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Abstract
A steady forced Korteweg–de Vries (fKdV) model which includes gravity, capillary, and
pressure distributions is solved numerically using the wavelet Galerkin method. The
anti-derivatives of Daubechies wavelets are developed as the basis of the solution
subspaces for the mixed boundary condition type. Accuracy of numerical solutions
can be improved by increasing the number of wavelet levels in the multi-resolution
analysis. The theoretical result of convergence rate is also shown. The problem can be
viewed as gravity-capillary wave flows over an applied pressure distribution. The flow
regime can be characterized by subcritical, supercritical, and critical flows depending
on the value of the Froude number. Trapped depression and elevation waves are
found over the pressure distribution. For a near-critical flow regime, a generalized
solitary wave with ripples is presented. This shows a capillary effect in balance to
gravity and the pressure force on the free surface.

1 Introduction
Free surface flow is a fundamental problem in fluid dynamics. It has been extensively stud-
ied from various points of view. A widely used model is based on weakly nonlinear theory.
The Korteweg–de Vries equation in the context of weakly nonlinear analysis has been
shown to be a successful model to describe the free surface flows in a transcritical regime.
When the free surface interacts with an external forcing, the weakly nonlinear model can
be extended and is called a forced Korteweg–de Vries (fKdV) equation. This model can
be used in many applications such as for free surface flows past an obstacle or the flows
past an applied pressure distribution; see more details in [1, 2].

In view of numerical methods, the fKdV model subjected to initial and boundary con-
ditions can be solved using the finite difference method (FDM), the finite element method
(FEM), or the Fourier spectral method (FSM) (see [3–5]). It is usually difficult for FDM
to approximate nonlinear term in the form of difference equations. Generally, some suit-
able bases are needed in approximation spaces. The FEM has an advantage over the FDM,
since the nonlinear term and the higher order derivatives can be approximated correctly
using some suitable bases. However, in some cases, such as a high gradient wave being
interacted with external forcing, very high resolution of mesh points is required to obtain
accurate solutions in certain flow regimes. Additionally, the computational time is then
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massive. The adaptive FEM is another choice to resolve the problem, but it requires ba-
sic knowledge to define the value of the threshold for setting a new, small element size.
Furthermore, its implementation is not easy. The FSM has been successful in solving the
fKdV (see [3]) due to its capabilities of handling a nonlinear term accurately. The FSM
is accurate and efficient for periodic flow since it applies the Fourier basis in the space of
approximation. In fact, the FSM can be used to solve many varieties of non-periodic prob-
lems. The key is using a different basis such as the family of orthogonal polynomials, but
it is not straightforward to satisfy the cases of mixed or Neumann boundary conditions.
Some techniques are required for each specific case. The aim of the current study was to
define a suitable basis that can handle nonlinear term and satisfy the boundary conditions
with less computational time.

The Galerkin method is a powerful method for solving nonlinear boundary value prob-
lems with Neumann, Dirichlet, and mixed boundary conditions, see [6, 7]. There are var-
ious types of basis function which can be adopted in the space of approximation. One ef-
ficient way is using a wavelet as a basis function, see [8–11]. For instance, the application
of Haar wavelets for solving the Schrödinger equation is presented by [12], a delay PDE
by [13], or a nonlinear parabolic PDE by [14]. The accuracy of numerical solutions can be
improved by increasing just the wavelet level in the multi-resolution analysis. However,
development is required of the application of the wavelet basis in the Galerkin method
for solving a general type of boundary condition. A suitable wavelet basis must be defined
before it can be used to solve each type of boundary conditions (see [15]).

The study of free-surface flows past obstacles or disturbances in a uniform stream has
been a much-studied problem over the last three decades, see for instance [16–18]. The
disturbances that occur in nature come from various sources of physical situations such
as a localized pressure distribution applied on the water wave caused by atmospheric dis-
turbances due to wind force, or a direct perturbation from a moving vehicle on the free
surface. When a moving frame of reference with the moving disturbance is considered, lo-
calized steady waves in the form of solitary waves are found. The suitable weakly nonlinear
model for describing this problem is the fKdV model, see [1] for the problem formulation.

In this work, we develop a wavelet Galerkin method based on the anti-derivatives of
Daubechies wavelets (see [15, 19]) which can be applied to solve the fKdV model subjected
to mixed boundary conditions. The wavelet basis is designed to satisfy the downstream
flow condition. An external forcing is considered as a compact support in the fKdV model.
This problem can be viewed as the pressure distribution being applied on the free surface.
Gravity and surface tension forces are also included. Furthermore, this problem can be
viewed as gravity-capillary wave flows due to an applied pressure distribution that is gov-
erned by the fKdV model as shown in equation (1); more details of derivations can be seen
in [1]. When the surface tension effect is dominant, ripple waves will be generated on the
free surface. These small amplitude waves propagate both upstream and downstream to
both endpoints of the flow domain. Dirichlet boundary conditions for wave amplitude are
not satisfied. This issue motivates us to develop a suitable basis, such as the wavelet basis,
to solve the nonlinear model while satisfying a more general type of boundary conditions
at the far fields.

Numerical solutions of the fKdV model can be classified in different flow regimes by
subcritical, supercritical, and critical flows depending on the value of the Froude num-
ber. We apply the proposed numerical scheme to find various types of steady solutions
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corresponding to different values of pressure magnitudes. Aided by our proposed wavelet
basis, some new findings in the form of generalized trapped solitary waves are found at
some critical values of the Froude number.

The paper is organized as follows. The anti-derivatives of the Daubechies wavelets that
form bases for the nested finite-dimensional subspace of the Sobolev space are presented
in Sect. 2. The wavelet Galerkin method based on the proposed basis for solving the fKdV
model with mixed boundary conditions is developed in Sect. 3. The numerical results are
shown in Sect. 4 and our conclusions are in Sect. 5.

2 Anti-derivative wavelet basis
For a closed interval [a, b], let L2(a, b) denote the space of square integrable functions on
[a, b] with the standard inner product (·, ·) defined by

(u, v) =
∫ b

a
u(x)v(x) dx

with the associated norm ‖ · ‖.
Let Hs(a, b) denote the standard Sobolev space with the norm ‖ · ‖s,

‖v‖2
s =

s∑
i=0

∫ b

a

∣∣v(i)(x)
∣∣2 dx,

where v(i) denotes the i-order derivatives of v and the seminorm | · |s is defined by

|v|2s =
∫ b

a

∣∣v(s)∣∣2 dx.

It is known that the seminorm | · |1 is a norm in the subspace

H1
∗(a, b) :=

{
v ∈H1(a, b)|v(a) = 0

}
.

We will find a basis for the finite-dimensional subspaces of H1∗(0, L) and H1(0, L), where
[0, L] is the domain of flow problem.

Let φ(y) be a scaling function and ψ(y) be a wavelet function of order p where p is a
positive integer. For j ≥ –1 and k ∈ Z,

ψj,k(y) =

⎧⎨
⎩

φ(y – k), j = –1,√
2jψ(2jy – k), j ≥ 0,

are called the Daubechies wavelets order p with support [0, 2p – 1], see more details in
[20, 21]. The set of all wavelets forms an orthonormal basis for L2(R), see [15, 19]. We
shift the interval [0, 2p – 1] to [0, L] by the transformation

x =
Ly

2p – 1
∈ [0, L].

Then ψj,k has the support

[(
k
2j

)(
L

2p – 1

)
,
(

k + 2p – 1
2j

)(
L

2p – 1

)]
.
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We define the anti-derivatives of wavelets by

�j,k(x) =
∫ x

0
ψj,k ds for 0 ≤ x ≤ L

with the index set Dj by

k ∈ Dj ⇐⇒
⎧⎨
⎩

2 – 2p ≤ k ≤ 2p – 2, j = –1,

1 – p ≤ k ≤ 2j(2p – 1) – p, j ≥ 0.

In the next theorem we will prove that the set of {�j,k|j ≥ –1, k ∈ Dj} is a basis for
H1∗(0, L). This basis will be used to solve the fKdV model later.

Theorem 2.1 The set {�j,k|j ≥ –1, k ∈ Dj} is a basis for the space H1∗(0, L).

Proof For j ≥ –1, we define the index set Ij by

k ∈ Ij ⇐⇒
⎧⎨
⎩

2 – 2p ≤ k ≤ 2p – 2, j = –1,

2 – 2p ≤ k ≤ 2j(2p – 1) – 1, j ≥ 0.

Let span{ψj,k|j ≥ –1, k ∈ Ij} be the set of all linear expansions which converge strongly in
L2(0, L). So span{ψj,k|j ≥ –1, k ∈ Ij} = L2(0, L).

We will show that span{�j,k|j ≥ –1, k ∈ Ij} = H1∗(0, L). Since � ′
j,k = ψj,k ∈ L2(0, L) and

�j,k(0) = 0, �j,k ∈ H1∗(0, L). The notation ′ means the derivative of �j,k . Let u ∈ H1∗(0, L).
Then its derivative u′ is in L2(0, L). Since span{ψj,k|j ≥ –1, k ∈ Ij} = L2(0, L), there exist
constants αj,k such that

lim
n→∞

∥∥∥∥∥u′ –
n∑

j=–1

∑
k∈Ij

αj,kψj,k

∥∥∥∥∥ = 0.

Set un =
∑n

j=–1
∑

k∈Ij
αj,k�j,k . Then un ∈H1∗(0, L) and u′

n =
∑n

j=–1
∑

k∈Ij
αj,kψj,k . We have

|u – un|1 =
∥∥u′ – u′

n
∥∥ −→ 0 as n −→ ∞.

Therefore the linear expansion
∑∞

j=–1
∑

k∈Ij
αj,k�j,k converges strongly to u in H1∗(0, L).

Hence, span{�j,k|j ≥ –1, k ∈ Ij} = H1∗(0, L). By Proposition 4.2 in [15], the set {ψj,k| – 1 ≤
j ≤ n, k ∈ Dj} is a basis for the subspace span{ψj,k| – 1 ≤ j ≤ n, k ∈ Ij}. Then the set {�j,k| –
1 ≤ j ≤ n, k ∈ Dj} is a basis for the subspace span{�j,k| – 1 ≤ j ≤ n, k ∈ Ij}. It follows that
{�j,k|j ≥ –1, k ∈ Dj} is a basis for H1∗(0, L). �

In multi-resolution analysis, the nested finite-dimensional subspaces Sn of the solution
space can be defined by

Sn = span{�j,k| – 1 ≤ j ≤ n, k ∈ Dj}.
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By Theorem 2.1, we have that a sequence {Sn} is a sequence of finite-dimensional sub-
spaces such that Sn ⊆ Sn+1 and

⋃
n∈N Sn is dense in H1∗(0, L). We call n the number of

wavelet levels.
We can apply the Gram–Schmidt process with the standard inner product (·, ·) in

L2(0, L) to obtain an orthonormal basis for Sn ⊆H1∗(0, L), says

{�̂j,k| – 1 ≤ j ≤ n, k ∈ Dj}.

The nested finite-dimensional subspaces of the space H1(0, L) can be obtained similarly
by setting

Sn = span{1,�j,k| – 1 ≤ j ≤ n, k ∈ Dj}.

Using the Gram–Schmidt process with the standard inner product (·, ·) in L2(0, L), we
obtain an orthonormal basis for Sn ⊆H1(0, L) denoted by

{
1√
L

,� j,k| – 1 ≤ j ≤ n, k ∈ Dj

}
.

This orthonormal basis will be applied to solve the problem in the next section.

3 Multi-resolution wavelet Galerkin for the forced KdV model
In this section, we use the anti-derivatives of wavelets order p described in the previous
section to solve numerically the steady gravity-capillary waves problem which is governed
by the forced KdV (fKdV) equation

(
F2 – 1

)
ux –

3
2
(
u2)

x +
(

τ –
1
3

)
uxxx =

ε

2
px(x), (1)

where u is the free surface elevation, F is the Froude number, τ is the Bond number, ε is
the magnitude of pressure, and p(x) is the pressure distribution; see more details in [1, 2].
The computational domain is (0, L) with the boundary conditions

u(0) = 0, u′(0) = 0 = u′(L).

For the problem, it is assumed that there is a uniform flow with a constant velocity up-
stream. The values of the Froude numbers F < 1, F = 1, and F > 1 correspond to subcritical,
critical, and supercritical flows, respectively. The boundary condition at x = L is given by
the Neumann condition which can allow some small amplitude waves downstream. The
presented wavelet basis can be used to satisfy these conditions.

The finite dimensional subspace Sn of H1(0, L) is employed to solve the fKdV model.
Suppose that there exists a weak solution u ∈ H1(0, L). The variation form of (1) can be
written as

A(u, v) =
ε

2
(px, v) for all test functions v ∈H1(0, L),
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where

A(u, v) =
(
F2 – 1

)∫ L

0
uxv dx –

3
2

∫ L

0

(
u2)

xv dx +
(

τ –
1
3

)∫ L

0
uxxxv dx

(px, v) =
∫ L

0
pxv dx.

Let un be an approximate solution

un = αn
1√
L

+
n∑

j=–1

∑
k∈Dj

αj,k� j,k ,

where αn and αj,k for –1 ≤ j ≤ n and k ∈ Dj are the unknown wavelet coefficients. Here un

is the projection of u onto Sn. The variational form can be written by following nonlinear
system:

A
(

un,
1√
L

)
=

ε

2

(
px,

1√
L

)
,

A(un,� j,k) =
ε

2
(px,� j,k) for all – 1 ≤ j ≤ n, k ∈ Dj.

After applying integrating by parts and substituting the boundary conditions un(0) =
0, u′

n(0) = 0 = u′
n(L). The nonlinear system for the unknown wavelet coefficients at level n

can be solved iteratively by Newton’s method. Numerical solutions can be obtained when
the values of F , τ , and ε are given in the fKdV model.

Next, we will consider the convergence rate of the present scheme. To do this, we prove
Lemma 3.1, and the main result is shown in Theorem 3.2.

Lemma 3.1 For any u ∈Hp+1(0, L) and n ∈N, there exists a constant C > 0 such that

inf
v∈Sn

|u – v|1 ≤ C
(
2–np)|u|p+1.

Proof Let u ∈ Hp+1(0, L). Then its derivative u′ is in L2(0, L). Since {ψj,k|j ≥ –1, k ∈ Dj} is
an orthogonal basis for L2(0, L), there exist constants αj,k = (u′ ,ψj,k )

‖ψj,k‖ such that

lim
n→∞

∥∥∥∥∥u′ –
n∑

j=–1

∑
k∈Dj

αj,kψj,k

∥∥∥∥∥ = 0.

Since d
dx (u –

∑n
j=–1

∑
k∈Dj

αj,k�j,k) = u′ –
∑n

j=–1
∑

k∈Dj
αj,kψj,k ,

lim
n→∞

∣∣∣∣∣u –
n∑

j=–1

∑
k∈Dj

αj,k�j,k

∣∣∣∣∣
1

= 0.

Set un =
∑n

j=–1
∑

k∈Dj
αj,k�j,k . Then un ∈ Sn. From the triangle inequality,

|u – un|1 =

∣∣∣∣∣
∞∑

j=n+1

∑
k∈Dj

αj,k�j,k

∣∣∣∣∣
1
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≤
∞∑

j=n+1

∣∣∣∣
∑
k∈Dj

αj,k�j,k

∣∣∣∣
1
.

By the orthogonality of {ψj,k|j ≥ –1, k ∈ Dj}, there exists a constant C1 > 0 such that

∣∣∣∣
∑
k∈Dj

αj,k�j,k

∣∣∣∣
2

1
=

∫ L

0

∣∣∣∣
∑
k∈Dj

αj,kψj,k

∣∣∣∣
2

dx

≤ C1

(∑
k∈Dj

α2
j,k

)
.

Let Pp be the space of all polynomials of degree less than p. For any q(x) ∈Pp,

αj,k =
(u′,ψj,k)
‖ψj,k‖

=
1

‖ψj,k‖
∫ L

0
u′ψj,k dx

=
1

‖ψj,k‖
∫ L

0

(
u′ – q

)
ψj,k dx

≤ ∥∥u′ – q
∥∥ (Hölder inequality).

Note that the length of suppψj,k is 2–jL. By the Bramble–Hilbert lemma there exists a
constant Cj,k > 0 such that

|αj,k| ≤ inf
q∈Pp

∥∥u′ – q
∥∥ ≤ Cj,k

(
2–jL

)p∥∥u(p+1)∥∥ = Cj,k
(
2–jL

)p|u|p+1.

Then

∑
k∈Dj

α2
j,k ≤

∑
k∈Dj

C2
j,k

(
2–jL

)2p|u|2p+1 = C2
(
2–2jp)|u|2p+1, where C2 = L2p

∑
k∈Dj

C2
j,k .

Therefore

|u – un|1 ≤
∞∑

j=n+1

√
C1C2

(
2–jp)|u|p+1

= C
(
2–np)|u|p+1, by geometric series, C =

√
C1C2

2p – 1
. �

Theorem 3.2 Let u ∈ Hp+1(0, L) and un be the projection of u onto the finite-dimensional
subspace Sn. Then there exists a positive integer C > 0 such that

‖u – un‖ ≤ C
(
2–np)|u|p+1. (2)

Proof Let u ∈Hp+1(0, L). Let un be the projection of u ∈H1(0, L) onto Sn. Then

‖u – un‖ = inf
v∈Sn

‖u – v‖.
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By the Poincaré inequality, there exists C1 > 0 such that ‖w‖ ≤ C1|w|1 for all w ∈H1(0, L).
Therefore

‖u – un‖ ≤ C1 inf
v∈Sn

|u – v|1.

Applying Lemma 3.1, there exists C2 > 0 such that

inf
v∈Sn

|u – v|1 ≤ C2
(
2–np)|u|p+1.

Therefore

‖u – un‖ ≤ C
(
2–np)|u|p+1,

where C = C1C2. �

The main result of Theorem 3.2 is that the rate of convergence is dependent on the
wavelet level n and the wavelet order p in the multi-resolution analysis. For example, when
p = 2, the rate of convergence is approximately 2–2 or the error should decrease four times
when we increase one wavelet level. In this work we fix p = 2 and vary n. Numerical results
are obtained when the values of F , τ , and ε are given.

4 Numerical results
Before applying the proposed method to solve the fKdV model, we test the accuracy of
the numerical scheme by applying it to solve the simple unsteady KdV model with suit-
able initial and boundary conditions. This has an exact solution in the form of a traveling
soliton with constant speed.

4.1 Accuracy test
Consider the unsteady KdV equation

ut + 6uux + uxxx = 0, 0 < x < 50, (3)

with the boundary and initial conditions

∂u
∂x

(0, t) = 0,
∂u
∂x

(L, t) = 0, u(x, 0) =
1
2

sech2
(

1
2

(
x –

L
2

))
.

We apply the present wavelet basis to approximate the solution in space and integrate
the solution in time using the fourth order Runge–Kutta method. For each time step, the
nonlinear system is solved using Newton’s method. To find the wavelet coefficients, a zero
solution is set as an initial guess. The wavelet coefficients obtained from the previous time
step are set as the initial guess for the next time step. Numerical solution converges within
a few iterative steps. All calculations are performed until the final time is reached.

The x – t plot of a traveling solitary wave is shown in Fig. 1. From the initial solitary
waveform, this wave moves downstream with constant amplitude. To check the accuracy,
the anti-derivative wavelets of order p = 2 are applied, while the wavelet level n is var-
ied. The root mean square errors (RMSE) measured at time t = 20 for each wavelet level
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Figure 1 The x – t plot of traveling solitary wave

Table 1 Root mean square errors for the unsteady KdV model when p = 2 and varied wavelet level n
at time t = 20

Level dim RMSE

4 27 4.1029e-04
5 51 6.4851e-05
6 99 7.3692e-06
7 195 2.7788e-06

Figure 2 The x – t plot of two solitons

are shown in Table 1. The RMSE decreases when the number of wavelet level increases.
The convergence rate is approximately second order, as expected, and it agrees with the
theoretical result as shown in Theorem 3.2.

A more complicated initial condition is also investigated. Two solitons are set up initially
at time t = 0. The initial condition is given by

u(x, 0) = 3A2 sech
(
5
(
A(x + 2)

))2 + 3B2 sech
(
5
(
B(x + 1)

))2,

A = 25, B = 16, 0 ≤ x ≤ 3.5.

These two initial waves are collapsed as time increases. Figure 2 shows the results with-
out oscillation in a solitary wave profile after collapsing. The proposed wavelet basis can
handle nonlinear terms in the unsteady KdV model.

4.2 Numerical results for the fKdV equation
In this section, the steady forced KdV equation (1) is solved numerically using the wavelet
Galerkin method. The anti-derivative wavelet of order p = 2 is used to find all the numer-
ical solutions. The pressure distribution is in a compact support form given by

p(x) = exp
((

–
(
x – (L/2)

)2)/w
)
,
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Figure 3 Free surface profile when F2 = 0.728 and
ε = 0.03

where w and L are the span length and domain range, respectively. Here, we set w = 20
and L = 100. We restrict our study to the case of a dominated Bond number τ = 0.5, which
is greater than the critical value 1/3 from the forced KdV theory, see [1]. This problem
can be viewed as a steady flow from upstream (left) to downstream (right) where the uni-
form flow is specified at the left boundary with a constant incoming flow velocity in terms
of the Froude number value. The flow passes the pressure distribution at the middle of
the flow domain. The undisturbed free surface level is referenced as u = 0. In general,
flow regimes can be characterized by the values of the Froude number, where the flow is
subcritical when F < 1, supercritical when F > 1, and critical when F = 1. The developed
wavelet Galerkin method is applied to find the steady flow solutions in both subcritical and
supercritical flow regimes. The Froude number ranges over various values of the pressure
magnitude ε. The objective is to find a more general type of solitary wave. Numerical re-
sults for each flow regime are presented in the following subsections.

4.2.1 Subcritical flow
Consider the case of positive pressure distribution ε > 0. For F2 = 0.728 and ε = 0.03, the
disturbed free surface profile is shown in Fig. 3. The depression wave is trapped over the
pressure domain. The wave amplitude u(0) is measured at x = 50. The solution branches
for various values of ε > 0 and 0 < F2 < 1 are shown in Fig. 4. As F increases, the depression
wave amplitude increases. We cannot find any numerical solutions when F approaches 1.
There is a critical value of F for each value of ε such that the solution bifurcates to a new
branch of the solution (see [1]). The wave amplitude increases very rapidly near the critical
value of F . We recover the same type of depression wave as shown in [1].

The type of free surface wave for negative pressure ε < 0 is different from that for positive
pressure. Solution branches for various values of F and ε are shown in Fig. 5. In this case,
numerical solutions can be found in the range 0 < F ≤ 1. The solution exists up to the
critical value of F = 1. The free surface profile of the elevation wave is shown in Fig. 6. The
values of the wave amplitude u(0) increases as F increases. This type of trapped elevation
wave is bifurcated from uniform flow solutions. The wave amplitude increases when the
value of F increases. This type of trapped elevation wave over the pressure distribution is
the same as shown in [1].
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Figure 4 Branch of depression wave for subcritical
flows

Figure 5 Branch of elevation wave for subcritical
flows

Figure 6 Free surface profile when F2 = 1.0 and
ε = –0.03

4.2.2 Supercritical flow
The flow is supercritical when F > 1. The free surface profile for positive forcing ε = 0.03
and F2 = 2.8 is shown in Fig. 7. Wave amplitude is positive over the pressure region. For
the same value of ε, the elevation wave amplitude increases as F decreases. The case where
F2 = 1.47 and ε = 0.03 is shown in Fig. 8. The free surface profile is found numerically in
the form of the generalized solitary wave which represents the capillary wave effects over
the tails of the trapped elevation wave. The capillary effects show many ripples on the free
surface. This type of solution occurs near the critical regime when F > 1 and ε > 0. The
solution branches between the wave amplitude and F2 for various values of ε > 0 in the
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Figure 7 Free surface profile when F2 = 2.8 and
ε = 0.03

Figure 8 Free surface profile when F2 = 1.47 and
ε = 0.03

Figure 9 Branch of elevation wave for supercritical
flows

case of supercritical flow are shown in Fig. 9. There are critical values of F for each value
of ε. The mixed boundary condition type at x = L allows us to find this type of the ripple
solution. This new result fulfills the solution branch in the bifurcation diagram presented
in [1]. Since capillary force is dominated in this case, the ripple appears on the trapped
solitary wave.

Similar to the cases involving a trapped elevation wave, trapped depression waves over
negative pressure ε < 0 are found. The depression wave amplitude increases as F decreases
to unity. The solution does not exist for all of the range F > 1. There are critical values of
F for each ε < 0. Trapped depression wave branches for various values of ε are shown in



Utudee and Maleewong Journal of Inequalities and Applications        (2021) 2021:165 Page 13 of 14

Figure 10 Branch of depression wave for
supercritical flows

Figure 11 Free surface profile when F2 = 1.49 and
ε = –0.03

Fig. 10. The free surface profile when ε = –0.03 and F2 = 1.48 is shown in Fig. 11. The
generalized depression wave with ripples is found when the Froude number approaches
a critical value. For ε = –0.03, the critical value of F is approximately 1.47. All numerical
solutions are bifurcated from the uniform flow solution.

5 Summary and conclusions
Anti-derivative Daubechies wavelets with the Galerkin method are developed in this work.
The wavelet basis is designed specifically to solve the mixed-type boundary conditions
that cannot usually be applied using a standard wavelet basis space. The proposed nu-
merical scheme is implemented to solve the forced Korteweg–de Vries equation which
includes gravity, capillary, and pressure distribution effects. We consider the case of a
dominated Bond number τ > 1/3. The flow regimes are characterized by the values of
the Froude number. Various types of steady gravity-capillary wave solutions are found.
Trapped elevation or depression waves are obtained over the pressure distribution region
depending on the sign and the magnitude of the applied pressure. The generalized eleva-
tion and depression waves are found near the critical flow regime. These results show cap-
illary effects with ripple waves which are the extended results presented previously in [1].
To obtain this type of solution, the mixed boundary conditions should be applied instead
of applying the Dirichlet condition on the far field downstream. The present wavelet basis
can handle nonlinear terms in the fKdV model. Further study might apply the numerical
scheme to solve the unsteady fKdV with mixed boundary conditions and also investigate
the interactions among the gravity, capillary, and forcing effects in each flow regime.
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