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1 Introduction
In a series of recent papers [7–9] the authors introduced the study of Ulam stability for lin-
ear quantum (q-difference) equations of first order with a complex constant coefficient.
See [1, 2, 19] for the literature on related topics. As yet, there are no works in the liter-
ature dealing with first-order linear quantum equations with nonautonomous (variable)
coefficient functions, which we initiate below.

As one of the stability types of functional equations, Ulam (or Hyers–Ulam) stability
has been investigated by many researchers. Since the paper is devoted to a highly active
domain with a plethora of interesting and applicable results, we must pay attention to more
classical and recent results in the fields of functional equations. For example, for some
highly important works, we direct the reader to [3, 4, 20, 22, 24, 27–29, 31–33, 42, 46]. We
also draw attention to the books [5, 21, 23, 25, 30, 43, 44].

Since Popa [39, 40] began studying the Ulam stability of linear difference equations (lin-
ear recurrences) in 2005, many researchers have investigated this problem; for example,
see [6, 10, 15, 16, 37, 38, 41, 45]. For higher-order difference equations, see [13, 14], and
for nonlinear difference equations, see [26, 34–36]. As of yet, the results for variable co-
efficients are very few, even for difference equations. For the latest studies on the Ulam
stability related to variable and periodic coefficients, see [11, 17, 18]. For results on the
Ulam stability for a first-order linear difference equation with nonconstant coefficients in
Banach spaces, with the best Ulam constant, see [12].

Let N be the set of natural numbers, and let N0 := N∪ {0}. Define the quantum set

qN0 :=
{

1, q, q2, q3, . . .
}
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for q > 1. In this paper, we consider the nonautonomous Cayley quantum equation

Dqz(t) = α(t)
〈
z(t)

〉
β

, t ∈ qN0 , (1.1)

where α(t) is a complex-valued time-varying coefficient, the q-difference operator is

Dqz(t) :=
z(qt) – z(t)

(q – 1)t
, q > 1,

and the Cayley component is

〈
z(t)

〉
β

:= βz(qt) + (1 – β)z(t), 0 ≤ β ≤ 1.

If β = 0, then the Cayley quantum equation reduces to the mere quantum equation

Dqz(t) = α(t)z(t), t ∈ qN0 .

It is well known that Dqz(t) → z′(t) as q ↘ 1, so we can say that the quantum equation is
an approximate equation of the differential equation z′(t) = α(t)z(t). Notice that equation
(1.1) can be rewritten as

[
1 – β(q – 1)tα(t)

]
z(qt) =

[
1 + (1 – β)(q – 1)tα(t)

]
z(t).

This formula shows that the condition

1 – β(q – 1)tα(t) �= 0 �= 1 + (1 – β)(q – 1)tα(t) for t ∈ qN0 (1.2)

is necessary to keep the recurrence viable. For this reason, we assume this condition
throughout this paper.

Definition 1.1 Equation (1.1) is Ulam stable on qN0 if there is a constant C > 0 with the
following property:

For any ε > 0 and for any function ζ satisfying

∣∣Dqζ (t) – α(t)
〈
ζ (t)

〉
β

∣∣ ≤ ε for t ∈ qN0 , (1.3)

there is a solution z of (1.1) such that

∣∣ζ (t) – z(t)
∣∣ ≤ Cε for t ∈ qN0 .

We call such C a Ulam constant for (1.1) on qN0 .

The paper will proceed as follows. In the next section, we highlight the q-difference
(quantum) exponential function and its properties and provide details on the solution to
the related nonhomogeneous equation. In Sect. 3, we establish our main result, the Ulam
stability of (1.1). In Sect. 4, we show some conditions under which (1.1) is Ulam unstable.
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2 Exponential function and its properties
In this section, we introduce the exponential function of equation (1.1). Define

eα(t) :=
logq t–1∏

j=0

1 + (1 – β)(q – 1)qjα(qj)
1 – β(q – 1)qjα(qj)

(2.1)

for t ∈ qN0 ; note that for a function f , we define

–1∏

j=0

f (j) := 1,

which is the standard definition. We immediately have the following lemma.

Lemma 2.1 Let α(t) satisfy (1.2), and let eα(t) be given by (2.1). Then eα(t) is the solution
of (1.1) with eα(1) = 1. Moreover, z(t) = z0eα(t) is the solution of (1.1) with z(1) = z0, where
z0 is an arbitrary complex constant, that is, z(t) = z0eα(t) is the general solution of (1.1).

Proof It is clear that eα(1) = 1. Now we will show that eα(t) solves (1.1). Substituting it into
the left side of (1.1) gives

Dqeα(t) =
1

(q – 1)t

[
1 + (1 – β)(q – 1)tα(t)

1 – β(q – 1)tα(t)
– 1

] logq t–1∏

j=0

1 + (1 – β)(q – 1)qjα(qj)
1 – β(q – 1)qjα(qj)

=
α(t)

1 – β(q – 1)tα(t)
eα(t).

On the other hand, substituting eα(t) into the right side, we get

α(t)
〈
eα(t)

〉
β

= α(t)
[
β

1 + (1 – β)(q – 1)tα(t)
1 – β(q – 1)tα(t)

+ (1 – β)
]

×
logq t–1∏

j=0

1 + (1 – β)(q – 1)qjα(qj)
1 – β(q – 1)qjα(qj)

=
α(t)

1 – β(q – 1)tα(t)
eα(t).

Hence eα(t) solves equation (1.1).
By eα(1) = 1 we have z(1) = z0. From the linearity of the solutions of linear equations we

can conclude that z(t) = z0eα(t) is also a solution of (1.1). This completes the proof. �

Needless to say, the function eα(t) as defined above will play the role of the exponential
function in q-difference equations.

Define

γ (t) :=
logq t–1∑

j=0

(q – 1)qjf (qj)
[1 + (1 – β)(q – 1)qjα(qj)]eα(qj)

. (2.2)

The following lemma holds according to the method of variation of parameters.



Anderson and Onitsuka Journal of Inequalities and Applications        (2021) 2021:161 Page 4 of 16

Lemma 2.2 Let α(t) satisfy (1.2), and let eα(t) and γ (t) be given by (2.1) and (2.2), respec-
tively. Then the solution of the equation

Dqζ (t) = α(t)
〈
ζ (t)

〉
β

+ f (t) (2.3)

with ζ (1) = z0 ∈ C is given by ζ (t) = (z0 +γ (t))eα(t) for t ∈ qN0 , that is, ζ (t) = (z0 +γ (t))eα(t)
is the general solution of (2.3).

Proof Let ζ (t) := η(t)eα(t) for t ∈ qN0 , where η(t) is an unclear function here. We assume
that ζ (t) is a solution of (2.3). Noting that

eα(qt) =
1 + (1 – β)(q – 1)tα(t)

1 – β(q – 1)tα(t)
eα(t),

we have

f (t) = Dqζ (t) – α(t)
〈
ζ (t)

〉
β

= Dq
(
η(t)eα(t)

)
– α(t)

〈
η(t)eα(t)

〉
β

=
η(qt)eα(qt) – η(t)eα(t)

(q – 1)t
– α(t)

[
βη(qt)eα(qt) + (1 – β)η(t)eα(t)

]

=
[
1 – β(q – 1)tα(t)

]η(qt)eα(qt)
(q – 1)t

–
[
1 + (1 – β)(q – 1)tα(t)

]η(t)eα(t)
(q – 1)t

=
{[

1 – β(q – 1)tα(t)
]1 + (1 – β)(q – 1)tα(t)

1 – β(q – 1)tα(t)
η(qt)

–
[
1 + (1 – β)(q – 1)tα(t)

]
η(t)

}
eα(t)

(q – 1)t

=
[
1 + (1 – β)(q – 1)tα(t)

]
eα(t)Dqη(t).

This implies

Dqη(t) =
f (t)

[1 + (1 – β)(q – 1)tα(t)]eα(t)

for t ∈ qN0 . Hence the solution of this equation is inductively obtained in the following
form:

η(t) = z0 +
logq t–1∑

j=0

(q – 1)qjf (qj)
[1 + (1 – β)(q – 1)qjα(qj)]eα(qj)

for t ∈ qN0 .
Conversely, it satisfies the above equation. Indeed, we can check that

Dqη(t) =
η(qt) – η(t)

(q – 1)t
=

1
(q – 1)t

(q – 1)tf (t)
[1 + (1 – β)(q – 1)tα(t)]eα(t)

=
f (t)

[1 + (1 – β)(q – 1)tα(t)]eα(t)
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for t ∈ qN0 . If we go back to the above calculation, we can see that ζ (t) = η(t)eα(t) is the
solution of (2.3) with ζ (1) = z0. Hence we have η(t) ≡ z0 + γ (t), and this completes the
proof. �

Proposition 2.3 Let α(t) satisfy (1.2) and

lim inf
t→∞

∣∣α(t)
∣∣ > 0, (2.4)

and let eα(t) and γ (t) be given by (2.1) and (2.2), respectively. If for any ε > 0, the function
f (t) appearing in γ (t) satisfies

∣∣f (t)
∣∣ ≤ ε for t ∈ qN0 , (2.5)

then:
(i) if β ∈ [0, 1

2 ), then limt→∞ |eα(t)| = ∞, limt→∞ γ (t) exists, and

∣∣eα(t)
∣∣

∞∑

j=logq t

∣∣∣∣
(q – 1)qj

[1 + (1 – β)(q – 1)qjα(qj)]eα(qj)

∣∣∣∣

is bounded above on qN0 ;
(ii) if β ∈ ( 1

2 , 1], then limt→∞ |eα(t)| = 0, and

∣∣eα(t)
∣∣

logq t–1∑

j=0

∣∣∣∣
(q – 1)qj

[1 + (1 – β)(q – 1)qjα(qj)]eα(qj)

∣∣∣∣

is bounded above on qN0 .

Proof By (2.4) we have limt→∞ t|α(t)| = ∞. It follows that

lim
j→∞

∣∣∣∣
1 + (1 – β)(q – 1)qjα(qj)

1 – β(q – 1)qjα(qj)

∣∣∣∣ = lim
j→∞

∣∣∣∣∣∣

1
qj|α(qj)| + (1 – β)(q – 1) α(qj)

|α(qj)|
1

qj|α(qj)| – β(q – 1) α(qj)
|α(qj)|

∣∣∣∣∣∣

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞, β = 0,
1–β

β
∈ (1,∞), β ∈ (0, 1

2 ),

1 : β = 1
2 ,

1–β

β
∈ (0, 1), β ∈ ( 1

2 , 1),

0, β = 1.

(2.6)

Let

α := lim inf
t→∞

∣∣α(t)
∣∣ > 0.

Then we obtain

lim sup
j→∞

∣∣
∣∣

(q – 1)qj

1 + (1 – β)(q – 1)qjα(qj)

∣∣∣∣ = lim sup
j→∞

∣
∣∣∣∣

q – 1
1
qj + (1 – β)(q – 1)α(qj)

∣∣∣
∣∣

=
1

(1 – β)α
,
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so there is a constant L > 0 such that
∣∣∣∣

(q – 1)qj

1 + (1 – β)(q – 1)qjα(qj)

∣∣∣∣ ≤ L (2.7)

for j ∈ qN0 .
First, we consider case (i). Let β ∈ [0, 1

2 ). By (2.6) there exist constants μ1 > 1 and k ∈ N

such that
∣∣∣∣
1 + (1 – β)(q – 1)qjα(qj)

1 – β(q – 1)qjα(qj)

∣∣∣∣ ≥ μ1 > 1 (2.8)

for j ≥ k, and thus

∣∣eα(t)
∣∣ ≥

[k–1∏

j=0

∣∣∣∣
1 + (1 – β)(q – 1)qjα(qj)

1 – β(q – 1)qjα(qj)

∣∣∣∣

][logq t–1∏

j=k

μ1

]

= ν1μ
logq t–k
1 (2.9)

for t ≥ qk , where

ν1 :=
k–1∏

j=0

∣∣∣∣
1 + (1 – β)(q – 1)qjα(qj)

1 – β(q – 1)qjα(qj)

∣∣∣∣.

This implies that limt→∞ |eα(t)| = ∞.
Next, we will show that limt→∞ γ (t) exists. Using (2.5), (2.7), and (2.9), we have

lim
t→∞

∣∣γ (t)
∣∣ ≤ lim

t→∞

logq t–1∑

j=0

∣∣∣∣
(q – 1)qjf (qj)

[1 + (1 – β)(q – 1)qjα(qj)]eα(qj)

∣∣∣∣ ≤ εL lim
t→∞

logq t–1∑

j=0

1
|eα(qj)|

≤ εL

[ k–1∑

j=0

1
|eα(qj)| +

1
ν1

lim
t→∞

logq t–1∑

j=k

(
1
μ1

)j–k
]

= εL

[ k–1∑

j=0

1
|eα(qj)| +

μ1

ν1(μ1 – 1)

]

< ∞.

Consequently,

lim
t→∞γ (t) =

∞∑

j=0

(q – 1)qjf (qj)
[1 + (1 – β)(q – 1)qjα(qj)]eα(qj)

exists.
By (2.7) and (2.8) we obtain

∣∣eα(t)
∣∣

∞∑

j=logq t

∣∣∣∣
(q – 1)qj

[1 + (1 – β)(q – 1)qjα(qj)]eα(qj)

∣∣∣∣

≤ L
∣∣eα(t)

∣∣
∞∑

j=logq t

1
|eα(qj)| = L

∣
∣eα(t)

∣∣
(

1
|eα(t)| +

1
|eα(qt)| +

1
|eα(q2t)| + · · ·

)
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= L
(

1 +
∣∣∣∣

1 – β(q – 1)tα(t)
1 + (1 – β)(q – 1)tα(t)

∣∣∣∣

+
∣∣∣∣

1 – β(q – 1)tα(t)
1 + (1 – β)(q – 1)tα(t)

∣∣∣∣

∣∣∣∣
1 – β(q – 1)qtα(qt)

1 + (1 – β)(q – 1)qtα(qt)

∣∣∣∣ + · · ·
)

= L
∞∑

j=0

( j–1∏

m=0

∣∣∣∣
1 – β(q – 1)qmtα(qmt)

1 + (1 – β)(q – 1)qmtα(qmt)

∣∣∣∣

)

≤ L
∞∑

j=0

[ j–1∏

m=0

(
1
μ1

)]

= L
∞∑

j=0

(
1
μ1

)j

=
Lμ1

μ1 – 1
< ∞

for t ≥ qk .
Next, we consider case (ii). Let β ∈ ( 1

2 , 1]. By (2.6) there exist constants 0 < μ2 < 1 and
l ∈ N such that

∣∣∣∣
1 + (1 – β)(q – 1)qjα(qj)

1 – β(q – 1)qjα(qj)

∣∣∣∣ ≤ μ2 < 1 (2.10)

for j ≥ l, and thus

logq t–1∏

m=j

∣∣∣∣
1 + (1 – β)(q – 1)qmα(qm)

1 – β(q – 1)qmα(qm)

∣∣∣∣

≤
[ l–1∏

m=j

∣∣∣∣
1 + (1 – β)(q – 1)qmα(qm)

1 – β(q – 1)qmα(qm)

∣∣∣∣

][logq t–1∏

m=l

μ2

]

≤ ν2μ
logq t–l
2 (2.11)

for 0 ≤ j ≤ l – 1 and t ≥ ql+1, where

ν2 := max
0≤j≤l–1

{ l–1∏

m=j

∣∣∣
∣
1 + (1 – β)(q – 1)qmα(qm)

1 – β(q – 1)qmα(qm)

∣∣∣
∣

}

.

This, with j = 0, implies that limt→∞ |eα(t)| = 0.
By (2.7) we have

∣∣eα(t)
∣∣

logq t–1∑

j=0

∣∣∣∣
(q – 1)qj

[1 + (1 – β)(q – 1)qjα(qj)]eα(qj)

∣∣∣∣

≤ L
∣∣eα(t)

∣∣
logq t–1∑

j=0

1
|eα(qj)| = L

∣∣eα(t)
∣∣
(

1
|eα(1)| +

1
|eα(q)| +

1
|eα(q2)| + · · · +

1
|eα(q–1t)|

)

= L

(logq t–1∏

j=1

∣∣∣∣
1 + (1 – β)(q – 1)qjα(qj)

1 – β(q – 1)qjα(qj)

∣
∣∣∣ +

logq t–1∏

j=2

∣∣∣∣
1 + (1 – β)(q – 1)qjα(qj)

1 – β(q – 1)qjα(qj)

∣
∣∣∣

+ · · · +
logq t–1∏

j=logq t–2

∣∣∣∣
1 + (1 – β)(q – 1)qjα(qj)

1 – β(q – 1)qjα(qj)

∣∣∣∣

)
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= L
logq t–2∑

j=1

(logq t–1∏

m=j

∣∣∣∣
1 + (1 – β)(q – 1)qmα(qm)

1 – β(q – 1)qmα(qm)

∣∣∣∣

)

= L
l–1∑

j=1

(logq t–1∏

m=j

∣∣∣∣
1 + (1 – β)(q – 1)qmα(qm)

1 – β(q – 1)qmα(qm)

∣∣∣∣

)

+ L
logq t–2∑

j=l

(logq t–1∏

m=j

∣∣∣∣
1 + (1 – β)(q – 1)qmα(qm)

1 – β(q – 1)qmα(qm)

∣∣∣∣

)

.

Moreover, using (2.10) and (2.11), we obtain

∣∣eα(t)
∣∣

logq t–1∑

j=0

∣∣∣∣
(q – 1)qj

[1 + (1 – β)(q – 1)qjα(qj)]eα(qj)

∣∣∣∣

≤ L
l–1∑

j=1

ν2μ
logq t–l
2 + L

logq t–2∑

j=l

(logq t–1∏

m=j

μ2

)

= L(l – 1)ν2μ
logq t–l
2 + L

logq t–2∑

j=l

μ
logq t–j
2

= L(l – 1)ν2μ
logq t–l
2 + L

μ2

(
μ2 – μ

logq t–l
2

)

1 – μ2
< Lν2(l – 1) + L

μ2
2

1 – μ2
< ∞

for t ≥ ql+1. This completes the proof. �

3 Ulam stability
The main Ulam stability result of this paper is as follows.

Theorem 3.1 Let α(t) satisfy (1.2) and (2.4), and let eα(t) be given by (2.1). Let ε > 0 be
arbitrary. Suppose that ζ (t) satisfies (2.3) with (2.5). Then:

(i) if β ∈ [0, 1
2 ), then limt→∞ ζ (t)

eα (t) exists, the function

z1(t) :=
(

lim
t→∞

ζ (t)
eα(t)

)
eα(t)

uniquely fulfills (1.1), and |ζ (t) – z1(t)| ≤ C1ε for all t ∈ qN0 , where

C1 := sup
t∈qN0

∣∣eα(t)
∣∣

∞∑

j=logq t

∣∣∣∣
(q – 1)qj

[1 + (1 – β)(q – 1)qjα(qj)]eα(qj)

∣∣∣∣ < ∞;

(ii) if β ∈ ( 1
2 , 1], then there is a constant z0 ∈C such that

z2(t) := z0eα(t)

fulfills (1.1), and |ζ (t) – z2(t)| ≤ C2ε for all t ∈ qN0 , where

C2 := sup
t∈qN0

∣∣eα(t)
∣∣

logq t–1∑

j=0

∣∣∣∣
(q – 1)qj

[1 + (1 – β)(q – 1)qjα(qj)]eα(qj)

∣∣∣∣ < ∞.
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Proof Let ε > 0. We suppose that α(t) satisfies (1.2) and (2.4), whereas ζ (t) satisfies (2.3)
with (2.5). By Lemma 2.2 we can write ζ (t) in the form

ζ (t) =
(
z0 + γ (t)

)
eα(t) (3.1)

for some z0 ∈C, where γ (t) is given by (2.2).
First, we consider case (i), that is, suppose β ∈ [0, 1

2 ). From Proposition 2.3 we see that

lim
t→∞

ζ (t)
eα(t)

= z0 + lim
t→∞γ (t)

exists. Using this, define the function

z1(t) :=
(

lim
t→∞

ζ (t)
eα(t)

)
eα(t)

for t ∈ qN0 . Then from Lemma 2.1 we note that z1(t) is the solution of (1.1) with z1(1) =
(

limt→∞ ζ (t)
eα (t)

)
. Hence by Proposition 2.3 and (2.5) we obtain

∣∣ζ (t) – z1(t)
∣∣ =

∣∣∣
(
z0 + γ (t)

)
eα(t) –

(
z0 + lim

t→∞γ (t)
)

eα(t)
∣∣∣

=
∣∣∣
(
γ (t) – lim

t→∞γ (t)
)

eα(t)
∣∣∣

=

∣∣∣∣∣
eα(t)

∞∑

j=logq t

(q – 1)qjf (qj)
[1 + (1 – β)(q – 1)qjα(qj)]eα(qj)

∣∣∣∣∣

≤ ε
∣∣eα(t)

∣∣
∞∑

j=logq t

∣∣∣∣
(q – 1)qj

[1 + (1 – β)(q – 1)qjα(qj)]eα(qj)

∣∣∣∣

≤ ε sup
t∈qN0

∣∣eα(t)
∣∣

∞∑

j=logq t

∣∣∣∣
(q – 1)qj

[1 + (1 – β)(q – 1)qjα(qj)]eα(qj)

∣∣∣∣ < ∞

for t ∈ qN0 .
Next, we will show that z1(t) satisfies (1.1) and |ζ (t) – z1(t)| ≤ C1ε uniquely. Consider

the function

y(t) := y0eα(t)

satisfying |ζ (t) – y(t)| ≤ C1ε for t ∈ qN0 , where y0 �= (
limt→∞ ζ (t)

eα (t)
)
. From Lemma 2.1 it

follows that y(t) satisfies (1.1). Hence we obtain

∣∣∣∣

(
lim

t→∞
ζ (t)
eα(t)

)
– y0

∣∣∣∣
∣∣eα(t)

∣∣ =
∣∣z1(t) – y(t)

∣∣ ≤ ∣∣ζ (t) – z1(t)
∣∣ +

∣∣ζ (t) – y(t)
∣∣ ≤ 2C1ε

for t ∈ qN0 . By Proposition 2.3 we know that limt→∞ |eα(t)| = ∞, and so the above inequal-
ity derives a contradiction.

Next, we consider case (ii), that is, suppose β ∈ ( 1
2 , 1]. Let

z2(t) := z0eα(t).
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Then by Lemma 2.1 z2(t) is a solution of (1.1). Using Proposition 2.3, we see that

∣∣ζ (t) – z2(t)
∣∣ =

∣∣(z0 + γ (t)
)
eα(t) – z0eα(t)

∣∣ =
∣∣γ (t)eα(t)

∣∣

=

∣∣∣∣∣
eα(t)

logq t–1∑

j=0

(q – 1)qjf (qj)
[1 + (1 – β)(q – 1)qjα(qj)]eα(qj)

∣∣∣∣∣

≤ ε
∣∣eα(t)

∣∣
logq t–1∑

j=0

∣∣∣∣
(q – 1)qj

[1 + (1 – β)(q – 1)qjα(qj)]eα(qj)

∣∣∣∣

≤ ε sup
t∈qN0

∣∣eα(t)
∣∣

logq t–1∑

j=0

∣∣∣∣
(q – 1)qj

[1 + (1 – β)(q – 1)qjα(qj)]eα(qj)

∣∣∣∣ < ∞

for t ∈ qN0 . Consequently, the statement in this theorem is true. This completes the
proof. �

Remark 3.2 The results in Theorem 3.1 include and extend the results given in [8, Theo-
rem 2.6] and [9, Theorem 2.4], which deal with the Ulam stability when the coefficient is
a complex constant. Let

g(j) :=
(q – 1)qj

[1 + (1 – β)(q – 1)qjα(qj)]eα(qj)

for j ∈N0. According to the results in [8, Theorem 2.8] and [9, Theorem 2.6], the following
facts hold under the assumption that α(t) satisfies (1.2) and α(t) ≡ α �= 0:

(i) if β ∈ [0, 1
2 ) and

∑∞
j=logq t |g(j)| =

∣∣∑∞
j=logq t g(j)

∣∣, then (1.1) is Ulam stable with the
best Ulam constant C1 = 1

|α| .

(ii) if β ∈ ( 1
2 , 1] and

∑logq t–1
j=0 |g(j)| =

∣∣∣
∑logq t–1

j=0 g(j)
∣∣∣ for sufficiently large t ∈ qN0 , then

(1.1) is Ulam stable, and there is δ > 0 such that C2 = 1
|α| + δ is an Ulam constant for

sufficiently large t ∈ qN0 .

A natural follow-up question is what happens if β = 1
2 ? We give partial answers in the

following theorem and in the next section on instability.

Theorem 3.3 Let q > 1 and β = 1
2 , and let α(t) satisfy (1.2). If α(t) also satisfies

lim
t→∞

∣∣∣∣
α(t)
α(qt)

∣∣∣∣ < 1, (3.2)

then (1.1) is Ulam stable on qN0 .

Proof In addition to the hypotheses in the statement of this theorem, let eα(t) be given by
(2.1). Note that (3.2) implies (2.4). With β = 1

2 , the exponential function takes the form

eα(t) =
logq t–1∏

j=0

1 + 1
2 (q – 1)qjα(qj)

1 – 1
2 (q – 1)qjα(qj)

, t ∈ qN0 ,
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and

lim
t→∞

1 + 1
2 (q – 1)qjα(qj)

1 – 1
2 (q – 1)qjα(qj)

= –1,

since α satisfies conditions (1.2) and (2.4). It follows that eα(t) converges to a two-cycle
±ξ ∗ for some ξ ∗ ∈ C\{0} as t → ∞. Let ε > 0 be arbitrary. For γ (t) given by (2.2) with
(2.5),

∣∣γ (t)
∣∣ ≤ ε

logq t–1∑

j=0

(q – 1)qj
∣∣1 + 1

2 (q – 1)qjα(qj)
∣∣ · |eα(qj)| .

Using the ratio test, we have

lim
j→∞

|q – 1
2 (q – 1)qj+1α(qj)|

|1 + 1
2 (q – 1)qj+1α(qj+1)| = lim

j→∞

∣∣∣∣∣∣∣

q
1
2 (q–1)qj+1|α(qj)| – α(qj)

|α(qj)|
1

1
2 (q–1)qj+1|α(qj+1)| + α(qj+1)

|α(qj+1)|

∣∣∣∣∣∣∣

∣∣∣∣
α(qj)

α(qj+1)

∣∣∣∣

= lim
j→∞

∣∣∣∣
α(qj)

α(qj+1)

∣∣∣∣ < 1

by assumption, so that γ (t) converges absolutely. Suppose that ζ (t) satisfies (2.3) with (2.5),
and suppose that z(t) satisfies (1.1) with z(1) = z0. Then

∣∣ζ (t) – z(t)
∣∣ =

∣∣(z0 + γ (t)
)
eα(t) – z0eα(t)

∣∣ =
∣∣γ (t)eα(t)

∣∣ ≤ C3ε,

where

C3 := sup
t∈qN0

∣∣eα(t)
∣∣

logq t–1∑

j=0

∣∣∣∣
(q – 1)qj

[1 + 1
2 (q – 1)qjα(qj)]eα(qj)

∣∣∣∣ < ∞. (3.3)

This completes the proof. �

Remark 3.4 Note that C2 in Theorem 3.1(ii) and C3 given in (3.3) are the same when β = 1
2 .

The theorems in this section can be summarized as follows.

Theorem 3.5 If α(t) satisfies (1.2) and (2.4) for β ∈ [0, 1
2 ) ∪ ( 1

2 , 1], then (1.1) is Ulam stable
on qN0 . If α(t) satisfies (1.2), (2.4), and (3.2) for β = 1

2 , then (1.1) is Ulam stable on qN0 .

4 Ulam instability
What happens if the coefficient function α fails to satisfy (2.4)? In the following example,
we show an example where (1.1) is unstable in the Ulam sense.

Example 4.1 Let q > 1 be fixed, take ρ ∈ (–∞, –1) ∪ (1,∞), and let

α(t) =
1

(q – 1)ρt
, t ∈ qN0 .
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We easily see that this α satisfies (1.2) for any β ∈ [0, 1] but fails to satisfy (2.4). Plugging
this α into (2.1), we have the exponential function

eα(t) =
logq t–1∏

j=0

1 + 1
ρ

(1 – β)
1 – 1

ρ
β

=
(

1 + ρ – β

ρ – β

)logq t

. (4.1)

For arbitrary ε > 0, let f (t) ≡ ε. Substituting these α, eα , and f into (2.2), we have

γ (t) =
logq t–1∑

j=0

(q – 1)qjf (qj)
[1 + 1

ρ
(1 – β)]eα(qj)

=
(q – 1)ρε

1 + ρ – β

logq t–1∑

j=0

(
(ρ – β)q
1 + ρ – β

)j

≥ 0. (4.2)

It follows that ζ (t) = γ (t)eα(t) is a solution of (2.3). Let z(t) = z0eα(t) be any solution of
(1.1). There are three cases.

Case i. Let β ∈ [0, 1] and ρ ∈ (–∞, –1). Clearly, eα(t) in (4.1) goes to zero as t goes to
infinity in qN0 . Moreover, γ (t) in (4.2) and ζ (t) = γ (t)eα(t) diverge to positive infinity as t
goes to positive infinity, so that

∣∣ζ (t) – z(t)
∣∣ =

∣∣γ (t)eα(t) – z0eα(t)
∣∣ → ∞

for any z0 ∈C, and (1.1) is not Ulam stable.
Case ii. Let β ∈ [0, 1] and ρ ∈ (1,∞). Clearly, eα(t) in (4.1) goes to infinity as t goes to

infinity in qN0 . Suppose q ≥ 1+ρ–β

ρ–β
. Then γ (t) in (4.2) diverges to positive infinity as t goes

to positive infinity, so that

∣∣ζ (t) – z(t)
∣∣ =

∣∣γ (t) – z0
∣∣eα(t) → ∞

for any z0 ∈C, and (1.1) is not Ulam stable.
Case iii. Let β ∈ [0, 1] and ρ ∈ (1,∞). As in (ii), eα(t) in (4.1) goes to infinity as t goes

to infinity. Suppose 1 < q < 1+ρ–β

ρ–β
. Then γ in (4.2) is a convergent geometric series. Using

this fact, rewrite (4.2) as

γ (t) =
(q – 1)ρε

1 + ρ – β

∞∑

j=0

(
(ρ – β)q
1 + ρ – β

)j

–
(q – 1)ρε

1 + ρ – β

∞∑

j=logq t

(
(ρ – β)q
1 + ρ – β

)j

=
(q – 1)ρε

(1 + ρ – β) – q(ρ – β)
–

(q – 1)ρεt
(

ρ–β

1+ρ–β

)logq t

(1 + ρ – β) – q(ρ – β)
.

Consequently,

∣∣ζ (t) – z(t)
∣∣ =

∣∣γ (t) – z0
∣∣eα(t)

=

∣∣∣∣∣∣∣∣∣

(q – 1)ρε

(1 + ρ – β) – q(ρ – β)
–

(q – 1)ρεt
(

ρ–β

1+ρ–β

)logq t

(1 + ρ – β) – q(ρ – β)
– z0

∣∣∣∣∣
∣∣∣∣

×
(

1 + ρ – β

ρ – β

)logq t

.



Anderson and Onitsuka Journal of Inequalities and Applications        (2021) 2021:161 Page 13 of 16

If z0 = 0, then

lim
t→∞

∣∣ζ (t) – z(t)
∣∣

= lim
t→∞

∣∣∣∣∣∣

(q – 1)ρε

(1 + ρ – β) – q(ρ – β)
–

(q – 1)ρεt
(

ρ–β

1+ρ–β

)logq t

(1 + ρ – β) – q(ρ – β)

∣∣∣∣∣∣

(
1 + ρ – β

ρ – β

)logq t

=
(q – 1)ρε

(1 + ρ – β) – q(ρ – β)
lim

t→∞

(
1 + ρ – β

ρ – β

)logq t

= ∞,

and (1.1) is not Ulam stable. If z0 = (q–1)ρε

(1+ρ–β)–q(ρ–β) , then

lim
t→∞

∣∣ζ (t) – z(t)
∣∣ = lim

t→∞

∣∣∣∣∣∣
–

(q – 1)ρεt
(

ρ–β

1+ρ–β

)logq t

(1 + ρ – β) – q(ρ – β)

∣∣∣∣∣∣

(
1 + ρ – β

ρ – β

)logq t

= lim
t→∞

ρε(q – 1)t
(1 + ρ – β) – q(ρ – β)

= ∞,

and again (1.1) is not Ulam stable. Any other choice of z0 ∈C leads to a similar conclusion.
Therefore (1.1) is Ulam unstable in all cases for this example.

Theorem 4.2 Let α(t) satisfy (1.2) and

lim sup
t→∞

∣∣α(t)
∣∣ < ∞, (4.3)

and let eα(t) be given by (2.1). If

0 < lim inf
t→∞

∣∣eα(t)
∣∣ and lim sup

t→∞

∣∣eα(t)
∣∣ < ∞, (4.4)

then (1.1) is unstable in the Ulam sense.

Proof For arbitrary ε > 0, let

f (t) ≡ ε[1 + (1 – β)(q – 1)qjα(qj)]eα(t)
|[1 + β(q – 1)qjα(qj)]eα(t)| .

Substituting this f into (2.2), we have

γ (t) = ε

logq t–1∑

j=0

(q – 1)qj

|1 + β(q – 1)qjα(qj)||eα(qj)| . (4.5)

From Lemma 2.2 it follows that ζ (t) = γ (t)eα(t) is a solution of (2.3). Let z(t) = z0eα(t) be
any solution of (1.1).

From conditions (4.3) and (4.4) we see that there exists a constant μ1 > 0 such that

(q – 1)qj

|1 + β(q – 1)qjα(qj)| =
1

∣∣∣ 1
(q–1)qj + βα(qj)

∣∣∣
≥ μ1



Anderson and Onitsuka Journal of Inequalities and Applications        (2021) 2021:161 Page 14 of 16

for all j ∈N0, and there exist μ2, μ3 > 0 and ν ∈N0 such that

μ2 ≤ ∣∣eα(t)
∣∣ ≤ μ3

for all t ≥ qν . This, together with (4.5), yields

γ (t) = ε

logq t–1∑

j=0

1
∣∣∣ 1

(q–1)qj + βα(qj)
∣∣∣ |eα(qj)|

≥ εμ1

logq t–1∑

j=0

1
|eα(qj)|

≥ εμ1

(
ν–1∑

j=0

1
|eα(qj)| +

1
μ3

logq t–1∑

j=ν

1

)

= εμ1

(
ν–1∑

j=0

1
|eα(qj)| +

logq t – ν

μ3

)

for t ≥ qν . Hence we have limt→∞ γ (t) = ∞, so

∣∣ζ (t) – z(t)
∣∣ =

∣∣γ (t) – z0
∣∣∣∣eα(t)

∣∣ ≥ μ2
∣∣γ (t) – z0

∣∣ → ∞

for any z0 ∈C, and (1.1) is not Ulam stable. �

Corollary 4.3 Let α(t) satisfy (1.2), (2.4), and (4.3). If β = 1
2 , then (1.1) is unstable in the

Ulam sense.

Proof If β = 1
2 , then eα(t) is given by

eα(t) =
logq t–1∏

j=0

1 + 1
2 (q – 1)qjα(qj)

1 – 1
2 (q – 1)qjα(qj)

.

Conditions (1.2) and (2.4) imply that eα(t) converges to a two-cycle ±ξ ∗ for some ξ ∗ ∈
C\{0} as t → ∞. Hence (4.4) holds. Then, by Theorem 4.2, (1.1) is not Ulam stable. �

Remark 4.4 Theorem 4.2 implies the instability result for the constant coefficient case
given in [8, Theorem 3.1]. Indeed, consider the case α(t) ≡ α with (1.2). If α �= 0, then
Corollary 4.3 immediately shows instability. If α = 0, then eα(t) ≡ 1, and (4.4) holds. Hence,
by Theorem 4.2, (1.1) is not Ulam stable.

5 Conclusions
Using the properties of the exponential function for nonautonomous Cayley quantum
equations, we established sufficient conditions for the Ulam stability of quantum equa-
tions with a variable coefficient under the assumptions that the Cayley parameter satis-
fies β �= 1

2 and the absolute value of the variable coefficient does not approach zero. After
that, these assumptions are elaborated. The situation is clarified by presenting an exam-
ple where Ulam stability breaks down if the absolute value of the variable coefficient ap-
proaches zero. If the coefficient is a constant, it has already been shown in [8] that β = 1

2
means the Ulam instability, but with the variable coefficient, something interesting hap-
pens, that is, if the absolute value of the variable coefficient increases, the Ulam stability
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is derived. Therefore it turns out that both Ulam stable and unstable cases may occur for
β = 1

2 . In this way, we found in this study that by considering variable coefficients there is
a problem of balance between stability and instability, which does not appear in the case
of constant coefficients.
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