

In the following the concept of the normalized duality mapping in smooth countably
normed spaces “S.C.N.” is introduced.

Definition 2.9 (The normalized duality mapping in S.C.N. spaces, [12]) Let (E, {‖ ‖n, n ∈
N}) be a smooth countably normed space such that En is the completion of E in ‖ ‖n and
(En,‖ ‖n) is a smooth Banach space for all n ∈N, so there exists a single-valued normalized
duality mapping Jn : En → E∗

n with respect to ‖ ‖n for all n ∈ N. One understands that
‖Jnx‖n is the E∗

n-norm and ‖x‖n is the En-norm for all n ∈N.
The following multi-valued mapping is the normalized duality mapping of a smooth

countably normed space as J : E → E∗ =
⋃

n∈N E∗
n such that J(x) = {Jnx}, ‖Jnx‖n = ‖x‖n,

〈x, Jnx〉 = ‖x‖2
n ∀n ∈N.

Proposition 2.10 ([12]) If (E, {‖ ‖n, n ∈ N}) is a real smooth uniformly convex complete
countably normed space and K is a nonempty proper convex subset of E such that K is
closed in each En, then x̄ = PK (x) is the metric projection of an arbitrary element x ∈ E if
and only if 〈x̄ – y, J(x – x̄)〉 ≥ 0, ∀y ∈ K , where J is the normalized duality mapping on E.

Theorem 2.11 ([12]) Let (E, {‖ ‖n, n ∈ N}) be a real smooth uniformly convex complete
countably normed space and K be a nonempty proper convex subset of E such that K is
closed in each En.

Then x̄ = PK (x) is the metric projection of an arbitrary element x ∈ E if and only if 〈x –
y, Jn(x – x̄)〉 ≥ ‖x – x̄‖2

n, ∀y ∈ K , ∀n.

Definition 2.12 (J-orthogonality in smooth countably normed spaces, [12]) Let (E, {‖ ‖n,
n ∈N}) be a smooth countably normed space, we say that an element x ∈ E is J-orthogonal
to an element y ∈ E and write x ⊥J y if 〈y, Jnx〉 = 0, ∀n, i.e., 〈y, Jx〉 = 0, where J is the nor-
malized duality mapping of E.
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Theorem 2.13 ([12]) If (E, {‖ ‖n, n ∈N}) is a real smooth uniformly convex complete count-
ably normed space and M is a nonempty proper subspace of E such that M is closed in each
Ei, then

∀x ∈ E \ M,∃!x̄ ∈ M: ‖x – x̄‖i = inf
y∈M

‖x – y‖i, ∀i if and only if x – x̄ ⊥J M.

3 Main results
In the following definition, we introduce the concept of the generalized projection opera-
tor “�K ” in uniformly convex uniformly smooth countably normed spaces “C.S.C.N.”.

Definition 3.1 (The generalized projection “�K ” in C.S.C.N. spaces) Let (E, {‖ ‖n, n ∈
N}) be a uniformly convex uniformly smooth countably normed space such that En is the
completion of E in ‖ ‖n and (En,‖ ‖n) is a uniformly convex uniformly smooth Banach
space for all n ∈ N, so there exists a single-valued injective normalized duality mapping
Jn : En → E∗

n with respect to ‖ ‖n for all n ∈ N, and let K be a nonempty proper convex
subset of E such that K is closed in each En for all n. Let φn(x, y) be Lyapunov functional
with respect to ‖ ‖n, where φn : En × En →R

+ is defined as

φn(x, y) = ‖x‖2
n – 2〈y, Jnx〉 + ‖y‖2

n, ∀n ∈N,

so we have �n
K : En → K is defined as

�n
K (x) = x0n ⇔ φn(x, x0n) = inf

y∈K
φn(x, y).

We define the set-valued mapping �K : E → 2K to be the generalized projection operator,
where �K (x) = {�n

K (x)} = {x0n} ⊆ K such that

φn(x, x0n) = inf
y∈K

φn(x, y), ∀n.

Proposition 3.2 Let K be a nonempty closed convex subset of a uniformly convex uniformly
smooth countably normed space E and x ∈ E. Then

�K (x) = {x0i}

if and only if 〈x0i – y, Jix – Jix0i〉 ≥ 0, ∀y ∈ K , ∀i.

Proof “⇒” Let y ∈ K and let μ ∈ (0, 1), �K (x) = {x0i}.
Then

φi(x0i, x) ≤ φi
(
(1 – μ)x0i + μy, x

)
for all i. (∗)

From (∗) we have

0 ≤ ∥
∥(1 – μ)x0i + μy

∥∥2
i – 2

〈
(1 – μ)x0i + μy, Jix

〉
– ‖x0i‖2

i + 2〈x0i, Jix〉
=

∥∥(1 – μ)x0i + μy
∥∥2

i – ‖x0i‖2
i – 2μ〈y – x0i, Jix〉



Tawfeek et al. Journal of Inequalities and Applications        (2021) 2021:167 Page 5 of 14

≤ 2μ
〈
y – x0i, Ji((1 – μ)x0i + μy

〉
– 2μ〈y – x0i, Jix〉

= 2μ
〈
y – x0i, Ji

(
(1 – μ)x0i + μy

)
– Jix

〉
.

Since

μ
〈
x0i – y, Ji

(
(1 – μ)x0i + μy

)〉

=
〈
x0i – μy – x0i + μx0i, Ji(1 – μ)x0i + μy

〉

=
〈
x0i –

(
(1 – μ)x0i + μy

)
, Ji(1 – μ)x0i + μy

〉

≤ 1
2
(‖x0i‖2

i –
∥∥(1 – μ)x0i + μy

∥∥2
i

)
.

Taking the limit μ → 0, we get 〈y – x0i, Jix0i – Jix〉 ≥ 0.
Thus 〈x0i – y, Jix – Jix0i〉 ≥ 0 for all y ∈ K and for all i.
“⇐” For any y ∈ K , we have

φi(y, x) – φi(x0i, x)

= ‖y‖2
i – 2〈y, Jix〉 + ‖x‖2

i – ‖x0i‖2
i + 2〈x0i, Jix〉 – ‖x‖2

i

= ‖y‖2
i – ‖x0i‖2

i – 2〈y – x0i, Jix〉
≥ 2〈y – x0i, Jix0i〉 – 2〈y – x0i, Jix〉
= 2〈y – x0i, Jix0i – Jix〉 ≥ 0, ∀i.

So �K (x) = {x0i}. �

Proposition 3.3 Let (E, {‖ ‖i, i ∈ N}) be a uniformly convex uniformly smooth countably
normed space and M be a nonempty proper subspace of E. Then �M(x) = {x0i} if and only
if

〈m, Jix – Jix0i〉 = 0 ∀m ∈ M,∀i.

Proof “⇒” Suppose that �M(x) = {x0i}. Since M is a subspace of E and using Proposi-
tion 3.2, we have

〈
x0i – (x0i – m), Jix – Jix0i

〉
= 〈m, Jix – Jix0i〉 ≥ 0, ∀m ∈ M,∀i. (1)

Similarly,

〈
x0i – (x0i + m), Jix – Jix0i

〉
= 〈–m, Jix – Jix0i〉 ≥ 0, ∀m ∈ M,∀i. (2)

From (1), (2) we get 〈m, Jix – Jix0i〉 = 0 ∀m ∈ M, ∀i.
“⇐” Suppose that 〈m, Jix – Jix0i〉 = 0 ∀m ∈ M, ∀i.
Using that M is a subspace of E, we have

〈x0i – m, Jix – Jix0i〉 = 0, ∀m ∈ M,∀i.
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So,

〈x0i – m, Jix – Jix0i〉 ≥ 0, ∀m ∈ M,∀i.

Thus �M(x) = {x0i}. �

Example 3.4 For �2+0 :=
⋂

n∈N �2+ 1
n

is a uniformly convex uniformly smooth complete
countably normed space with the norms

‖ ‖3 ≤ ‖ ‖2.5 ≤ · · · ≤ ‖ ‖2+ 1
n

≤ · · · ,

for each x = {xi} ∈ �2+0,

Jn(x) = ‖x‖– 1
n

2+ 1
n

{
xi|xi| 1

n
} ∈ � 2n+1

n+1
, ∀n.

Consider a closed subspace M of �2+0 which is generated by {1, 0, 0, 0, . . .}. Using Proposi-
tion 3.2 we get

�M(x) =
{{x0n, 0, 0, . . .}}

⇔ 〈{t, 0, 0, . . .}, Jnx – Jn{x0n, 0, 0, . . .}〉 = 0 ∀t ∈R,∀n

⇔ 〈{t, 0, 0, . . .},‖x‖– 1
n

2+ 1
n

{
x1|x1| 1

n , x2|x2| 1
n , . . .

}〉

=
〈{t, 0, 0, . . .},‖x0‖– 1

n
2+ 1

n

{
x0n|x0n| 1

n , 0, 0, . . .
}〉

⇔ ‖x‖– 1
n

2+ 1
n

x1|x1| 1
n t = ‖x0‖– 1

n
2+ 1

n
x0n|x0n| 1

n t = x0nt

⇔ x0n = ‖x‖– 1
n

2+ 1
n

x1|x1| 1
n , ∀n.

So �M(x) = {{‖x‖– 1
n

2+ 1
n

x1|x1| 1
n , 0, 0, . . .}}, ∀n, hence we have a sequence of points.

Using Theorem 2.13 that is “PM(x) = x̄ if and only if x – x̄ ⊥J M”, we get

PM(x) = x̄ = {x̄1, 0, 0, . . .}
⇔ 〈{t, 0, 0, . . .}, Jn(x – x̄)

〉
= {0, 0, . . .}, ∀t ∈R,∀n

⇔ 〈{t, 0, 0, . . .}, Jn{x1 – x̄1, x2, x3, . . . , xn, . . .}〉 = {0, 0, . . .}

⇔ 〈{t, 0, 0, . . .},‖x – x̄‖– 1
n

2+ 1
n

{|x1 – x̄1|– 1
n (x1 – x̄1), . . . , xi|xi| 1

n , . . .
}〉

= {0, 0, . . .}

⇔ ‖x – x̄‖– 1
n

2+ 1
n
|x1 – x̄1|– 1

n (x1 – x̄1)t = 0, ∀t ∈R,∀n

⇔ x̄1 = x1, PM(x) = x̄ = {x1, 0, 0, . . .}.

So, for a metric projection we have only one point but for a generalized projection we have
a sequence of points.
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Remark 3.5 From Example 3.4 we observed that the metric projection and the generalized
projection of a uniformly convex uniformly smooth complete countably normed space in
general are distinct.

Remark 3.6 The space �2+0 is a uniformly convex uniformly smooth complete countably
normed space, so the metric projection is a single-valued mapping in it, see [10]. But the
generalized projection in �2+0 is still a set-valued mapping.

The following corollary gives a relation between the generalized projection and J-
orthogonality in uniformly convex uniformly smooth countably normed spaces.

Corollary 3.7 Let (E, {‖ ‖n, n ∈ N}) be a uniformly convex uniformly smooth countably
normed space and M be a nonempty proper subspace of E. Then �M(x) = 0 if and only if
x ⊥J M.

Proof By using Proposition 3.3, we get

�M(x) = 0 ⇔ 〈m, Jix〉 = 0, ∀m ∈ M,∀i

⇔ x ⊥J M. �

Example 3.8 For �2+0 :=
⋂

n∈N �2+ 1
n

,

Jn(x) = ‖x‖– 1
n

2+ 1
n

{
xi|xi| 1

n
} ∈ � 2n+1

n+1
∀n.

Consider a closed subspace M of �2+0 which is generated by {1, 0, 0, 0, . . .}.

�M(x) = {0, . . . , 0, . . .}
⇔ x ⊥J M

⇔ 〈m, Jix〉 = 0 ∀m ∈ M,∀i

⇔ 〈{m1, 0, 0, . . .},‖x‖– 1
n

2+ 1
n

{
x1‖x1‖ 1

n , x2‖x2‖ 1
n , . . .

}〉
= {0, 0, . . .}

⇔ x =
[{0, 1, 1, 1, . . .}].

Corollary 3.9 Let (E, {‖ ‖n, n ∈ N}) be a uniformly convex uniformly smooth countably
normed space and M be a nonempty proper subspace of E. Then �M(x) is homogeneous.

Proof Let

�M(x) = {x0i} ⇔ 〈m, Jix – Jix0i〉 = 0 ∀m ∈ M,∀i

⇔ λ〈m, Jix – Jix0i〉 = 0 =
〈
m,λ(Jix – Jix0i)

〉
, λ ∈R

⇔ 〈
m, Ji(λx) – Ji(λx0i)

〉
= 0 ∀m ∈ M,∀i

⇔ �M(λx) = λ{x0i} = λ�M(x). �
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Proposition 3.10 Let K be a nonempty closed convex subset of a uniformly convex uni-
formly smooth countably normed space E and x ∈ E. If �K (x) = {x0i}, then

φi(y, x0i) + φi(x0i, x) ≤ φi(y, x), ∀y ∈ K ,∀i.

Proof

φi(y, x) – φi(y, x0i) + φi(x0i, x)

= –2〈y, Jix〉 + 2〈x0i, Jix〉 + 2
〈
y – x0i, Ji(x0i)

〉

= –2
〈
y – x0i, Ji(x)

〉
+ 2

〈
y – x0i, Ji(x0i)

〉

= 2
〈
y – x0i, Ji(x0i) – Jix

〉 ≥ 0, ∀y ∈ K ,∀i “using Proposition 3.2”. �

Proposition 3.11 Let (E, {‖ ‖n, n ∈N}) be a uniformly convex uniformly smooth countably
normed space and M be a nonempty proper subspace of E, x ∈ E, �M(x) = {x0n}. Then

φn(y, x0n) + φn(x0n, x) = φn(y, x), ∀y ∈ M,∀n.

Proof

φn(y, x) – φn(x0n, x) – φn(y, x0n)

= –2〈y, Jnx〉 + 2〈x0n, Jnx〉 + 2〈y, Jnx0n〉 – 2〈x0n, x0n〉
= 2〈y – x0n, Jnx0n – Jnx〉 = 0 ∀y ∈ M,∀n.

Thus φn(y, x0n) + φn(x0n, x) = φn(y, x) ∀y ∈ M, ∀n. �

Example 3.12 For �2+0 :=
⋂

n∈N �2+ 1
n

,

Jn(x) = ‖x‖– 1
n

2+ 1
n

{
xi|xi| 1

n
} ∈ � 2n+1

n+1
∀n.

Consider a closed subspace M of �2+0 which is generated by {1, 0, 0, 0, . . .}.
In Example 3.4, we got the generalized projection operator of x ∈ �2+0 such that

�M(x) =
{{‖x‖– 1

n
2+ 1

n
x1|x1| 1

n , 0, 0, . . .
}} ∀n.

So, we get

φn
({m, 0, . . .},{‖x‖– 1

n
2+ 1

n
x1|x1| 1

n , 0, 0, . . .
})

+ φn
({‖x‖– 1

n
2+ 1

n
x1|x1| 1

n , 0, 0, . . .
}

, {x1, x2, . . .})

= m2 – 2
(‖x‖2+ 1

n

)– 1
n mx1‖x1‖– 1

n + 2
(‖x‖2+ 1

n
– 1

n x1‖x1‖ 1
n
)2

– 2
((‖x‖2+ 1

n

)– 1
n x1‖x1‖ 1

n
)2 +

(‖x‖2+ 1
n

)2

= φn
({m, 0, 0, . . .}, {x1, x2, . . .}) = φn

({m, 0, 0, . . .}, x
) ∀{m, 0, 0, . . .} ∈ M,∀n.
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Remark 3.13 Proposition 2.10, Theorem 2.11, and Theorem 2.13 give relations between a
metric projection operator and a normalized duality mapping in countably normed spaces.
Proposition 3.2, Proposition 3.3, Corollary 3.7, and Proposition 3.10 give relations be-
tween the generalized projection operator and the normalized duality mapping in count-
ably normed spaces, so we can get a useful comparison between the metric projection and
the generalized projection in countably normed spaces.

In the following definition, we introduce the concept of generalized projection operator
“πK ” in uniformly convex uniformly smooth countably normed spaces “C.S.C.N.”.

Definition 3.14 (The generalized projection “πK ” in C.S.C.N. spaces) Let (E, {‖ ‖n, n ∈
N}) be a uniformly convex uniformly smooth countably normed space such that En is the
completion of E in ‖ ‖n and (En,‖ ‖n) is a uniformly convex uniformly smooth Banach
space for all n ∈ N, and let K be a nonempty proper convex subset of E such that K is
closed in each En for all n. Let ϕn(f , y) be a Lyapunov functional with respect to ‖ ‖n,
where ϕn : E∗

n × En →R
+ is defined as

ϕn(f , y) = ‖f ‖2
n – 2〈y, f 〉 + ‖y‖2

n, ∀n ∈N.

Without being confused, one understands that ‖f ‖n is the E∗
n-norm and ‖y‖n is the En-

norm for all n ∈N. So we have

πn
K : E∗

n → K ∀n ∈ N

is defined as

πn
K (f ) = x̄n ⇔ ϕn(f , x̄n) = inf

y∈K
ϕn(f , y).

We define the set-valued mapping

πK : E∗ =
⋃

n∈N
E∗

n → 2K

to be the generalized projection operator of f , where f ∈ E∗
n for some n,

πK (f ) =
{
πn

K (f )
}

= {x̄n} ⊆ K

such that ϕn(f , x̄n) = infy∈K ϕn(f , y).

Remark 3.15 Let (E, {‖ ‖n, n ∈ N}) be a uniformly convex uniformly smooth countably
normed space such that En is the completion of E in ‖ ‖n and (En,‖ ‖n) is a uniformly con-
vex uniformly smooth Banach space for all n ∈ N, so there exists a single-valued injective
normalized duality mapping Jn : En → E∗

n with respect to ‖ ‖n and J∗
n : E∗

n → E∗∗
n = En since

En is a reflexive Banach space for all n ∈N, and let K be a nonempty proper convex subset
of E such that K is closed in each En for all n. Then �n

K = πn
K ◦ Jn and πn

K = �n
K ◦ J∗

n ,
since �n

K and πn
K are single-valued for all n. So �K (x) = {�n

K (x)} = {πn
K ◦ Jn(x)} for all

n and πK (f ) = {πn
K (f )} = {�n

K ◦ J∗
n (f )}, where f ∈ E∗

n for some n.
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Li studied and proved the properties of generalized projection operator πK in reflexive
Banach spaces, see [3], we extend and prove most of these properties of a generalized
projection operator πK in uniformly convex uniformly smooth countably normed spaces
in the following theorem.

Theorem 3.16 Let (E, {‖ ‖n, n ∈ N}) be a uniformly convex uniformly smooth countably
normed space such that En is the completion of E in ‖ ‖n and (En,‖ ‖n) is a uniformly convex
uniformly smooth Banach space for all n ∈N, and let K be a nonempty proper convex subset
of E such that K is closed in each En for all n, then the following properties hold:

(1) For any given f ∈ E∗,πK (f ) is a convex subset of K .
(2) For any point x ∈ K and any Ji(x) ∈ J(x), where J(x) is the normalized duality

mapping of E, we have x ∈ πK (Ji(x)), ∀i.
(3) πK is monotone in E∗ in some cases, that is, if f1, f2 ∈ E∗ where f1, f2 ∈ E∗

i for some i,
x1 ∈ πK (f1) and x2 ∈ πK (f2), we have

〈x1 – x2, f1 – f2〉 ≥ 0.

(4) For any given f ∈ E∗ such that f ∈ E∗
i for some i, x ∈ K , if Ji(x) ∈ J(x) such that

〈x – y, f – Ji(x)〉 ≥ 0 for all y ∈ K , then x ∈ πK (f ).

(5) If x ∈ πK (f ) and f ∈ E∗ such that f ∈ E∗
i for some i, Ji(x) ∈ J(x), we have

〈x – y, f – Ji(x)〉 ≥ 0 for all y ∈ K .

(6) If f1, f2 ∈ E∗ such that f1, f2 ∈ E∗
i for some i and x ∈ (πK (f1) ∪ πK (f2)), we have

x ∈ πK (λf1 + (1 – λ)f2) for any λ ∈ [0, 1], that is,

πK (f1) ∪ πK (f2) ⊆ πK
(
co(f1, f2)

)
.

(7) If f ∈ E∗ such that f ∈ E∗
i for some i, x ∈ πK (f ), the following inequality holds:

ϕi(Jix, y) ≤ ϕi(f , y), ∀y ∈ K .

Proof (1) Suppose x1, x2 ∈ πK (f ), f ∈ E∗
i for some i and 0 ≤ λ ≤ 1, from the convexity

property of the functional ϕi, we have

ϕi
(
f ,λx1 + (1 – λ)x2

) ≤ λϕi(f , x1) + (1 – λ)ϕi(f , x2)

= λ inf
y∈K

ϕi(f , y) + (1 – λ) inf
y∈K

ϕi(f , y)

= inf
y∈K

ϕi(f , y).

It implies λx1 + (1 – λ)x2 ∈ πK (f ). Hence πK (f ) is a convex subset.
(2) x ∈ πK (Ji(x)) = {πn

K (Ji(x))} for some n since, for n = i “Ji(x) ∈ E∗
i ”, we have ϕi(Jix, x) = 0,

π i
K (Ji(x)) = x, ∀i.
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(3) If f1, f2 ∈ E∗ such that f1, f2 ∈ E∗
i for some i, x1 ∈ πK (f1) and x2 ∈ πK (f2), we have

ϕi(f1, x1) ≤ ϕi(f1, y), ∀y ∈ K ,

and

ϕi(f2, x2) ≤ ϕi(f2, z), ∀z ∈ K .

Let y = x2 and z = x1. Then

ϕi(f1, x1) ≤ ϕi(f1, x2), ϕi(f2, x2) ≤ ϕi(f2, x1),

and we have

ϕi(f1, x2) + ϕi(f2, x1) ≥ ϕi(f1, x1) + ϕi(f2, x2).

From this we obtain the following relation:

〈x1, f1〉 + 〈x2, f2〉 ≥ 〈x2, f1〉 + 〈x1, f2〉,

which is equivalent to 〈x1 – x2, f1 – f2〉 ≥ 0.
(4) For any given f ∈ E∗ such that f ∈ E∗

i for some i, x ∈ K if Ji(x) ∈ J(x) such that

〈
x – y, f – Ji(x)

〉 ≥ 0 for all y ∈ K and for some i.

Then we have

ϕi(f , y) – ϕi(f , x) = –2〈y, f 〉 + ‖y‖2
i + 2〈x, f 〉 – ‖x‖2

i

= –2〈y, f 〉 + 2〈x, f 〉 – 2〈x, Jix〉 + ‖Jix‖2
i + ‖y‖2

i

≥ –2〈y, f 〉 + 2〈x, f 〉 – 2〈x, Jix〉 + 2‖Jix‖i‖y‖i

≥ –2〈y, f 〉 + 2〈x, f 〉 – 2〈x, Jix〉 + 2〈y, Jix〉
= 2〈x – y, f – Jix〉 ≥ 0, ∀y ∈ K .

It implies x ∈ πK (f ).
(5) If x ∈ πK (f ) such that f ∈ E∗

i for some i, λ ∈ (0, 1], any y ∈ K , and using that K is
convex, we get

0 ≥ ϕi(f , x) – ϕi
(
f ,λy + (1 – λ)x

)

= 2
〈
λ(y – x), f

〉
+ ‖x‖2

i –
∥∥λy + (1 – λ)x

∥∥2
i

= 2
〈
λ(y – x), f – Ji

(
λy + (1 – λ)x

)〉
+ 2

〈
λ(y – x), Ji

(
λy + (1 – λ)x

)〉

+ ‖x‖2
i –

∥∥λy + (1 – λ)x
∥∥2

i

= 2
〈
λ(y – x), f – Ji

(
λy + (1 – λ)x

)〉
+ 2

〈
λy + (1 – λ)x

〉
–

〈
x, Ji

(
λy + (1 – λ)x

)〉

+ ‖x‖2
i –

∥∥λy + (1 – λ)x
∥∥2

i
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= 2
〈
λ(y – x), f – Ji

(
λy + (1 – λ)x

)〉
+ 2

∥∥λy + (1 – λ)x
∥∥2

i

– 2
〈
x, Ji

(
λy + (1 – λ)x

)〉
+ ‖x‖2

i –
∥∥λy + (1 – λ)x

∥∥2
i

= 2
〈
λ(y – x), f – Ji

(
λy + (1 – λ)x

)〉
+

∥∥λy + (1 – λ)x
∥∥2

i

– 2
〈
x, Ji

(
λy + (1 – λ)x

)〉
+ ‖x‖2

i

≥ 2
〈
λ(y – x), f – Ji

(
λy + (1 – λ)x

)〉
.

So, for some i, we have

〈
x – y, f – Ji

(
λy + (1 – λ)x

)〉 ≥ 0, ∀λ ∈ (0, 1].

From the property

∥∥Ji
(
λy + (1 – λ)x

)∥∥
i =

∥∥λy + (1 – λ)x
∥∥

i ≤ ‖x‖i + ‖y‖i,

we get that the set {Ji(λy + (1 – λ)x) : λ ∈ (0, 1]} is bounded for any fixed x, y ∈ K , ∀i.
Then there exists a subsequence {Ji(λny + (1 – λn)x)} such that λn → 0 and Ji(λny + (1 –
λn)x) → ψi,ω∗-weakly with respect to ‖ ‖i, as n → ∞ such that ψi ∈ E∗ ∀i. From the ω∗-
convergence property, we have

‖ψi‖i ≤ lim
n→∞ inf

∥∥Ji
(
λny + (1 – λn)x

)∥∥
i

= lim
n→∞ inf

∥∥λny + (1 – λn)x
∥∥

i ≤ ‖x‖i, ∀i,

〈z,ψi〉 = lim
n→∞

〈
z, Ji

(
λny + (1 – λn)x

)〉
, ∀z ∈ K .

(I)

For z = x, we have

〈x,ψi〉 = lim
n→∞

〈
x, Ji

(
λny + (1 – λn)x

)〉

= lim
n→∞

〈
λn(y – x), Ji

(
λny + (1 – λn)x

)〉

= lim
n→∞

∥∥λny + (1 – λn)x
∥∥2

i = ‖x‖2
i .

(II)

Since ‖ψi‖i‖x‖i ≥ 〈x,ψi〉 = ‖x‖2
i , it implies ‖ψi‖i ≥ ‖x‖i. Here we may assume that x 
= 0.

(It is easy to prove the second part if x = 0.) Combining with (I), (II), we get

〈x,ψi〉 = ‖x‖2
i = ‖ψi‖2.

It yields that ψi = Ji. Applying the ω∗-convergence property again and using (I), we get that

〈
x – y, f – Ji(x)

〉
= lim

n→∞
〈
x – y, f – Ji

(
λny + (1 – λn)x

)〉 ≥ 0, ∀y ∈ K .

(6) If f1, f2 ∈ E∗ such that f1, f2 ∈ E∗
i for some i and x ∈ (πK (f1) ∪ πK (f2)), then by using

property [6], we have 〈x – y, f1 – Ji(x)〉 ≥ 0 and 〈x – y, f2 – Ji(x)〉 ≥ 0, ∀y ∈ K . It implies

〈
x – y,

(
λf1 + (1 – λ)f2

)
– Jix

〉

=
〈
x – y,

(
λf1 + (1 – λ)f2

)
–

(
λJi(x) + (1 – λ)Ji(x)

)〉
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= λ
〈
x – y, f1 – Ji(x)

〉
+ (1 – λ)

〈
x – y, f2 – Ji(x)

〉

≥ 0, ∀y ∈ K .

Applying property [6] again, we obtain x ∈ πK (λf1 + (1 – λ)f2), that is,

πK (f1) ∪ πK (f2) ⊆ πK
(
co(f1, f2)

)
.

(7) If f ∈ E∗ such that f ∈ E∗
i for some i. Let us rewrite property [6] in the form

〈x – y, f 〉 ≥ 〈
x – y, Ji(x)

〉
, ∀y ∈ K .

So we have

〈y, f 〉 ≤ 〈
y, Ji(x)

〉
+ 〈x, f 〉 –

〈
x, Ji(x)

〉

=
〈
y, Ji(x)

〉
+ 〈x, f 〉 – ‖x‖2

i .

It is equivalent to the relation

‖f ‖2
i – 2〈y, f 〉 + ‖y‖2

i

≥ ‖x‖2
i – 2

〈
y, Ji(x)

〉
+ ‖y‖2

i + ‖f ‖2
i – 2〈x, f 〉 + ‖x‖2

i .

By observing the following equalities:

ϕi
(
Ji(x), y

)
= ‖x‖2

i – 2
〈
y, Ji(x)

〉
+ ‖y‖2

i ,

ϕi(f , y) = ‖f ‖2
i – 2〈y, f 〉 + ‖y‖2

i ,

ϕi(f , x) = ‖f ‖2
i – 2〈x, f 〉 + ‖x‖2

i ,

we get that

ϕi(Jix, y) ≤ ϕi(f , y) – ϕi(f , x), ∀y ∈ K .

Consequently,

ϕi(Jix, y) ≤ ϕi(f , y), ∀y ∈ K . �

4 Conclusion
In this paper we extend the concept of the generalized projection operator “�K : E → K”
from uniformly convex uniformly smooth Banach spaces to uniformly convex uniformly
smooth countably normed spaces and study its properties. We show the relation be-
tween J-orthogonality and generalized projection operator �K and give examples to clar-
ify this relation. We introduce a comparison between the metric projection operator
PK and the generalized projection operator �K in uniformly convex uniformly smooth
complete countably normed spaces, and we give an example explaining how to evaluate
the metric projection PK and the generalized projection �K in some cases of countably
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normed spaces, and this example illustrates that the generalized projection operator �K

in general is a set-valued mapping. Also we generalize the generalized projection opera-
tor “πK : E∗ → K” from reflexive Banach spaces to uniformly convex uniformly smooth
countably normed spaces. We clarify that the properties of πK in uniformly convex uni-
formly smooth countably normed spaces are closer to similarity with the properties of πK

in reflexive Banach spaces.
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