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1 Introduction

Banach in 1922 [16] proved his famous contraction mapping principle in a complete met-
ric space. Since then this result of Banach has been characterized in different spaces such
as those in quasi-metric, multiplicative metric space, b-metric, D-metric space, D*-metric
spaces, G-metrics, F-metric spaces, modular and modular G-metric spaces. Some other
results in b-metric space and control metric space can be found in [33, 64] and the refer-
ences therein and [6, 56].

In 1966, Gahler in [24], introduced 2-metric spaces, and Dhage in [23] extended the
work in [24] in which D-metric spaces were introduced. These authors claimed that their
results generalized the concept of metric spaces. The nonnegative real function D is called
a D-metric on X. The set X together with such a generalized metric D is called a general-
ized metric space, or D-metric space, and denoted by (X, D) and some of their topological
properties have been studied by Dhage.

The concept of G-metric space was introduced by Mustafa and Sims in [45] and they
pointed out that the fundamental topology properties of D-metric spaces introduced by
Dhage were incorrect. To ameliorate the drawback about D-metric spaces, Mustafa and
Sims in [46] introduced a generalization of metric spaces, which they called G-metric
spaces and proved some fixed point theorems. Samet et al. [62] and Jleli-Samet [29] no-
ticed that some fixed point theorems in the context of a G-metric space in the literature can
be deduced directly from some existing results in the setting of a quasi-metric and metric
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space. In fact, if the contraction condition of the fixed point theorem on a G-metric space
can be reduced to two variables instead of three variables, then one can construct an equiv-
alent fixed point theorems in the setup of a usual metric space. Precisely, in [29, 62] the
authors noticed that 2d(x, y) = G(x, y,y) forms a quasi-metric. Hence, if one can transform
the contraction condition of existence results in a G-metric space in such terms, G(x,, y),
then the related fixed point results become the known fixed point results in the context of
a quasi-metric space. Sequel to these arguments about the concept of generalized metric
space, Karapinar and Agarwal [30] noticed that the techniques used in [29, 62] are valid
if the contraction condition in the statement of the theorem(s) can be reduced into two
variables. Furthermore, Karapinar and Agarwal [30] proved some fixed point theorems in
the context of a G-metric space for which the techniques used in [29, 62] are inapplicable.

The reduction method introduced by Samet et al. [62] and Jleli and Samet [29] reported
that most of fixed point results in the context of G-metric space, defined by Mustafa and
Sims, can be derived from the usual fixed point theorems on the usual metric space. This
enabled [12] et al. to prove some fixed point theorems in the framework of G-metric space
that contradicted the ideas of Samet et al. [62] and Jleli and Samet [29] showing that not all
fixed point results can be obtained from the existence results in the context of associated
metric space.

Shatanawi et al. [63] utilized the concept of Q-distance in the sense of Saadati to in-
troduce new fixed and common fixed point results for mappings of cyclic form, through
the concept of G-metric space in sense of Mustafa and Sims [46]. Shatanawi et al. [63]
pointed out that the method of Jleli and Samet cannot be applied to their results. Some
authors have obtained some fixed point theorems in the structure of G-metric spaces and
established that they cannot be obtained from the existing results in the context of allied
metric spaces and do not meet the remarks of Samet et al. [62] and Jleli and Samet [29].
Other interesting results about fixed point theorems in G-metric spaces can be found in
[1-3,7,9,10, 25, 32,3941, 43, 44, 47, 48, 65] while [38] investigated common fixed points
of weakly compatible mappings in G-metric spaces.

Mustafa and Jaradat in their recent paper [42] produced an example to show that D*-
metric need not be G-metric as well as the G-metric need not be D*-metric. With all these
results, in this paper, we will give some results in the setting of modular G-metric which
cannot be reduced to its allied modular metric spaces.

Modular function space and its theory were introduced by Nakano in [51] in line
with the theory of order spaces. Musielak and Orlicz redefined and generalized the con-
cept in [36, 57] and proved some fixed point theorems. The notion of a modular met-
ric on an arbitrary set and the corresponding modular space, which is more general
than a metric space, were introduced and studied in a landmark paper by Chistyakov
in [20]. Also fixed point theorems in modular metric spaces and their applications have
been dealt with in [21] and [22]. Many authors have introduced and generalized, stud-
ied fixed point theorems and their applications in modular metric spaces such as those
in [4, 5, 11, 13, 17, 18, 20, 21, 27, 28, 34, 35, 49, 54, 61] in modular metric spaces; see
[13, 18, 21, 52, 55] and the references therein and some other interesting results of fixed
point theorems in metric spaces appearing in [7, 8, 16, 17, 26, 31, 34, 37, 50, 58, 59, 61]
and [60].

Since then, many authors such as [4, 5, 11, 13, 18, 19, 27, 28, 35, 49] have studied and
improved some results of fixed point theory in the setting of modular metric spaces, while
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[52, 55] studied iterative approximation of fixed point of multi-valued p-quasi-contractive
and multi-valued p-quasi-nonexpansive mappings in modular function spaces, respec-
tively.

Following the notion of modular metric space in [5], Definition 1.1 in [14] can be in-
terpreted in terms of modular metric spaces as follows. Let X be a nonempty set, and let
% :(0,00) x X x X x X — [0, 00] be a function defined by cof(x,y, z) = wy (%, ) + W, (9, 2) +
w; (x,z) for all ,y,z € X and A > 0. Then (X, %) is a modular G-metric space. In this case,
for all A € (0,00), S (x,7,2) can be interpreted as the perimeter of the triangle of vertices
%,y and z. Now axiom (1) means that with one point we cannot have a positive perimeter
for all A € (0, 00), and axiom (2) is equivalent to the fact that the distance between two dif-
ferent points can never be zero for all A € (0,00). Meanwhile, as the perimeter of a triangle
for all A € (0,00) cannot depend on the order in which we consider its vertices, we have
axiom (4) and axiom (5) is an extension of the triangle inequality using a fourth vertex
for all A € (0,00). By axiom (3), we see that the length of an edge of a triangle is less than

), (%,)+w), (y,2)+w), (x,2
2

or equal to its semi-perimeter, i.e. w; (x,7) < ) for all x,9v,z€ X and A >0,
which is the famous Hero formula.

In 2013, the concept of modular G-metric spaces were introduced by Azadifar et al.
in [14]. They obtained some fixed point theorems of contractive mappings defined on
modular G-metric spaces. The existence of fixed point of contractive mapping defined on
modular G-metric spaces was proved, where the completeness is replaced with weaker
conditions.

Azadifar et al. [15], used the theory they developed in [14] to prove the existence and
uniqueness of common fixed point of a pair of weakly compatible mappings satisfying the
®-map in modular G-metric spaces.

Very recently, Okeke and Francis [53] proved the existence and uniqueness of a fixed
point of mappings satisfying Geraghty-type contractions in the setting of preordered mod-
ular G-metric spaces. The results were applied in solving nonlinear Volterra—Fredholm-
type integral equations.

In the present paper, we introduce the concept of As-type condition in modular G-
metric spaces. We will prove the existence and uniqueness of fixed point of some gen-
eralized contractible operators defined on modular G-metric spaces satisfying a As-type
condition and also prove the modular G-continuity of such operators in modular G-metric
spaces. Our results extend, generalize, complement and include several known results as
special cases, including the results of [14] and [15].

2 Preliminaries

Here we shall define the modular G-metric space following Azadifar et al. [14].

Definition 2.1 ([14]) Let X be a nonempty set, and let »© : (0,00) x X x X x X — [0, 00]
be a function satisfying;

(1) wf(x,y,z) =0forallx,y,zeXandA>0ifx=y=¢,

(2) a)f(x,x,y) >0 forall x,y € X and A > 0 with x #y,

(3) wf(x, x%9) < wf(x,y, z) forallx,y,z € X and A >0 with z # y,

4) of(x,y,2) =09 (x,2,9) = wZ(y,z,x) = --- forall A >0

(symmetry in all three variables),
(5) a)fm(x,y,z) < wf(x, a,a) + a)fj(a,y, z), forallx,y,z,a € X and A,v >0,
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then the function w{(-,) is called a modular G-metric on X and the pair (X, »°) is called
a modular G-metric space.

Definition 2.2 Let X be a nonempty set, and let ® : (0,00) x X x X x X — [0,00] is
said to be convex modular (G-metric) on a set X if it satisfies the conditions (1) and (4) of
PG

w?(a,y,z), for all

the Definition 2.1 as well as the axiom a))(ir " (x,9,2) < ﬁwf(x, a,a) + 5 P

A>0,u>0andx,y,z,a € X,G.

Definition 2.3 Let X be a nonempty set, and let (uf 1(0,00) x X x X x X — [0,00] be a

function, then it is non-symmetric if wf is not symmetric, for all A > 0.

Remark 2.1
(a) If x = a, then condition (5) of Definition 2.1 above becomes
ka+;4 (a,9,2) < a)g(a,y, z).
(b) Condition (5) of Definition 2.1 is called the rectangle inequality.
In this paper, we will take X ¢ to be a modular G-metric space.

Definition 2.4 ([14]) Let (X,»%) be a modular G-metric space. The sequence {x,},ex in
X

w

A function T': X,,¢ — X,6 atx € X6 is called modular G-continuous if 0% (x,,, x,x) — 0
then wf (Tx,, Tx, Tx) — 0, for all A > 0.

¢ is modular G-convergent to x, if it converges to x in the topology 7(w{).

Remark 2.2 We see that a function T : X, ¢ — X, ¢ at x € X6 is called modular G-
continuous if a)f(x, X1, %,) — 0 then wf(Tx, Tx,, Tx,) — 0, for all A > 0.

Definition 2.5 ([14]) Let (X,»%) be a modular G-metric space, then the sequence
{xn}nen € X6 is said to be modular G-Cauchy if for every € > 0, there exists n. € N such
that wf(xn,xm,xl) <eforall n,m,l > n. and A > 0.

A modular G-metric space X, is said to be modular G-complete if every modular G-
Cauchy sequence in X ¢ is modular G-convergent in X c.

Definition 2.6 ([15]) Let g and % be single-valued self-mappings on a set X. If w = gx = hx
for some x € X, then x is called a coincidence point of g and /, and w is called a point of
coincidence of g and /.

Definition 2.7 ([15]) A pair of maps g and 4 is called weakly compatible pair if they com-

mute at coincidence point.

Definition 2.8 ([31]) Let T, S be two self-mappings on a nonempty set X. Then:
(i) x € X is called a fixed point of T if Tx = x.
(i) » € X is called a coincidence point of T and S if Tx = Sx.
(iii) x € X is called a common fixed point of T and S if Tx = Sx = x.
(iv) x € X is called a commuting point of T, L if TLx = LTx.

Following [4], we give the definition of being modular G-bounded as follows.

Definition 2.9 We say that M C X, 6 is G-bounded provided that §,6(M) =
sup{a)AG(a, b,c);a,b,c € M < 00}.
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Proposition 2.1 ([15]) Let g and h be weakly compatible self-mappings on a set X. If g and
h have a unique point of coincidence w = gx = hx, then w is the unique common fixed point
of g and h.

Remark 2.3 Observe that, if lim,,_, oo @G (x,, %, %) = 0, for some & > 0, then lim,,_, oo @G (x,,,
%n,%) = 0 may not necessarily hold for all o > 0.

Definition 2.10 Let (X,®%) be a modular G-metric space, we say that  satisfy the Az-
condition if lim,,_, wg(x,,,x,,,x) =0, for some « > 0 implies that lim,,_, wg(x,,,x,,,x) =0
foralla >0, x, C X, 6.

We next introduce the As-type condition which will play a crucial role in the proofs of
our results in this paper.

Definition 2.11 Let (X, »®) be a modular G-metric space, for all A > 0, we say that w satis-
fies a As-type condition if for & > 0, there exists C, > 0 such that a)cz (x,9,2) < Coo¥(x,9,2),

for all x,7,z € X and for any XA > 0 and x is distinct from y, z.

Remark 2.4 1f o = 2, then 0% (x,y,2) < C,w¥(x,,2), for some C, > 0.
3

Proposition 2.2 ([14]) Let (X,w°) be a modular G-metric space, for any x,y,z,a € X, it
follows that:

(1) Ifa)AG(x,y,z) =0forallA>0,thenx=y=z.

2) a),\G(x,y, z) < a)f(x,x,y) + a)g(x,x, z) for all 1 > 0.

3) wf(x,99) < 2;§(x, %,9) forzall 1> 0.

(
(
(4) 0f(x,y,2) < a)f(x, a,z) + a)g(a,y, z) for all . > 0.
(5) of(x,y,2) < %(Za)g(x,y,a) +2w(§(x, a,z) + a)g(a,y, z)) forall ». > 0.
(

6) w(x,y,2) <w¥(x,a,a) + oS (y,a,a)+ oS (za,a) forall 1> 0.
3 i g
Proposition 2.3 ([14]) Let (X, w®) be a modular G-metric space and {x,,} ,cn be a sequence
in X. Then the following are equivalent:
(1) {xn}neN is Q)G
(2) wi(xy,x) > 0asn— 00, i.e. {x,}uen converges to x relative to the modular

-convergent to x,

metric w;,
(3) @F (X, %, x) — 0 as n— oo forall A >0,
(4) @F (xy,%,%) — 0 asn— oo forall A >0,
(5) @ (X, %, %) — 0 as m,n — oo for all ) > 0.

3 Main results
We state our main results as follows.

Theorem 3.1 Let (X, w®) be a G-complete non-symmetric modular G-metric space satis-

fying a As-type condition, such that C,Cy € (0, ﬁ) and let T : X6 — X6 be a mapping.
Suppose that there exists . > 0 and p € (0,1) such that

wf(Tx, Ty, Tz) < pK,.(x,y,z) forallx,y,z€ X, 6,A >0, (3.1)
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where

K (x,9,2)
w; (x,y,z) ; G(x,z, Ty), wy (Tx,y,z) wy Gx, Tx,y), w; (y z, Ty),

5 S(y,z, Ty)[1 + o S(x, Tx, y)]
1+w; S(x,y,2)

wf(x, Tx, Tx), wf(x, Ty, Ty),

wf (%, T, 2)[1 + of (x, Tx, )]

G
,w, (y, Tx, Ty),
1+ w%(x,y,2) 0 »

wf (x, Tx, 2), 0f (v, Ty, Ty),

of(x, Ty, 2)[1 + 0¥ (x,, z)]

e 2
;T x)T )
1 +wf(x,y, +a),\(y Tx,z) @i (y y)

= max
of(x, Ty,2)[1 + o (x,y, Ty)]

G
,wy (z, Tx, Tx),
1+ w%(Tx,y,2) + 0S(x,2, Ty)’ i ( )

wS(y, Tz, Tz),

of (z, Tz, Tz), o (2, Tx, Ty), o (z, T*x, Tz), 5 (Tx, T, Ty),

oS (x,z, Ty)[1 + of (x,2, Ty)]
1+ w;y S(Tx,y,2) + o G(x, z, Ty)

w? (Tx, T?x, Tz),

0% (T2x, Ty, T2)[1 + 0 (T, y,2) + 09 (Tx, y, Tz)]
1+ w; (Tx,y, 1z) + w; G(T2, Ty, Tz)

Then T has a unique fixed point in X 6 and is modular G-continuous at the fixed point

(say u).

Proof If x = y = z € X6, then, for A > 0, ®%(Tx, Tx, Tx) < pK; (x,%,%). But K (x,%,x) > 0
implies that 0 < pK; (x,x,x), so that K (x,x,x) > 0 and p # 0. Suppose that K (x,x,x) =0
then there is nothing to prove because, Tx = x. In fact, »{ (x,x,%) = 0. This is condition (1)
of Definition 2.1, for A > 0, so that

I<)\. (x’ X, x)
a)f (x, %, %), wf (x, %, Tx), wf(Tx, x,%), wf (x, Tx, x), wf(x, x, Tx),

of (x,x, Tx)[1 + 0 (x, Tx, x)]

1+ 0P (x,x,%)

’

(x, Tx, Tx), w; G(x, T, Tx )

’ T ) 1 i T ’
wf(x, Tx, x),wf(x, Tx, Tx), (x 0+ o; Y@ T x)] ,
1+w; G(x, %)

(x, Tx,x)[1 + w; G (x, %, )]

,of (x, T?x, Tx),
1+ wy G(x,x,%) + ;3 G(x, T, x)

wf(x, Tx, Tx),

= max
w8 (x, Tx, x)[1 + oF (%, %, Tx)]

G
,w, (%, Tx, Tx),
1+ w8 (T, x,x) + 0 (x,%, Tx) " ( )

wf(x, Tx, Tx),

wf(x, Tx, Tx), wf(x, Tx, Tx), wf (x, T?x, Tx),

a)f(x, x, Tx)[1 + wf(x, x, Tx)]

1+ w8 (Tx, %, %) + 0% (x,x, Tx)’

of (Tx, T*x, Tx), i (Tx, T*x, Tx),

w8 (T%x, Tx, Tx)[1 + 0¥ (Tx, %, x) + 0¥ (Tx, x, Tx)]
1+ 0¥ (Tx, x, Tx) + of (Tx, Tx, Tx)

Page 6 of 50
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Now, we assume that K (x,x,x) > 0 and x #y = z. Let xy € X,6 be arbitrary. We generate

the sequence of iteration of 7" based on xy € X, ¢ as follows:

Txo =X1
Tx1 =X
Tx, = Xp41 (3.2)

for all n € N. If there exists some #ny € N such that x,,,; = %,, then x, is a fixed point
of T. Now for all m € N, x,,; #x, and A > 0, take x = x,, and y = x,,,1 = 2z, then we have
wf(xn+1’xn+2rxn+2) = wf(Tx, Ty, TZ) = a))?(Txm Txp41, Txn+1)r so that inequahty (31) be-

comes

G
;. (xn+1:xn+2rxn+2) < pl(k(xn:xrﬁl;xnﬂ) VX Xyl € X,6,A>0, (3-3)

where

Ko (% X1 K1)
G G G

w5 (xn: Xn+ls xn+l)r @ (xm Xn+ls Txn+1)¢ (O (Txm xn+1¢xn+1);
G G G

w; (xn’ Txn: xn+1); (2N (xn+1»xn+1: Txn+1); ;. (xn; Txn; Txn);

w}?(xn-f—l:xnﬂr Txn+1)[1 + wg(xnr Txnrxn+1)]

G
w; (Cnr Thpe1, Tps1),

’

1 Wy (xm xn+1¢xn+1)
T T T
Wy (xn: Xn» xml)r w; (xn+1r Xn+ls xn+1);

w)?(xn; Topi15%ne1)[1 + wf(xm T X41)]

’

1+ wf(xn:xn+1:xn+l)

wf(xn: Txn+1:xn+1)[1 + wf(xmxn+lrxn+l)]

G
w; Kne1s Ty, Thpi1)s

G G ’
1+w; (X 15 Xa1) + w, (Sne1s Ty K1)
= max

G 2 G
W, (xn+1; T Kns Txm—l): W, (xn+1: Txn+1: Txn+1)¢

(,())Cj(xn, Txn+1’xn+1)[1 + w)cj(xn)xn+1: Txn+1)]
’
1+ wf(Txn:xn+1’xn+l) + w}?(xn¢xn+1: Txn+1)

G G
w5 (Kne15 Ty, Txy), w, (K15 Thie1, Th1)s
G G 2 G 2
@5 Fnr1, Tons Tons1), 05 (%ne1s T8 To1) 05 (T T80 T,

wf(xmxnﬂy Txyi1)[1 + w}?(xn:xnﬂy Txpi)]

G 2
w5 (Txnr T Xns Txn+1)r G G )
1+ Wy (o X1, Xe1) + wy (% Xprs15 Tr11)

a))?(szn: Txn+1: Txn+1)[1 + wf(Txnrxn+1’xn+1) + w}?(Txn,xn+l» Txn+1)]
1+ wf(Txn,xml, Txpi1) + wf(szm Txpe1y TH041)
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= max

G G G
Wy (%) X1, Xre1), Wy (%) X1, Xr42), Wy (Xps1 Xpa 1, Xe1)s
w}?(xn» X1 Xnel) wf(xml:xnﬂ;xnﬂ)y w}?(xm Xyl Xnel)

w)?(xml»xnﬂ;xnﬂ)[l + wf(xn;xnﬂ»xnﬂ)]

1+ wf(xmerlranrl)

G
w5 (xn: KXn+2s xn+2)y

’

a)}?(xm xn+1’xn+1)r a)}?(x;ﬁlr Xn+2s xn+2)x

wf(xn)xn+2’xn+l)[1 + a)f(xmxn+l¢xn+l)]

G
G » Wy (Xna1s Xna1s Xne2)s
1+ w; (%> Xps 15 K1)

wf(xmxn+2:xn+l)[1 + wg(xmxn+lrxn+1)]

1+ a))cf(xmxn+l;xn+l) + wg(xn+1:xn+17xn+l)

G
» W5, (Xra15 B2, Xs2)s

w)cj(xn:xnﬂyxnﬂ)[l + wf(xmxnﬂyxnﬂ)]

G G ’
1+ w; (%ne1> Xpa1r K1) + wy (%5 X 1 Xna2)

G
w5 (xn+1: KXn+2s xn+2);

G G G

w5 (K1 X1, Xre1)5 Wy (K15 X2, Xe2), Wy (K15 X1, X42)5
G G G

w5 (xn+1:xn+2’xn+2): w; (xn+1:xn+2’xn+2): w; (xn+1:xn+2vxn+2))

wf(xn: xn+1,xn+2)[1 + wf(xn;anrl)anrZ)]
7
1+ w}?(xn+1;xn+1,xn+l) + wf(xn»anrl,anrZ)

w}cj(xn+2: xn+27xn+2)[1 + wf(xn+l¢xn+1)xn+1) + w)cj(xn+11xn+1)xn+2)]

G G
1+ wy’ (xn+l¢xn+11xn+2) + Wy (xn+27xn+2) xn+2)

On simplifying, we get

I<A (xm Xn+ls xn+1)

= max

= max

a)}?(xn: xn+1’xn+l)r wf(xnr Xn+ls xn+2)r w)?(xn+lrxn+1: xn+1)¢
G G G

w5 (xn: Kn+ls xn+l)r @ (xn+lrxn+1: xn+2)) @ (xm Xn+ls xn+1)y
G G G

w5 (xn; KXn+2s xn+2)r @ (xn+lrxn+17 xn+2)r (N (xnr Kn+ls xn+l)y
G G G

Wy (Xn+1, Xne2s xn+2); w;y (%> X425 xVH—l)’ Wy (xn+1;xn+1:xn+2);
G G G

Wy (%) X2, Xre1)) Wy (Xn+1> Xpr2, Xs2), Wy (K15 Xpr2, Xs2),
G G G

w; (Xn» X2, Xr41),5 w;y (Xra1s e 1, X1 )5 w5y (Xrs1s X2, Xns2)s

G G G
w; (xn+1:xn+1’xn+2): W, (xn+1:xn+2’xn+2): W, (xn+1:xn+2vxn+2))

w}?(x;ﬁl: KXn+2s xn+2): w)?(xnr Xn+ls xn+2)r w)?(xl’l+2) Kn+2s xn+2)
a)}?(xn: xn+1’xn+l)r wf(xnr Xn+ls xn+2)x

G G
w5 (xn: KXn+2s xn+2)r @ (xn+lrxn+1: xn+2)y

G
w5 (xn+1: KXn+2s xn+2)

We will examine this in five different cases as follows.

G
Case 1. IfKA(xn>xn+1,xn+l) = (xmxwrl:xrul); then

w)cf(xn+1’xn+2rxn+2) =< pw}?(xmxwrlrxwrl),

for p € (0,1).

(3.4)

Page 8 of 50
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Case 2. If K (%, %1141, %Xp41) = wf(x,,,xml,xmz), then using conditions (1), (4) of Defini-
tion 2.1, conditions (3), (6) of Proposition 2.2 and Definition 2.11 twice, we get

G G
w; (xn+17 Xn+2s xn+2) < Py (xm xn+lrxn+2)

G G G
= p[a)% (%ns Xns1, Xn11) + w% (Xns1, Xns1, Xne1) + w% (xn+1;xn+1:xn+2)]

p[a)cg(xmxwrlrxnﬂ) + wg(xn+1:xn+1’xn+2)]

IA

1Y CZC‘)A xnvxn+l’xn+l) + Cv‘lw}L (xn+1’xn+1:xn+2))

IA

(
P(Co0f (X K15 1) + 2C400§ (xn+lrxn+27xn+2))
(

=p CZCU)L (%rr X1, Xne1) + 2C2C4w)\ (xn+1’xn+2»xn+2))>
which implies that
G G G
w; (Ke1s Xna2s Xps2) < p(CZw)L (% Xpps15 Xna1) + 2C2C4w)\ (X115 Xne2s xn+2))»

hence, we have

G pCo G
w;, (xn+17 Xn+2s xn+2) < 1- 2,0C2C4 (2% (xm Xn+ls xn+1)r

G < ka® 3.5
w; (K15 X2, Xy2) < Gy (%> X415 Xre1)5 (3.5)

C 1 .
where k; = l_jf)ﬁ <1, so that C,Cy4 € (0, ].;), where j = 2.
Case 3. If K, (%1, X141, X041) = wf(x,,,xn,,z,xmz), then using conditions (3), (6) of Proposi-
tion 2.2 and Definition 2.11, we have
G G
Wy (K15 X2 Xy2) < Py (% X2 Xn2)

= p[wg(xm Kelr Xpe) + wg(xnﬂ:xnﬂrxnﬂ) + wCZ (X425 Xns15 xn+1)]
z 3

= p(wg (xm Xn+ls xn+1) + 20)2 (xn+l’xn+1: xn+2))

IA

G G
1% CZCU)L (%> i1, Xna1) + 2(_/'45‘))L (xn+1;xn+1:xn+2))

=p (Cwa(xn,anrl»anrl) + 4C4a)§ (Xne1s Xns2s xn+2))
G G
IO(CZC‘))L (xmxn+1¢xn+1) + 4'C2C4w)L (xn+lrxn+2: xn+2));

which implies that

pCy

G G
w;, (xn+17xn+2yxn+2) = T~ A Wy (xmxn+l:xn+l)r
1- 4,0C2C4
hence, we have
G G
w; (K15 X2, Xy2) < kij (%> Xprs 15 K1) (3.6)

where k; = W <1, sothat C,Cy € (0 ,jip), where j = 4.
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Case 4. If K (%, %141, %041) = wf(xy,ﬂ,xml,xmz), then using condition (6) of Proposi-
tion 2.2 and Definition 2.11, inequality (3.3) becomes

G
w; (X415 X2 Xpis2)

G G G
S ,o(a)% (xnyxn:erl) + w% (xn;xn;xrwl) + w% (xn;xmxrﬁ-Z))

=< ;O(C2wf(xn+lrxmxn) + C4a)f(xn+lrxn:xn) + C4a)}€;(xn+2:xn’xn))

p((Ca + C)f (1% %) + Ca (K125 Xir %))
<p((Ca+ CZ)[wg(xn+1:xn+2;xn+2) + a)g(xn¢xn+21xn+2)
- wg(xn,xmz,xm)] + Cat (%42 %1s %))
< p((Ca + Ca) (Cof (Rus1s Bir2s Xnr2) + 2Ca05 (s Xis2: %42))
+ C40f (%42, % %))
< p((Ca + Ca) (Cof (i1 Bia2s Xns2) + 2C (wg(xn,xn,xmz)
+ wg(xn,xmxm))) + C40F (X125 s %))
= P((Cz + C4)(C2wg(xn+lrxn+2;xn+2) + 2C4(2wcg(xmxn’xn+2)))
+ CaoF (K12 X %) )
< p((Cy + Co)(Cro (Kns1, %2 Xir2) + 2Ca(2Co005 (s %y Xip12) ) )
+ Caf (Xps2s % %))
=p((Cy + C4)(C2wf(xn+1yxn+2;xn+2) + 4C4C2wf(xn,xmxn+2))
+ C4F (Xy12, s %))
= p(Co(Cs + Co)OF (K115 %120 %n12) + Ca(1 +4Co(Co + Ca))0F (Kyiy Xy K42
< p(Co(Co + CHOF Wi, %120 %s2) + Ca(1 +4Co(Co + Ca))
x [wg(xn,xm,xm) + wg(xn,xm,xm) - wg(xmlrxml»xn&)])
< p(CoCa + Ca) o (%15 Kns2s Xnr2) + Ca(1 +4Cy(Cy + Ca))
X [CooF (X Xns1s Bna1) + Ca Mis X1 %1) + Ca5 (K41, %15 ¥r2) |)
= p(Ca(Ca + Co)f (%1, %20 %) + Ca(1 + 4Co(Ca + Cy))
X [(Cz + Ca)0F (s X1, %ns1) + C4wf(xn+1,xn+1;xn+2)])
< p(Co(Co + Ca)§ (%115 Xna2s Xnr2) + Ca(1+4C(Cy + Ca))
X [(Cy + CoF (s X1, Xine1) + 2C4wg(xn+l’xn+2:xn+2)])
< p(Co(Cy + C) (a1, Xns2: Xns2) + Ca(1 +4Co(Cy + Cy))
X [(Cy + C)o§ (s Ks1s %ina1) + 2CaCa0f) (K15 Xne2s %) ])
= p(Co(Cy + Ca) + 2CCo (1 + 4Co(Co + Co)) 0F (K115 Xrr2s Kins2)

+ Ca(Ca + Co) (1 + 4C5(Cy + Ca)) 5 (s X1 X11)) - (3.7)

Page 10 of 50
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Therefore, it follows from inequality (3.7) that

G G
w;, (xn+17 Xn+2s xn+2) = kg(l)k (xm xn+1rxn+l);

(3.8)
where k3 :=

pCa(Cr+Ca)(1+4Co(Cr+Cy))

1-jp(Ca(Ca+Ca)+2C2 C2(1+4Co(Ca+Cy
Cy))) € (O,jip) forj=1.

5 < 1 and (Co(Cy + Cy) + 2C3Co(1 + 4CH(Cy +
Case 5. If K (%1, X141, %041) = a)f(xml,xmg,xmz), then inequality (3.3) becomes

OF (11> 20 Xps2) < POY Kyt Xrir2s Xv2), 3.9)
and p € (0,1).

Now, we take & = max{p, kj, k3}, for j = 1,2,4,..., so that

w)cf(x;ﬂl; Kr2s Xna2) < hw)cj(xm K1 Xns1)

=< hzw)?(xn—l;xm xn)

3G
=< h w; (xn—Z:xn—l:xn—l)

< W' (%0, %1, %1). (3.10)

But ), /" < +00. Now >, O (%11, Xns2, Xnr2) < 0 (%0, %1,%1) Y nen 1" < +oo for all

A > 0. Suppose that m,n € N and m > n € N. Observe that, for any arbitrary €, using the
rectangle inequality repeatedly and condition (2) of Proposition 2.2, we have

G
a))cj(xmxm;xm) = a)Gk (xnrxn+1:xn+1) tw, (xn+1:xn+2:xn+2) tw
m-n m-n
G G
5 X35 Bnads Bga) + -+ 075 (K1 Xy X))
m-n m—-n

G
A (xn+2: Xn+3s xn+3)
m-n

+w

G G G
= w; (xnrxn+1:xr1+1) +w; (xn+1)xn+21xn+2) +w; (xn+21xn+3,xn+3)
m m m

+w

3> Q

(Xna3s Kpads Kpsa) + -+ + @

G
A (xm—lyxm»xm)
m
G
=< Wy (%41, Xa2 Xs2)
n=N

<E, (3.11)

for all m > n > N for some N € N. As € is arbitrary, we have
@ (%, Xy %) =0 asm,m —> 00 or ligloo % (%4, Xy %) = O. (3.12)
n,m

For n,m, k € N, condition (2) of Proposition 2.2 implies that

w; (xmxrmxk) = wg(xn:xmrxm) + a)g(xk:xm:xm):
2 2

(3.13)
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so that on taking the limit of both sides of inequality (3.13) as n, m,! — oo and by applying
Definition 2.11 and Eq. (3.12), we get

lim (2% (xnrxm:xk)< llm ), (xn7xm;xm)+ lim wA(xk:xm:xm)
n,m,k— 00 n,m k,m— 00

< Cy lim wf(xn,xm,xm)+C2 hm wk(xk,xm,xm)

H,m—> 00
= C2< lim a)AG(x,,,xm,xm) + lim wf(xk,xm,xm)>; (3.14)
n,m—>00 k,m— 00
thus we have
lim wf(xn,xm,xk) =0 VA>O0. (3.15)

n,m,k— 00

Equation (3.15) confirmed that the sequence {x,},cn is modular G-Cauchy sequence. The
completeness of (X, %) implies that, for any A > 0, lim,, ,,, oo wf(xy,,xm, u) =0, i.e. for any
€ > 0, there exists 1y € N such that o} G (%0, %> 1) < € for all n,m € N and n, m > ny, which
implies that lim,,_, oo ¥, — u. Suppose, if possible, that Tu # u, i.e. of (u, Tu, Tu) > 0, then

from inequality (3.1), with x = x,,, y = u = z, we have

w,\G(x,Hl, Tu, Tu) = wf(Txn, Tu, Tu) < pK (x,, u,u) forallx,,u,€ X, 6,1>0, (3.16)

so that

K (xru u, M)
@F (o, th, 1), 05 (0, 4, Th), 05 (Tt ty ), 05 (X, Tty 1),
wf(u, u, Tu), wf(xn, Tx,, Tx,), wf(x,,, Tu, Tu),

a)AG(u, u, Tu)[1 + wf(x,,, Tx,, u)]
1+ a)AG(x,,, u, u)

s 05 (%, T, 1), 0 (ut, T, Tut),

% (@, T, ) [1 + 08 (%, Ty, )]

,w, (u, Tx,, Tu
1+ w9 (x,, u, 1) ’\( w Tt),

@S (o, Tty w)[1 + ©F (%, 1, 1)

o (, T*%, Ti),
=max | 1+ G (2, 1, 1) + o Gy, Ty 1)

)y G(x,, T, w)[1 + wf(x,,, u, Tu)]

wf(u, Tu, Tu), )\G(u, Tx,, Tx,),

1+ w5 G( T, u, u) + ; G, 1, Tut)
o (u, T, Tw), @ (h, T, Tir), 05 (14, T, Ttt), 05 (T T2, Ttt),

F (%, u, Tu)[1 + 0 (x,, u, Tr)]

G 2
wy (ITxy,, T x,, Tu), )
* ( g " ) 1+ @8 (Tp, u, u) + ©F (%, u, Tur)

W (T%%, Tut, Tu) [1 + @ (T, t, ) + 0F (T, 14, Tih)]
1+ of (Txy, u, Tu) + f (T%x,, Tu, Tu)
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Thus

K (%, u, )

= max

wf(xn’ ur u)r w)(?(xnr u: Tu)) wf(xrﬁll u; l/l), wf(xn’ xn+1: u):
G G G
wy (u, u, Tre), @57 (Kys X 15 Xis1)s @5 (%, Tt Tua),

@ (u, 1, T)[1 + ©F (X, %41, )]

el ’ a))?(xn: Kpelr U); wf(”x Tu, Tu),
1+ wy (%, u, u)

a))(\;(xm Tl/t, M)[l + wf(xn:xn+l’ M)]

= @ (14, %11, Th),
1+ @y (X, 1, 1)

% (%, Tt w)[1 + 0Z (%, 1, 11)]

= & ,wf(u,xmz, Tu), w,\G(u, Tu, Tu),
1+ @y (X, U, 1) + @3 (U, X1, 1)

@f (X, T, w)[1 + ©F (%, 1, Tw)] &
N (bl, xn+1’xn+l)x

1+ @8 (i1, 1, u) + 07 (%, 1, Tir)
G G G G
wy (1, Tu, Tu), 0y (U, %11, Tih), 03 (U, Xyr2, T), 07 (Xppe1, Xna2, T0h),

F (o, , TW)[1 + &F (%, 4, Tut)]

G
@5 (Xpi1> Xpi2, Tth)
RS TET + 08 (Kens ty 1) + 08 (K 1, Tit)

w}?(xn+2: Tu, Tu)[1 + wf(x;ﬁl; u,u) + w}?(xn+ly u, Tu)]

1+ w}?(xwrl; u, Tu) + w}?(x;ﬂb Tu, Tu)

Since lim,,_, oo %, — u € X,

K (u, u, u)

= max

wf(u, u,u), a)f(u, u, Tu), wf(u, u, 1), wf(u, u,u),

wf(u, u, Tu)[1 + wf(u, u,u)]

o (u,u, Tu), 0¥ (u, u, u), 0 (u, Tu, Tu),

’

1+ @ (u, u,u)

wf(u, Tu,u)[1 + wf(u, u,u)]

wf(u, u, u), wf(u, Tu, Tu),

’

1+ wf(u, U, u)

a)f(u, Tu,u)[1 + wf(u, u,u)]

wf(u, u, Tu),

G
w; (u, u, Tu)
1+wf(u,u,u)+wf(u,u,u)’ A

G G
u, Tu, u)[1 + u,u, Tu
(L)f(l/l, Tu, Tu), Wy ( - )[ U)AG( )]
1+ ) (u,u,u) + oy (u, u, Tu)

L0 (u, u, 1),

wf(u, Tu, Tu),wf(u, u, Tu), wf(u, u, Tu), wf(u, u, Tu), a)f(u, u, Tu),

wf(u, u, Tu)[1 + wf(u, u, Tu)]

1+ ¥ (u, u, u) + 0 (u, u, Tu) ’

wf(u, Tu, Tu)[1 + wf(u, u,u) + wf(u, u, Tu)]

1+ wAG(M, u, Tu) + a))\G(u, Tu, Tu)

Page 13 of 50
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which gives

@ (u, u, u), S (u, u, Tu),
a)f(u, u, u), wf(u, u, u),
wf(u, u, Tu), a))\G(u, u, u),
G G
wy (1, Tu, Tu), 0y (u, u, Tu),
a)AG(u, u, u), a),\G(u, Tu, Tu),
wf(u, Tu, u), a)l\G(u, u, Tu),
K, (4, u, u) = max )
wf(u, Tu, u), wf(u, u, Tu),
G G
wy’ (u, Tu, Tu), w; (u, Tu, u),
a)f(u, u, 1), wf(u, Tu, Tu),
a))\G(u, u, Tu), a))\G(u, u, Tu),

wf(u, u, Tu), wf(u, u, Tu),

a)AG(u, u, Tu), wf(u, Tu, Tu)
for which by condition (4) of Definition 2.1, we have

K (u,u,u) = max{a)f(u, u,u), a)AG(u, u, Tu), a)/\G(u, Tu, Tu)} (3.17)
or

K (u,u,u) = max{wf(u, u, Tu), a)f(u, Tu, Tu)}. (3.18)

The modular G-metric space is G-continuous in each variable for A > 0 and all the ele-

ments of K, (x,,u,u) converge to wf(u, u,u), wf(u, u, Tu) and wf(u, Tu, Tu) for A > 0. By

condition (4) of Proposition 2.2 and Definition 2.11, we have of (i, u, Tu) < 20 (u, Tu,
7

Tu) < 2C,0¢ (u, Tu, Tu) by Definition 2.11, inequality (3.16) gives

a)AG(u, Tu, Tu) < p max{wf(u, u, Tu), wf(u, Tu, Tu)}

<2p0$ (1, Tu, T
3

1
<2Cyp0f (u, Tu, Tu), C, € (o, 2—), (3.19)
0

which implies that wAG(u, Tu, Tu) < 0 for all A > 0, a contradiction. Hence, Tu = u.
We now show that T has a unique fixed point. Suppose that there exists v € X,¢ such
that Tv = v is another fixed point of T in X G, so that u # v; that is wf(u, v,v) > 0. Indeed

suppose, if possible, otherwise, that, for all A > 0, from inequality (3.1), we have

wf(u, V,V) = a)f(Tu, v, Tv) < pK; (u,v,v) forallu,ve X, c,A >0, (3.20)
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where

K, (u,v,v)

= max

= max

wf(u, v, ), wf(u, v, Tv),a)f(Tu, v, V), a)f(u, Tu,v), wf(v, v, Tv),

G G
Vs T 1 ) T )
a))\G(u, Tu, Tu),wf(u, Tv, Tv), @y, L + ;@ Tu, V)]

1+ a)f(u, v, V) ’
wf(u, Tv,v)[1 + wf(u, Tu,v)]

1+l (u,v,v)

wf(u, Tu,v), a)f(v, v, Tv),

’

a),\G(u, Tv,v)[1 + a),\G(u, v,v)]

¥ (v, Tu, Tv), ,of (v, T?u, Tv),

1+ @f(u,v,v) + o (v, Tu,v)

S, Tv,v)[1 + &f (u,v, Tv)]

1+ @S (Tu,v,v) + 0¥ (u,v, Tv)’

wf(v, Tv, Tv), wf(v, Tu, Tu),

of (v, Tv, Tv), 0 (v, Tu, Tv), of (v, T*u, Tv), 0§ (Tu, T*u, Tv),

S, v, Tv)[1 + &f (u,v, Tv)]

1+ % (Tu,v,v) + o (u,v, Tv)’

a)f(Tu, T?u, Tv),

o (T?u, Tv, Tv)[1 + 0 (Tu, v, v) + 07 (Tu, v, Tv)]
1+ @ (Tu,v, Tv) + o (T?u, Tv, Tv)

@S (u,v,v), 0 (u,v,v), 0 (u,v,v), 0F (1, 1, V), 07 (v, v, ), 05 (u, u, u),

G G
w7 (v, v, V)[1 + w7 (u, u, v)]
R o ,wf(u, u, v),wf(v,v,v),

G
@i (7,7, 1+ of(u,v,v)
)\‘ Y

of (v, V)1 + of (w,u,v)] 4 of (1, v,V)[1 + of (u, v, V)]

0, (v, u,v)

1+ wf(u, v, V) "1+ wf(u, v, V) + a)f(v, u,v) ’

¥ (u,v,V)[1 + of (u,v,v)]

1+ @8 (u,v,v) + 0% (u,v,v)

S (v,u,v), w8 (v,v,v), LS (v, u,u),

S (v, v,v), 0 (v, u,v), 0 (v, u,v), 0F (11, 1, V), 07 (w1, u, v),

of (v, V)[1 + 0 (u,v,v)] of (u,v,V)[1 + 0 (u,v,v) + &F (1, v, V)]

1+ a)f(u, Vv, V) + a)f(u, ) 1+ wf(u, v, V) + wf(u, v, V)

Using condition (4) of Definition 2.1, we clearly see that

K (u,v,v) = max { o (u,v,v),0f v,u,v), 0 (u,v,v), 0 (v, u,v), 0% (v, v,v),

¥ (u,v,v), 0 (u,v,v), 0 (0, v,v), 0F (1, 1, v), 0% (v, v, v),

@ (u, u, u), S (u,v,v), 0 v, v,v), 07 (4, u, V), 05 (v, v, ),

@S (u,v,v), 08 (v, u,u), 08 (v, v,v), 07 (v, u,v), 0F (v, u,v),

wf(u, u,v), wf(u, u,v), wf(u, v, V), wf(u, v, V)

= max{a)f(u, v, ), wf(u, u, v)}.

Thus from inequality (3.20)

wf(u, V)< p max{wf(u, v, V), wf(u, u, v)}.

(3.21)

Page 15 of 50
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Case 1. If max{a))\G(u, v,v), a)f(u, u,v)} is a)f(u, v,v), then inequality (3.21) becomes
wf (u,v,v) < pol(u,v,v), (3.22)

which implies that a)AG(u, v,v) <0, pe(0,1).
Case 2. If max{a)f(u, v, V), wf(u, u,v)} is a)AG(u, u,v), then using condition (3) of Proposi-

tion 2.2 and Definition 2.11, inequality (3.21) becomes

wf(u, v,v) < pwf(u, u,v)
<2p0$ (1,v,v)
3

< 2C2pwf(u, v, V), (3.23)

which implies that wf(u, v,v) <0, Cy € (0, ﬁ). Case 1 and Case 2 contradict our initial
claim that w%(u,v,v) > 0 for all A > 0 hence T has a unique fixed point, i.e. u = v.
To see that T is modular G-continuous at u, let {x,},eny € X6 be a sequence such that

x, — u, then, by taking x = u, y = x,, = z, inequality (3.1) becomes

@ (T, Ty, Tan) < K. (s %0, %0) = @0f (ty T, Ty) < oK (1, %y %), (3.24)
where

K (u,x,%,)

OS (14, %1, %), 0F (1, %, Ttn), 0 (T Xy %), 0 (1, Ty %), 0F (X0 210, T),

5 (s % Ton)[1 + F (0, Tt %))

a)AG(u, Tu, Tu),a)f(u, Tx,, Tx,),

’

1+ a)/\G(u,xn,x,,)

CL))?(M, Txp,%0)[1 + wf(u, Tu, x,)]

wf(u, Tu,x,,),wf(xn, Tx,, Tx,),

’

1+ of (u, %, %)

o8, Taty, %) [1 + ©F (1, %0, %)

G
(%, Tu, Tx,,)
BI04y Ky %) + 0F (0, Tth, %)
= max
8, Taty, %) [1 + 0F (14, %, T)]

G 2 G
w; (%0, T u, Ty ), @7 (%, Ty, Tiy)
» ( " ’ n)’ | +a)AG(Tu,xn,x,,) +wf(u,x,,, Txn)’

@ (o, Tty T), 05 (0, Tty Tn), 05 (0, Tth, T), 05 (0, T, Ty ),

@ (14 %0, Ton)[1 + F (1, %, Tt)]

G 2 G 2
o (Tu, T u, Tx,), o, (Tu, T u, Tx,), )
& ( n) - ( n) 1+ ¥ (Tu, %, %) + ©F (1, %, Tiy,)

0 (T?u, Ty, Toy)[1 + 0 (Ttt, %, %) + 0F (T, %, Tt)]
1+ wf(Tu,x,,, Tx,) + wf(TZu, Tx,, Tx,,)
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wf(u: Xn» xn): wf(”r X Txn): wf(uy X xn): w,\G(ur u, xn); a))?(xn; Xns Txn),

% (%, %, Ton)[1 + 0F (4, 1, )]

¥ (u, u, u), f (4, Ty, Txy),

’

1+ @f (1, %, %)

@ (1, T, %) [1 + ©F (14, 1, 1)

’

o (t, 1, %), @F (%, T, Tn), -
1+ ) (u, %, %)

CL)?(M, Txp,%0)[1 + wf(u:xn;xn)]

G
(X, 1, Txy,)
BT 4 08 (%, ) + 08 (K 14, %)
= max G G
@y (t, Tx, %) [1 + 05 (4, %, Txy1)]

of @y 14, To), 05 Xy T, Toon), ——— = :
1+ @y (U, %, %) + 05 (U, %, Txy)

wf(x,,, u, u),wf(x,,, Tx,, Tx,), wf(x,,, u, Ix,), wf(x,,, u, Ix,),

% (1, %y Txn) [1 + 0F (14, %, Tx,)]

G G T
wy (u,u, Txy,), ) (4, u, Tx,) G X,
AN T BT AT T n’1+w,\(uyxn,xn)+wxG(”'x"’T”)’

@f (1, T, o) [1 + 0F (14, 20, %) + 05 (8, %0, T1)]

1+ wf(u,x,,, Tx,) + wf(u, Tx,., Tx,)

G
Since Tu =u = T?u=T(Tu) = Tu = u and w <1, we have
@y (Wxnxn)
@S (1, %, %), 05 (%0, T, 05 (U, %, %),
S (1 t,%,), 0F (X, %, T, 0 (4, 1, 18),
@, T, Ttn), 05 (X, %y Ttn), 05 (1, 1, %),

G G G
05 (X, Ty Th), @5 (s Ty %), 05 (X, 4, T,
K, (4,%,,x,) = max
Cl)f;(lxl, Txm xl’l)’ a)}?(xnl u, Txn)) w}?(xnl Txn; Txn)7

wf(u, Txy, %), wf(xn, u, u),wf(x,,, Txy,, Tx,),

wf(x,,, u, Ix,), wf(x,,, u, Ix,), wf(u, u, Ix,),

S (u, 1, Tx,), 0 (1, Xy T), 05 (4, T, T)

So,

S (14, %0, %), 0 (14, %, T,
@S, t,%,), 0F (%1, %, T
K, (1, %,,%,) = max ,
¥ (u, u, u), 0§ (1, Ty, Txy),
G G
5 (Xn, T, Tx), @) (1, u, Tx,y)
@F (W %0, %), 05 (U %0, T, 05 (1 Uy %), 05 (Xty Xty T,

K, (u,%,,x,) = max
a))\G(u, Tx,, Tx,), wf(x,,, Tx,, Tx,), wf(u, u, Tx,)

Now we consider the following cases.
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Case 1. If K, (1, %,,,%,) = wf(u,xn,x,,), then inequality (3.24) becomes
@S (u, T, Tiy) < pF (1, %, %), (3.25)
for p €(0,1).

Case 2. 1f K; (t, %, %) = 0¥ (1, %, Tx,,), using conditions (1), (5) of Definition 2.1, condi-

tions (6), (3) of Proposition 2.2 and Definition 2.11, then inequality (3.24) becomes

wf(u, Tx,, Tx,) < ,oa)f(u,x,,, Tx,)

= p{wg(urxn:xn) + wg(xnrxmxn) + a)g(xn:xm Txn)}
2 4 4

]S (W, %, 20) + OF 0, %, Ti) |
2 4

=< :O{CZ(D)?(M; xn)xn) + C4wf(xmxm Txn)}

< p{Coof (1, %, 20) + 2C4w§(xm T, Tn) }

=< p{C2wf(M¢ Xy xn) + 2C2C4wf(xm Txnr Txn)}
but @y (x, Ty, Txn) < 0F (X, t, 1) + 05 (4, Ty, T
2 2
G
A
2

<p Cza))\ U, Xy %) + 2C2Cy (a) (%, 1, 1) + wi(u, Tx,, Tx,,))}
2
(

IA

0] Co00F (%11, %) + 2C2Ca(Cr0f (0, 11, 1) + Cor00F (14, T, Ti)) }

{
{
{
{

IA

P CZC‘))L (Lt xn’xn) + 2C2C4 26!)?(1/!,96”,96”) + w; (M, Txn: Txn))}

IA

P Co00f (1, %1, %) + 2C5 Ca(2Co008 (s, %, 20) + 05 (11, Tty Ti)) }

Czwf(u,x,,,x,,) + 4C§C4wf(u,xn,xn) + 2C2 C4w,\ (u, Tx,,, Txn))

0

(
p(Cg(l + 4C§C4)wf(u,xn,xn) + 2C2C4w,\ (u, Tx,,, Txn))

so that

,OCg(l + 4C%C4)

G
’x}’U xn ) 3.26
apcie, ) (3.26)

o (u, Ty, Tx,) <

therefore, we have

@F (1, Tan, Tn) < 005 (1, %, %), (3.27)

pCa(1+4C3Cy) 9 1 .
ETe Land C5C, € (0, 7;), wherej = 2.

Case 3. If K, (u,x,,%,) = a),\G(u, u,xy,), by condition (3) of Proposition 2.2 and Defini-

where 6; =
tion 2.11, then inequality (3.24) becomes

wf(u, Tx,, Tx,) < ,oa)f(u, U, X,)

< 20§ (th; X )
2
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< 20Co00 (1, %, %)
< 8w (u, Xy %), (3.28)
where §; = joCy <1and G, € (O,l,ip) forj=2.
Case 4. 1f K (1, %, %,,) = wf(x,,,xy,, Tx,,), using condition (3) of Proposition 2.2, condition
(5) of Definition 2.1 and Definition 2.11, then inequality (3.24) becomes
G G
@y (t, T, Txn) < p@y (%, X, T1)

< prg(xn, Ty, Txy)

< 2Cyp0F (%, Ty, Tt

< 2C2p(wg(xn, u,u) + a)g(u, Txy, Txn))
< 2C3p(0F (s t, 1) + 0F (11, T, T))

< 2C2,0(2a)f Uy Koy X) + 0 G (u, Tx,, Tx,,))

3
< 2C2p(2C2a)k (8, %0, %) + 0 (11, T, Tx,,))
so that

@ (, Ty, Ty) < Bos (1, %, %), (3.29)

where g = 41 2 <land C? e(O )forj:2.
Case 5. If K,\(u KXp»Kn) = @ G(u, Txn, Tx,), using condition (6) of Proposition 2.2 and
Case 4, then inequality (3.24) becomes
G G
@, (U, Tx, Txy) < pwy’ (1, Ty )

< (0 (1400, %) + F (s oy Tit) + 0 (s, i)
4 4
= p(a)g(u,xn,x,,) + ng(x,,,xn, Txn))
2 4

< p(Co0f (1, Xy %) + 2Ca00F (s %, Tx))
< p(Coe (thy 2, %) + 6CaCa0 (14, X0, %)

+ 4C4C§a)f(x,,, Tx,, Tx,,)). (3.30)
Therefore, from inequality (3.30), we get

pCz(l + 6C4C ) G

U, Xy, 3.31
= 1—4,0C4C§ ( XnrXn)s ( )

wf(x,,, Tx,, Tx,) <

so that C2C € (0, ) where j = 4.
Case 6. If K, (u, x,,,xn) o G (x,,, Txy, Tx,,), using property (5) of Definition 2.1, condition
(3) of Proposition 2.2 and Definition 2.11, then inequality (3.24) becomes
@ (t, T, Tan) < p@y (%, T, Ttn)

< ,o(a)f(x,,, u, 1) + oS (u, Ty, Tx,,))
3 3

Page 19 of 50
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< pCo(f (o 1, 1) + 5 (4, T, Tt))

< pCo (2005 (1, X %) + @05 (11, T, Tii))
2
< pCa(2Co08 (2, %) + @05 (11, Ty, Txn)),
so that

2pC?
P2 % (u,%,,%,), for some C, >0, (3.32)
-pC

w$ (u, Ty, Txy) < -

so that C, € (O ) where j = 1.
Case 7. If K; A(u KXpsKn) = WF S(u,u, Tx,), using conditions (6), (3) of Proposition 2.2 and
Definition 2.11, condition (5) of Definition 2.1, then inequality (3.24) becomes
a)l\G(u, Tx,, Tx,)
< ,oa)f(u, u, Tx,)

< p{a)f(u,xn,x,,) + wg(u,xn,x,,) + wg(xn,x,,, Tx,,)}

<p Cza)k (U, 2, %) + C4a))\ (u, %, %) + C4wA (%725 %2, Tx,,)}
=p (C2 + C4 a))L u, xn:xn) + C4wx (xn:xn: Txn)}
< p{(Ca + Co)oog (14, %, ) + 2C4wk (s T, Tt }

I A

(C2 + C‘L)C‘))L (u xn:xn) + 2(:2(:’460)L (xny Txnx Txn)}

I A

Cy + Ca) o (1, %0, %) + 2C2 Cy (0§ (x,,,u u) + w; S (u, T, Txn)) }

I/\

(Cy + C4)w,\ (4, %, %) + 2C2 Cy (a)k (s 1, 1) + 5 G (u, Tx,, Txn))}

/\

(Cy + Ca)of (14, %, %) + 2C2 C4(2wG(u X %) + 0F (1, T, Tx)) }

{
{
{
Pl
Pl
Pl
Pl
{

IA

p1(Cy + C4)a)k Uy X, %) + 2C C4(2C2w)\ (8y Xy Xy) + 0 S (u, Ty, Tx,,))}

p((Cz + C4)CL)A (s, %, %) + 4C§C4wf(u,xn,x,,) + 2C§C4a)f(u, Tx,, Tx,,))
= p((Ca + C4 +4C3Ca) 0 (t, %, %) + 2C5 Cacof (ut, T, ), (3.33)

so that inequality (3.33) becomes

wf(u, Tx,, Tx,) < njwf(u,xn,xn), (3.34)
where 7; = % 1,and C2C4 € (0, l) where j = 2. Since x, — u, n — 00, in all
the cases, we have Txn =u=Tuasn— oo, showmg that T is modular G-continuous at
the fixed point u. 0

Remark 3.1 If the statement of Theorem 3.1 holds without non-symmetric condition and
the maximum in inequality (3.1) is @Y (x, y,z), then inequality (3.1) becomes

0¥ (Tx, Ty, Tz) < pws(x,9,2), Vx,9,z€ X,6,p € (0,1),A>0. (3.35)

This generalized Theorem 3.2 in [35].
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Remark 3.2 If the statement of Theorem 3.1 hold without Ajz-type conditions and the

maximum in inequality (3.1) becomes
a),\G(Tx, Ty, Tz) < pK;.(x,y,z) forallx,y,z€ X 6,A >0, (3.36)
where

K;(x,9,2)
wf(x, 9,2), wf(x, Tx,y), wf(x, Tx, Tx), a)f(x, Ty, Ty), a)f(x, Tx, z),
Sy, Ty, Ty), 0 (y, Tx, Ty), 0¥ (, Tx, Ty), S (y, Tz, Tz),
- of (z, Tx, Tx), o (2, Tz, Tz), o5 (2, Tx, Ty), f (2, T*x, Tz),
of (Tx, T*x, Ty), o (Tx, T, Tz)
Then T has a unique fixed point in X,¢ and is modular G-continuous at the fixed point

(say u).This is Theorem 3.1 in [30], Theorem 2.1 in [12] in the setting of modular G-metric

space.

Remark 3.3 Remark 3.2 can be extended a little as follows: If the statement of Theorem 3.1

holds without As-type conditions and the maximum in inequality (3.1) becomes
a),\G(Tx, Ty, Tz) < pK;.(x,y,z) forallx,y,z€ X, 6,A >0, (3.37)
where

K (x,9,2)

a)AG (%,9,2), wf (%2, Ty), a)f(Tx, Y, 2),

wf (%, Tx, ), wf 5,2z, Ty), wf (x, Tx, Tx),
wf(x, Ty, Ty), a)f(x, Tx, z), wf(y, Ty, Ty),
= max )

wS(y, Tx, Ty), 0¥ (, T?x, Ty), wS(y, Tz, Tz),

wf(z, Tx, Tx), wf(z, Tz, Tz), wf(z, Tx, Ty),

of (z, Tx, Tz), 0 (Tx, T?x, Ty), f (Tx, T*x, Tz)

then T has a unique fixed point in X ¢ and is modular G-continuous at the fixed point
(say u). This is an extension of Theorem 3.1 in [30] in the setting of modular G-metric

space.
We give the following examples to support Theorem 3.1.

Example 3.1 Suppose that X = [0,1] U {oo} C R with the modular G-metric for A > 0 de-
Gxy.2)

x)hyz 2
Define a self map T: X,,¢ — X,c by Tx = 5, Vx € X 6, then:

fined by w9 (x,y,2) = so that G(x,y,z) = max{|x—y|, |y—z|, |z—x|} forallx,y,z € X G.
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(i) (X, ) is a G-complete modular G-metric space. It suffices to show that any arbitrary
sequence we pick in modular G-metric space, i.e. {x,},en € X,6 will be a modular G-
Cauchy sequence; that is if for every € > 0, there exists n, € N such that wf(xn,xm,xl) <€
for all n,m,l > n. and A > 0. Recall that a modular G-metric space X, is said to be G-
complete if every G-Cauchy sequence in X6 is G-convergent in X, c. Indeed, let (X, ®“) be
a modular G-metric space and let {x,},eny € X, ¢ be a sequence that converges to u € X .
Let € > 0 be arbitrary. By definition of the modular G-metric and for all A > 0, there exists

ne. € N, Cy > 0 such that wf(x,,,xm, U) < z= for all n,m > n, anda)A (%psy Xy 1) < for

362
all n,m > n, for all A > 0. Using condmons (4), (5) of Definition 2.1 and cond1t10n (3)

of Proposition 2.2 and Definition 2.11 or in particular the Remark 2.4, we have, for all

nm,l > ne,

wf(xn,xm,xl) < wg(xn, u,u) + wg(u,xm,xl)
< G (%, t, 1) + CoF (W4, Xy, X1)
=C, [a)f(xn, u,u) + a)f(u,xm,xl)]
<G [ng(xn,xn, u) + wf(u,xm,xl)]
<G [2C2wf(x,,,x,,, u) + wf(u,xm,xl)]

= 2C§wf(x,,,x,,, u) + Czwf(u,xm,xl)

< 2C2 5+ Cos—
232 3C2
2
S e (3.38)
373

Thus wf(x,,,xm,xl) <€ for all n,m,l > ne and X > 0. Therefore, {x,},>1 is a modular G-
Cauchy sequence. Let {x,},>1 be a modular G-Cauchy sequence. Since every modular
G-Cauchy sequence is modular G-bounded, {x,},>1 is modular G-bounded. Since every
modular G-bounded sequence has a limit point, {x,},>1 has a limit point u. Furthermore,
we show that {x,},>; converges to u. Let € > 0 be given. Since {x,},>1 is a modular G-
Cauchy sequence, there exists a positive integer, 71, and C; > 0 such that wf(xn,xm,xm) <
ﬁ Vn > m and for all A > 0. Since u is a limit point of {x,},>1, every neighborhood of

u contains infinitely many times of {x,},>1 which implies that x,, € (u — 35, u + 3 ) for

3C2
infinitely many values of n. In particular, we can find a positive integer k > m, A > 0 and
Cy4 > 0 such that a)AG(xk,xk, u) < L Vk>mi.e x; € (u— 3%4,14 + 3674). Also, since k > m, we
have o¢ (xx, %, %) < 3&:- Now by condition (6) of Proposition 2.2 and Definition 2.11 we

have

w}?(xmxm M) =< a)g(xmxmrxm) + a)g(xm,xm;xk) + w(z(xk;xkr M)
2 4 2

< CZQ))?(xm Xms xm) + C4a)f(xm, K xk) + C4CU§(JC]O Xiks M)

€ €
G- v C- v
<3¢, T™3c, T Mg,

—e. (3.39)
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Thus wf(xn,xn, u) < € for all » > m and A > 0, showing that {x,},>1 converges to u € X .
Hence (X, %) is a modular G-complete modular G-metric space.
(ii) T satisfies inequality (3.1) of Theorem 3.1. Indeed, take |x| < %, ly] < % and |z| < %

By Definition of the modular G-metric, we get

1
S (Tx, Ty, Tz) = i max{|Tx — Ty|, | Ty - Tz|, [Tz - Tx|} Vx,,z € X6

2 2 2 2 2 2
cmax S L LB L
2 2012 2|2 2
1
- Emax{|x2—y2 o =22, o - 22|}
1
= 5maX{|x+y||x—y|,|y+ZI|y—ZI,|x+ZI|x—ZI}
1
= 5 max{(|xl + yl)lw =1, (Iyl + 12l) ly = 2l, (121 + I2) I — [}
1
= g max{lx -yl 1y - zl,lx - I}
1
= wa(x,y,z)
1
< Elﬁ(x, ¥,2), (3.40)
where
I<)L(x’y’z)

wf(x, 9,2), w,\G(x, z, Ty), wf(Tx, 9,2), wf(x, Tx,y), wf(y, z, Ty),

of(y,z, TY)[1 + 0f (x, Tx, y)]
1+ w/\G(x, 9,2)

¥ (x, Tx, Tx), 0¥ (x, Ty, Ty),

y , 1Y, 1 G , Tx,
¥ (x, Tx, z), oF (v, Ty, Ty), wy (%, Ty, 2)[1 + wy’ (%, Tx, y)]

1+ P (x,y,2)

¥ (%, T, 2)[1 + f (x,,2)]

S (y, Tx, Ty) ,of (, T?x, Ty),

"1+ a)f(x,y, Z) + w)\G(y, Tx,z)
= max . o
;' (%, Ty, 2)[1 + 07 (%, 5, Ty)]

wf(y, Tz, Tz), wf(z, Tx, Tx),

1+ 0%(Tx,y,2) + wS(x,2, Ty)’
w%(z, Tz, Tz), ¥ (z, Tx, Ty), 0¥ (z, T?x, Tz), wf(Tx, T?x, Ty),

wf(x, z, Ty)[1 + wf(x, z, Ty)]

G 2
w, (Tx, T x, Tz), ,
& ( ) 1+ wf(Tx,y,z) + wf(x,z, Ty)

0 (T%x, Ty, T2)[1 + w¥(Tx, y,2) + 0 (Tx,y, T2)]
1+ ¥ (Tx,y, Tz) + ¢ (T%x, Ty, Tz)

(iii) T has a unique fixed point at x = 0 and 2. To see this, we know that Tx = x is the

fixed point of T. Therefore, we have

Tx=x =— Tx—-x=0
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= ?—x:O
= x*-2x=0
= x(x-2)=0
= x=0 or x=2. (3.41)

To check, we get for x =0, T(0) = % =0andforx=2, T(2) = % =2.

(iv) T is modular G-continuous at the fixed point u € X . Indeed, to avoid duplication
of proof, if we take a sequence {x,},>1 € X such that {x,},>1 converges to u = %, then it
follows from inequalities (3.24) to (3.34) that

wf(u, Tx,, Tx,) — 0 VA >0,as n — o0. (3.42)

This shows that Tx,, = u = Tu as n — o0.

Example 3.2 Let X = RU {00} C R. Define G: R x R x R — [0, 00) by G(x,y,z) = max{|x—
9|, |y — zl, |x — 2|} for all distinct x,y,z € R and 0 for x = y = z. For any A > 0, let a)f(x,y,z) =
% forall x,,z € R. Defineamap T:R — Rby Tx = @ Vx e R.

Indeed, the real line endowed with the above modular G-metric is a complete modular
G-metric space and it follows directly from (i) of Example 3.1 above. T has a trivial fixed
point at x = 0 and x = arcsin(6), i.e. we know that Tw = w is the fixed point of 7" and take
w = sin(x). Therefore, we have

Tw=w = Tw-w=0

= w-6w=0
= ww-6)=0

= x=0 or x-=arcsin(6), (3.43)

and it is G-continuous at u € X ¢ say. To see this, if we take a sequence {x,},>1 C X such
that {x,},>1 converges to u, then it follows from inequalities (3.24) to (3.34) that

w,\G(u, Tx,, Tx,) — 0 VA >0,as n — oo. (3.44)

This shows that Tx,, = u = Tu as n — oo.
Lastly, for all x,y,z € R and taking | sin (z)| < ||,

G(Tx, Ty, Tz) = max{|Tx— |, | Ty — Tz|, | Tx — Tzl}

= é max{ |sin2 (x) — sin’ (y) }, {sin2 (y) — sin? ()

sin? (x) — sin? (z)| }

’

sin (y + 2) sin (y - 2)|,

’

1 ‘sin (¢ + y)sin (x — y)
X

|sin (x + 2) sin (x — 2)|

1
= gmax{|x—3’|,|y—z|,|x—z|},
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1
S (Tx, Ty, Tz) < EIQ (*x,9,2),
where

I<A. (xr Y Z)
¥ (x,9,2), 08 (%, 2, Ty), 05 (Tx, ¥, 2), 0 (%, Tx, ), ©F (7, 2, Ty),

wf(y, z, Ty)[1 + wf(x, Tx,y)]
1+l (x,y,2)

wf(x, Tx, Tx), wf(x, Ty, Ty),

oS (x, Ty, 2)[1 + of (%, Tx, y)]

G G
x, 1x,z2), , Ty, Ty),
@;'( )01 1Y) 1+ of(x,,2)

wf Ty, 2)[1 + w,\G(x, ¥,2)]

G 3 i
" Tx, Ty, o) ,Tex, Ty),
w00 T 1), +of (0,2 +of (3, Trz) b !

= max G G
0o 32 + o0y, T Gy

G
w,(y, 1z, Tz),
0 ) 1+ wf(Tx,y, Z) + a),\G(x,z, Ty)

of (z, Tz, Tz), of (2, Tx, Ty), o (2, T, Tz),

of (x,2, Ty)[1 + o (x, 2, Ty)]

G 2 G 2
o, (Tx, T*x, Ty), 0y (Tx, T*x, Tz), )
i y) k( ) 1+ wf(Tx,,2) + 0Y (x,2, Ty)

of (T, Ty, T2)[1 + 0f (Tx,3,2) + 0 (T, y, T2)]
1+ 0%(Tx,y, Tz) + 0% (T, Ty, Tz)

Therefore, all the conditions of Theorem 3.1 are satisfied.

Remark 3.4 With some w® elements in Theorem 3.1, for A > 0, we have

wf(Tx, Ty, Tz)
wS(x,9,2), 0 (%, Tx, Tx), 0 (y, Ty, Ty), 0 (2, Tz, TZ),

< kmax , (3.45)
wf(x, Ty, Ty), wf(z, Ty, Ty), G(z, Tx, Tx)

where k € (0,1). Then T has a unique fixed point say # and is modular G-continuous at u.
This is Theorem 2.1 in [47] in the setting of modular G-metric space.
Its variant form in modular G-metric space is of the right form, for any A > 0, m =

1,2,...,r, then we have

oS (T"x, T™y, T"z)
of (%,9,2), oF (%, T"x, T"x), 05 (v, Ty, T™),
< kmax § of (z, 7"z, T"z), S (x, Ty, T™), ) (3.46)
of (2, ™y, T™y), G(z, T"x, T"x)

where k € (0,1). Then T has a unique fixed point (say %) and is modular G-continuous

at u. This is Corollary 2.3 in [47] in the setting of modular G-metric space.
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Remark 3.5 If the statement of Theorem 3.1 holds and

S (%,9,2), 05 (%, 2, Ty), 0f (Tx, 3, 2), 05 (%, Tx, ), 0F (5, 2, Ty), 0 (%, Tx, Tx),

o,z T + of (%, Tx, y)]
1+ (x,y,2)

wf(x, Ty, Ty), ,a)f(x, Tx,z), wf(y, Ty, Ty),

oS (x, Ty, 2)[1 + 0¥ (x,9,2)]
1+ 0%x,y,2) + 0S(y, Tx, 2)’

wf(x, Ty,2z)[1 + wf(x, Tx, )]

G
,w, (y, Tx, Ty),
1+0%x,y,2) Y 2

wf (%, Ty, 2)[1 + of (x,y, Ty)] (e T, T),

kmax { 0%y, T*x, Ty), 0%y, Tz, T2),
* (y y) 0 ) 1+ wf(Tx,y, z) + wf(x, z, Ty)

wf(z, Tz, T7), wf(z, Tx, Ty), wf (z, T?x, Tz),

wf (%,2, Ty)[1 + o (x,2, Ty)]

G 2 G 2
w (Tx, T x, Ty), w, (Tx, Tx, Tz), ,
* ( y) 7 ) 1+ 0¥ (Tx,y,2) + 0l (x,2, Ty)

of(T%, Ty, T2)[1 + 0 (Tx,,2) + 0 (Tx,, T2)]
1+ o(Tx,y, Tz) + o (T2x, Ty, Tz)

= k{a)f(x, Tx, Tx) + wf(y, Ty, Ty) + a)f(z, Tz, Tz)} (3.47)
forall x,y,z € M C X, . This is Theorem 3.6 of [14].

Corollary 3.2 Let (X,w®) be a G-complete non-symmetric modular G-metric space satis-
fying a As-type condition, such that C,Cy € (0, ﬁ) andlet T : X6 — X6 be a mapping.
Suppose that there exists ). >0, and k € (0,1) such that

w,\G(Tx, Ty, Tz)

wf (%, 9,2), wf (%,z, Ty), wf(Tx, Y, 2), a)f (%, Tx, ), a)l\G 5,2z, Ty),

a)AG(y, z, Ty)[1 + a)f (%, Tx, y)]

of (x, Tx, Tx), of (x, Ty, T), =
1+ wy(x,9,2)

G(x, Ty, z)[1 + 0% (x, T,
S, Tio 2, S, Ty, Ty), 22 22U+ 0500 T )]

1+ P (x,y,2)

0¥ (x, Ty, 2)[1 + ¥ (x,,2)]

G G 2
w ]TxJT ) @ 7Tx’T ’

0 » 1+l (x,9,2) + 0 (y, Tx, z) ‘b 9)
< kmax

a)f(x, Ty,2)[1 + wf(x, v, )]
1+ wS(Tx,y,2) + 0 (x,2, Ty)

wf(y, Tz, T7), ,%(z, Tx, Tx),

o (z, Tz, Tz), o5 (2, Tx, Ty), o5 (2, T, Tz),

S (x,z, Ty)[1 + 0¥ (x, 2, Ty)]

¢ ( Tx, T?x, Ty) ,of ( Tx, T?x, Tz) ,

1+ 0%(Tx,y,2) + wS(x,2, Ty)’

0% (T?x, Ty, T2)[1 + 0f (Tx, y,2) + of (T, y, Tz)]
1+ ¥ (Tx,y, Tz) + 09 (T%x, Ty, Tz)

wf(x, Y,2) + wf(x, Tx, Tx) + wf(y, Ty, Ty) + wf(z, Tz, T7)
=k + wf(Tx, ,2) + wf (y, T?x, Ty) + wf(y, Tz, T7) + wf(z, Tx, Tx) (3.48)

+wf (2, T?x, Tz) + of (Tx, T*x, Ty) + o (Tx, T*x, Tz)
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forall x,y,ze M C X6, A >0. Then T has a unique fixed point in X 6 and is modular
G-continuous at the fixed point (say u).

Proposition 3.3 Let (X, w®) be a G-complete non-symmetric modular G-metric space sat-
isfying a As-type condition, C,Cy € (0, ip) andlet T : X ¢ — X, be a mapping. Suppose
that there exists . > 0, and p € (0, 1) such that
wf(Tx, Ty, Tz)
wf(Tx, 9,2), wf(z, Tx, Tx),

S PMAXY ,G(T2x, Ty, T2)[1 + 0% (Tx, 3, 2) + 0% (Tx, y, T2)] (3.49)
1+ w¥(Tx,y, Tz) + ¢ (T%x, Ty, Tz)

forall x,y,ze M C X6, » >0. Then T has a unique fixed point in X 6 and is modular
G-continuous at the fixed point (say u).

Proof Let xy € X6 be arbitrary. We generate the sequence of iteration of 7 based on
x0 € X,G as follows:

Txo =X1
Tx1 = xo
T, = Xp41 (3.50)

for all n € N. If there exists some ny € N such that x,,,.1 = x,,, then x, is a fixed point of T'.
Now for all # € N, x,,,1 # x,,, so that wf(nn,xml,xml) > 0 and for A > 0, take x = x,, and
y = %Xy41 = 2z, then we have wf(xn+1,xn+2,xn+2) = a)f(Tx, Ty, Tz) = wf(Txn, Txy41, TXpi1) SO
that Vx,,, x,.1 € X6, A > 0, inequality (3.49) becomes

G
w;, (xn+17 KXn+2s xn+2)

w}?(Txm K1 Xnel)s wg(xrul, Tx,, Txy),

<
= pmax w}?(Tme Txn+1: Txn+1)[1 + w}?(Txnrxn+1:xn+l) + w}?(Txn’xn+lr Txn+1)]
1+ a))?(Txmanrl: Txpi1) + wf(szm Txpe1y Tx011)
G G
;. (xn+1:xn+lyxn+l): Wy (xn+1:xn+ly Xns1)s
= p max

U))Cj(xnﬂ: Kr2s Xna2)[1 + wf(xnﬂyxnﬂ;xml) + wf(xml»xnﬂyxnﬂ)]

G G
1+ (2N (xn+1rxn+1:xn+2) + w, (xn+2y Xn+2s xn+2)

Therefore, we have wf(xml,xmz,xmz) <0.Form>neN, we get
lim wf(x,,,xm,xm) =0. (3.51)
n,m— 00

For n,m, k € N, condition (2) of Proposition 2.2 implies that

0 Xy Fos 1) < S Koy Koy Xor) + 05 (Xbey Xty Xo), (3.52)
2 2
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so that on taking the limit of both sides of inequality (3.52) as n,m,! — oo and by applying
Definition 2.11 and Eq. (3.51), we get

. G . G . G
Hm @y (X, X k) < M ©F (K Xy X) + 1M @03 (ks Xy %)
00 nm—oo 3 km—oo 2

n,m,k—

SCZ lim w}?(xmxmyxm)'l'CZ lim wf(xk:xmrxm)
1n,m—> 00 k,m— 00

= C2< lim wf(xn,xm,xm) + lim wf(xk,xm,xm)>, (3.53)
n,m— 00 k,m— 00
thus we have
lim a)AG(xn,xm,xk) =0. (3.54)
n,m,k— 00

Equation (3.54) shows that {x,},cn is a modular G-Cauchy sequence. By Theorem 3.1, T

has a unique fixed point in X,¢ and also is modular G-continuous at the fixed point . [J

Proposition 3.4 Let (X, w®) be a G-complete non-symmetric modular G-metric space sat-
isfying a As-type condition, such that C,C, € (0, ﬁ) andlet T : X, 6 — X, be a mapping.
Suppose that there exists ). > 0, and p € (0,1) such that

0¥ (Tx, Ty, Tz)

w(x,9,2), 0¥ (Tx,y,2), 0° (2, T, Tx),

= pmax g ,6(T2x, Ty, T2)[1 + 0 (T, 3, 2) + wS(Tx,y, T2)] | (3.55)
1+ @¥(Tx,y, Tz) + o (T2x, Ty, Tz)

Then T has a unique fixed point in X 6 and is modular G-continuous at the fixed point

(say u).

Proof From Proposition 3.3, 07 (%41, ¥ns2, %42) < pOF (X1, X441, %ns1), SO that
( ) < pof( ) (3.56)
Wy Xn+1:Xn+2,Xn+2) = POy Xy Xp+15Xn+1)s .
therefore,

G G
Wy (%n+1, Xpa2, Xps2) < pPw; (%0 Xpis15 Xs1)
= pzw}?(xn—l,xmxn)

3
=p Cl)f(xn,z, Xn-1, xn—l)

< p"wf (x0,%1,%1). (3.57)

But Y, 0" < +00. Now Y,y OF (41, %2, Xnr2) < 0 (%0,%1,%1) Y, 0" < +00 for all

A > 0. Suppose that m,n € N and m > n € N. Observe that, for any arbitrary ¢, using the
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rectangle inequality repeatedly and condition (2) of Proposition 2.2, we have

G

A
m—n

G

A
m—n

G

w,\G(xn:xm;xm) <w (% X 15 Xns1) + @ (Kne1s Xpe2s Xpe2) + w7, (%420 Xpe3s Xpa3)
m-n

+ wG‘A (xn+3rxn+4:xn+4) LR wGA (xm—l’xm,xm)

m—n m-n

IA

G G
w (xnyxn+l:xn+1) +w; (xn+1rxn+2:xn+2) +w; (xn+2:xn+37xn+3)
m m

3> Q

+

IS
Q@

G
(Xe3s Xpsds Kpsa) + -+ - + Wy (X1 %> X))
m

G
= wy (xn+1rxn+2: xn+2)
n=N

<€, (3.58)
for all m > n > N for some N € N. As € is arbitrary, we have

w,\G(x,,,xm,xm) =0 asm,m—>o00 or lim wf(xn,xm,xm) =0. (3.59)

n,m—> 00

For n,m, k € N, condition (2) of Proposition 2.2 implies that
G G G
W, (xm X xk) < a)'% (xm Xm» xm) + a)% (xk’ KXim» xm): (360)

so that on taking the limit of both sides of inequality (3.60) as #, m,[ — oo and by applying
Definition 2.11 and Eq. (3.59), we get

. G . G : G
lim @7 (%, %, %) < 1m @3 (%, Xy %) + M @F (i, Xy %)
n,m,k— 00 nm—soo 3 km—oo 2

SCZ lim w}?(xn:xmyxm)"'CZ lim wf(xk:xmrxm)
7,m—>00 k,m— o0
=Gy i G( )+ i (. )); (3.61)
=Cy| lim wy (% X Xm) + UM @) (%%, X X)) )5 .
n,m—> 00 k,m— 00
thus we have

lim wf(xn,xm,x/() =0. (3.62)
n,m,k— 00

Equation (3.62) shows that {x,},cn is a modular G-Cauchy sequence. By Theorem 3.1, T
has a unique fixed point in X ¢ and is modular G-continuous at the fixed point u. O

Proposition 3.5 Let (X, w®) be a G-complete non-symmetric modular G-metric space sat-
isfying a As-type condition, such that C,C, € (0, lp) andlet T : X 6 — X6 be a mapping.
Suppose that there exists some positive integer m > 1, A >0, and p € (0,1) such that

o (T"x, T™y, T"'z)

o (T"x,9,2), 5 (2, T"x, T"x),

S PMAX N G (T7x, Ty, T"2)[1 + 08 (T"x,y,2) + 0C(T"x,5, T"2)] ( (3.63)
1+ (T7x,y, T"z) + 0 (T™x, T™y, T"z)
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Then T has a unique fixed point in X 6 and is modular G-continuous at the fixed point
(say u) for some positive integer m > 1.

Proof For m = 2, we have
a)f( T*x, %y, Tzz)

w? ( T2x,7, z), wd (z, T?x, sz) )

= PmMAX N (,G(T2x, T2y, T22)[1 + wS(T%x, 5, 2) + 0 (Tx,y, T?2)] [ - (3.64)
1+ w¥(T2x,y, T?2) + o (T%x, T2y, T?2)

Let xp € X, 6 be arbitrary. We generate the sequence of iteration of T based on xy € X ¢

as follows:
Txo =X1
Tx1 =X
Tx), = Xpi1 (3.65)

for all n € N. If there exists some ny € N such that x,,,; = x,, then x; is a fixed point
of T. Now for all n € N, x,,; # %, and A > 0, take x = x,, and y = x,,,1 = 2z, then we have
wf(xn+2’xn+37 xn+3) = wf(sz; sz; TZZ) = a)f(szm T2xn+1: szn+1) so that Vxnr Xn+1 € Xw;
A > 0, inequality (3.64) becomes

w}?(erZv Xn+3s xn+3)
wf(szm xn+11xn+1); a))C:‘ (xwrl; szm szn);

<
= pmax wf(szm szn+1: szn+1)[]- + w}?(sznrxn+lrxn+l) + w}?(szmer-lr szn+1)]

G G
1+ wy (sznverb szrwl) + w; (szn’ sz}’l+17 szn+1)

So,

G G
(<% (xn+2: xn+1’xn+1): (2N (xn+1: Xn+2s xn+2),

= pmax w}cj(xn+2; Xn+3» xn+3)[1 + w}?(erZ: xn+lvxn+l) + w}?(xn+2: Xn+ls xn+3)]

G G
1+ w; (xn+2: xn+11xn+3) + @y (x}’l+21 Xn+3s xn+3)

Proposition 3.4 shows that T has a unique fixed point in X, 6. For m = 3,4,...,k, T™u has
a unique fixed point u say, that is 7" u = u. Now we can see that Tu = T(T"u) = T"*'u =
T™(Tu). Suppose that Tu is another fixed point for 7"u and by uniqueness of the limit,
Tu = u. By Theorem 3.1, T"u is modular G-continuous at say u, i.e. T7"x, = u = T™u for
some positive integer m > 1. 4

Corollary 3.6 Let (X,w®) be a G-complete non-symmetric modular G-metric space satis-
fying a As-type condition, such that C,Cy € (0, ﬁ) andlet T : X, ¢ — X6 be a mapping.
Suppose that there exists some positive integer m > 1, A >0, and p € (0,1) such that

a)AG(T’”x, "y, T’”z) < pK,(x,9,2) forallx,y,ze X, 6,1 >0, (3.66)
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where

I<)\. (x)y) Z)

of (%,9,2), 0F (x,2, ™), 0 (T"%, 9, 2), 05 (%, T"%,),

of (9,2, T™y), o (%, T"x, T"x), 0 (x, T"y, T™Y),

oS (.2 T™)(1 + of (x, T, y)]
1+ a)f(x, 9,2)

a)f(x, T"y,z)[1 + wf(x, T"x,y)]
1+ P (x,y,2)

,of (%, T"x,2), ¢ (3, Ty, T™y),

,of (v, T"x, T™),

i (% Ty, 2)[1 + of (x,9,2)]

G m m
» W ) T X, T )
1+ wf(x, Y, 2) + a)f(y, T"x,z) * (y y)
= max o o
oy (%, Ty, 2)[1 + )’ (x,y, T™y)]

G m m
(v, T"z, T"z), s
At ) 1+ (T"x,y,2) + of (x,2, T™y)

of (2, "%, T"x), w5 (2, T"z, T"z), 05 (2, T"%, T™y),
of (2, T"%, T"z), &5 (T"%, T"x%, T™y), 0 (T, T"x, T"z),

of(x,z, T"y)[1 + 0¥ (x,z, T"™y)]

1+ 0%(T™x,y,2) + 0 (x,z, T™y)’

oF (T7x, Ty, T"2)[1 + 0f (T"%,y,2) + 0F (T"x, 5, T"'2)]
1+ wf(T7x,y, T™z) + of (T™x, T™y, T™z)

Then T has a unique fixed point in X ,c and T™ is modular G-continuous at the fixed point
(say u) for some positive integer m > 1.

Proof T™u hasaunique fixed point u say, thatis 7"u = u. Now we see that Tu = T(T"u) =
Ty = T™(Tu). But Tu is another fixed point for 7"u and by uniqueness of the limit,
Tu = u. By Theorem 3.1, 7" u is modular G-continuous at say u, i.e. T"x, =u=T"u. O

Corollary 3.7 Let (X,w®) be a G-complete modular G-metric space satisfying a As-type
condition, such that C,C, € (0, ﬁ) and let T : X 6 — X,6 be a mapping. Suppose that

there exists some positive integer m > 1, 1 >0, and p € (0, 1) such that
o (T"x, T™y, T"z) < poy (x,9,2) forallx,y,z € X,6,1 >0, (3.67)

then T has a unique fixed point in X,,c and T™ is modular G-continuous at the fixed point

(say u) for some positive integer m > 1.

Proof Following Corollary 3.6, T u has a unique fixed point u say, that is 7" u = u. Now
we see that Tu = T(T"u) = T u = T"(Tu). But Tu is another fixed point for 7"u and by
uniqueness of the limit, Tu = u. By Theorem 3.1, 7" u is modular G-continuous at say ,
ie. T"x, =u=T"u. O

Remark 3.6 The variant of Remark 3.5 above reads: let (X,»%) be a G-complete non-
symmetric modular G-metric space satisfying a As-type condition, such that C,Cy €
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(o, ﬁ) and let T: X6 — X6 be a mapping. Suppose that there exists some positive inte-
germ>1,A>0,and k € (0, 1) such that

wf(T”’x, T"y, T"z) < kQu(x,7,2) forallx,y,z € X,6,A >0, (3.68)
where

Q)» (xryr Z)

i (%,9,2), 0% (x,2, T™), 0 (T"%,5,2), 0F (%, T"%,y), 0 (1,2, T™),

S,z T™)(1 + of (x, T, y)]
1+ (xy,2)

P (x, T"y,2)[1 + 0¥ (x, T"x, )]

1+w%(x,y,2)

of (% T"x, T"x), oF (x, Ty, T™y),

’

of (% T"x,2), f (y, T™y, T™y),

’

of (x, T"y,2)[1 + 0¥ (x,7,2)]
"1+ 0%, 9,2) + 08 (y, T"x,2)

wf (3, T"x, T™y), o (% T"x, T™y)

= kmax oS (x, Ty, 2)[1 + wf(x,y, T"y)]

G m m
w, (y, T"z,T"z), ,
» (y ) 1+ wf(T’”x,y, Z) + wf(x, z, T™y)

of (2, "%, T"x), 05 (2, T"2, T"2), 5 (2, T, T™y),
of (2, T"%, T"z), 0f (T"x, T"x, T™y),

wf(x, z, T"y)[1 + a)AG(x, z, T™y)]

G m m m
o, (T"x, T"x, T"z), ,
al ) 1+ %(T™x,y,2) + oF (x, 2, T™y)

O (T7%, Ty, T"2)[1 + 0 (T"%,,2) + ©F (T",y, T"2)]
1+ 8(T™x,y, T"z) + 0@ (T™x, T™y, T™z)

= k{wf (%, T7x, T™x) + of (y, Ty, T™y) + w5 (2, T"z, T"'z) } (3.69)

forallx,y,z€ A C X, m=1,2,...,k. Then T has a unique fixed point for some positive
integer m > 1. This is a variant form of Theorem 3.6 in [14].

Proposition 3.8 Let (X, w®) be a G-complete non-symmetric modular G-metric space sat-
isfying a As-type condition, such that C,Cy € (0, ﬁ) andlet T : 2 C X6 — X6 bea map-
ping. Suppose that there exists some integer m > 1, A >0, and k € (0, 1) such that

oS (T"x, T™y, T"z) < kB;(x,5,2) for all x,y,z € X,6,1 >0, (3.70)
where

BA. (x, Y Z)
wf (%,9,2) + of (x, T"x, T"x) + of (y, T™y, T™y) + wf (2, T"z, T"z)
=k + o (T"%,9,2) + of (v, T"% T"y) + of (y, T"z, T"z) + ) (2, T"x, T"x)

+ oy (2, T"%, T"z) + wy (T, T"x, T™y) + of (T"x, T"x, T"z)
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forall x,y,z€ A C X 6, Then T has a unique fixed point for some positive integer m > 1.
This is a variant form of Theorem 3.6 in [14].

Theorem 3.9 Let (X, w®) be a G-complete non—symmetric modular G-metric space satis-
fying a As-type condition, such that C,Cy € (0 ) and let T : X6 — X6 be a mapping.
Suppose that there exists ). >0 and p € (0,1) such that

of (%,,2), 0f (x,2, Ty), F (Tx, 3, 2),

¥ (x, Tx, y), o (y,2, Ty), ¥ (%, Tx, Tx),
% (x, Ty, Ty), € (x, Tx, z), 0 (y, Ty, Ty),
wf(Tx, Ty, Tz) < p max . (3.71)
oS (5, Tx, Ty), oF (v, T%, Ty), 5 (9, Tz, T2),

; Gz, Tx, Tx), N G(z, Tz, Tz), wf(z, Tx, Ty),

wf (2, T, Tz), of (Tx, T*x, Ty), ) (Tx, T, Tz)
Then T has a unique fixed point in X, and is modular G-continuous at its fixed point

(say u).

Proof Following Theorem 3.1, Tu = u and hence T has a unique fixed point in X, 6. Also

Tx, =u=Tu as n — 0. O

Corollary 3.10 Let (X, ) be a G-complete non-symmetric modular G-metric space sat-
isfying a As-type condition, such that C,C, € (0, ﬁ) andlet T : X ¢ — X6 be a mapping.
Suppose that there exists some positive integer, m > 1, 1. > 0, and p € (0,1) such that

oS (T"x, T™y, T"z)
of (%,9,2), 0F (x,2, T"y), 05 (T"%,9,2),

of (%, T"x,y),0f (.2 T"y), F (x, T"x, T"x),

of (%, Ty, T™y), S (x, T"%,2), F (v, Ty, T™y),
< pmax (3.72)
of (v, T"%, T™y), S (y, T"%, T™y), o (y, T"z, T"'z),
of (z, "%, T"x), w5 (2, T"z, T"z), w5 (z, T"%, T™y),
w8 (2 T"x,T"z), (me, "%, T"y), a)f(T’”x, T"x,T"z)

Then T has a unique fixed point in X ¢ and T™ is modular G-continuous at its fixed point

(say u) for some positive integer m > 1.

Proof T™u hasaunique fixed point u say, thatis 7"u = u. Now we see that Tu = T(T"u) =
Ty = T™(Tu). But Tu is another fixed point for 7% and by uniqueness of the limit,
Tu = u. By Corollary 3.6, 7" u is modular G-continuous at u, i.e. T"”x,, = u = T" u for some

positive integer m > 1. O

Corollary 3.11 Let (X, ») be a G-complete non-symmetric modular G-metric space sat-
isfying a As-type condition, such that C,C, € (0, ﬁ) andlet T : X ¢ — X6 be a mapping.
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Suppose that there exists . > 0 and p € (0,1) such that

0 (Tx, Ty, Tz) < pK(x,9,2) forall x,y,z € X,6,A >0, (3.73)
where
K.(x,9,2)
p wf(y, z, Ty)[1 + wf(x, Tx,y)] wf(x, Ty,2)[1 + wf(x, Tx,y)]
wA (x7y7 Z):

1+ wf(x, Y,2) ’ 1+ wf(x, ¥,2)

(% Ty,2)[1 + 0f (x,,2)]  of (x, Ty,2)[1 + ©f (x,9, Ty)]
1+ S (x,y,2) + 0S(y, Tx,2) 1+ wS(Tx,,2) + 0C (x,2, Ty)

= max
a)AG(x, z, Ty)[1 + a)f(x, z, Ty)]

1+ 0%(Tx,y,2) + 0S(x,2, Ty)’

0% (T2x, Ty, T2)[1 + 0 (Tx, y,2) + oY (Tx, y, Tz)]
1+ w¥(Tx,y, Tz) + 09 (T%x, Ty, Tz)

Then T has a unique fixed point in X 6 and is modular G-continuous at its fixed point

(say u).

Proof Following Theorem 3.1, we have wf(xml,xmz,xmz) = a)AG(Tx, Ty, Tz) = wf(Tx,,,

Txy41, TX441), so that inequality (3.73) becomes

wf(xn+1:xn+2»xn+2) < PKG Xy K15 Xa1) VX Xpi1 € X,6,A >0, (3.74)

where

]<A (xm Xn+ls xn+1)

w}?(xn+1)xn+17 Txn+1)[1 + a))cf(xn; Txn; xn+1)]

wf(xn»xnﬂ;xml),

’

1+ wf(xn¢xn+11xn+1)

w)?(xn; Topi1>%ne1)[1 + w)?(xm Ty, X41)]

’

1+ w}?(xm Xn+1s xn+1)

wf(xm Topi1s %) [1 + w)?(xmxnﬂ:xnﬂ)]

G G ’
1+ Wy (%> Xpps 15 Xne1) + Wy (Kra1s Ty K1)
= max

wf(xm Txn+1¢xn+1)[1 + a))(\;(xnrxn+1: Txn+1)]

G G ’
1+ wy (Txn>xn+1,xn+l) + Wy (xmanrl: Txn+1)

wg(xn,xrﬁl: Txn+1)[1 + a))cj(xnrxn+1: Txn+1)]

G G ’
1+ ;. (Txn:xn+17xn+l) + Wy (xrnxn+1: Txn+1)

O (T, Thpi1, Tons1)[1 + OF (T, X415 %011) + OF (T, %41, Thni1)]

1+ wf(Txm Xnelr Thpi1) + wf(szm i1, Ths1)
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wf(xnﬂyxnﬂ;xnﬂ)[l + wf(xn:xml»xwrl)]

1+ w)cj(xmxnﬂx Xne1)

a))?(xn: xn+1’xn+l)x

’

w}?(xn:xn+2’xn+l)[1 + a)f(xmxwrl;xnﬂ)]

)

1+ wf(xn:xnﬂ;xnﬂ)

a))cf(xmxn+2¢xn+l)[1 + w)?(xn¢xn+lrxn+1)]
M
1+ wf(xmxn+l;xn+l) + a)f(xn+1:xn+1’xn+l)

= max G G
w;y (xn:xn+2:xn+1)[1 + Wy (xm xn+1’xn+2)]

G G ’
1+ w;y (xn+17xn+1,xn+l) + w, (xn:xn+1:xn+2)

w)?(xmxmhxnﬂ)[l + w}?(xn:xml»xnﬂ)]

G G ’
1+ Wy (K415 X1, K1) + w;y (%1 X 1 Xn2)

wf(anrZ: xn+2’xn+2)[1 + w}?(xn+l;xn+l)xn+1) + wf(xn+1,xn+lrxn+2)]

G G
1+ w; (%1415 X 15 Xy2) + w; (X420 Xna2s Xps2)

wf(xn, xn+17xn+l)r w)?(xn+lrxn+1: xn+2)y
G G

w5 (xn; KXn+2s xn+l)r @ (xnr Kn+2s xn+1)y

= max G G

Wy (%> X425 Xrs1)s w, (X1 Xprs15 Xnr2)s
G

Wy (%42, K42, Xps2)

wf(xm X1 Xne1) wf(xnﬂy Xl Xns2)s

= max wf(xn» Kn+2> Xiel)s a))?(xm Kne1> Xns2)s

a))cj (xn+2: KXn+2s xn+2)

By Theorem 3.1, T has a unique fixed point in X, ¢ and is modular G-continuous at its
fixed point u. d

Corollary 3.12 Let (X, ) be a G-complete non-symmetric modular G-metric space sat-
isfying a As-type condition, such that C,C, € (0, ﬁ) andlet T : X, c — X, be a mapping.
Suppose that there exists some positive integer, m > 1, 1. >0, and p € (0,1) such that

o (T"x, T™y, T"z) < pWilx,,2) forall x,y,z € X,6,1 >0, (3.75)
where

Wi (x,9,2)

o (y,z, T"Y)[1 + of (x, T"x,y)]
1+l (x,y,2)

w¥(x,9,2),

’

wf (%, Ty, 2)[1 + wf (x, T, )]

1+ Y (x,y,2)

’

wf(x, T"y,z)[1 + wf(x,y, 2)] a)AG(x, T"y,2)[1 + a),\G(x,y, T"y)]

= max G Gl e G rm G oy
1+ 07 x,9,2) + 07 (5, T"%,2) 1+ w(T"x,y,2) + 0 (x,2, T™y)

of(x,z, T"y)[1 + 0¥ (x,z, T"y)]

1+ 0%(T™x,y,2) + 0 (x,z, T™y)’

o) (T"%, T™y, T"2)[1 + 0 (T"'%,y,2) + & (T"%,y, T"2)]
1+ w$(T7x,y, T"z) + of (T™x, T™y, T™z)
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Then T has a unique fixed point in X 6 and T™ is modular G-continuous at its fixed point

u some positive integer, m > 1.

Proof By Corollary 3.11, T has a unique fixed point in X,¢ and 7" is modular G-

continuous its fixed point # some positive integer, m > 1. |

If we add some terms to Theorem 3.9 using condition (4) of Definition 2.1, we have the

following result.

Theorem 3.13 Let (X, w®) be a G-complete G-modular metric space satisfying a Az-type
condition, such that C, € (0, t), A>0,andlet T: X ,c — X6 be a mapping for which the
following condition holds:

wf(Tx, Ty, Tz)
wf(x, Y, 2), wf(x, Tx, y), a),\G(x, Tx, Tx), wf(x, Tx, z),
< pmax { o (y, Ty, Ty), of (v, Tz, T2), 05 (3, T*x, Ty), o5 (z, Tx, Tx), , (3.76)

wf(z, Tz, Tz), a)f (z, Tx, Tz), wf( Tx, Tx, Ty), wf(Tx, Tx, Tz)

where p € (0,1). Then T has a unique fixed point in X ¢ and T is modular G-continuous

at (say u).

Proof Let xy € X6 be arbitrary. We generate the sequence of iteration of 7" based on

x0 € X 6 as follows:

Txo =X1
Tx1 =X
Tx, = %41 (3.77)

for all n € N. If there exists some 7y € N such that x,,,1 = x,, then x; is a fixed point
of T. Now for all n € N, x,,,; #x, and A > 0, take x = x,, and y = x,,41 = z, then we have

@ (X415 %42, %n12) = 0 (Tx, Ty, T2) = 0% (Txy, Thns1, Tiys1) SO that

G
;. (xn+1: X2, Xy12)
G
N (Tx> a1, Tp41)
G G G
Wy (G er—l)r wy (%, T, Xri1), w, (xm Txy, Txn)y
G (%, T G Txpi1, T G Txpin, T
w;y (%, xn;xnﬂ):wx (®ns1) Tnr1, Te1), Wy (Fn+1> Te15 Tpi1),
< pmax

G 2 G G
w; (xn+1: T %y, Txnﬂ): Wy (K1, T, Tx), w;y (®n+1> Tnr1, T e1),

w}?(xn+1: szn, Txn+1)y a)}(f(Txm szn: Txn+1)r wg(Txn; T2xnr Txn+1)
(3.78)
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G G G
Wy (%) X1, Xra1)5 Wy (%) X1, Xrs1), Wy (%) X1, Xre1),
G G G
Wy (%) X1, K1), w5y (Xn+1, Xnr2, Xe2), w5y (Fn+1, Xnr2 Xe2),
= p max (3.79)
G G G
w; (xn+1,xn+2r xn+2)’ Wy (xn+1’ xn+1yxn+1): W (xn+1’ xn+2yxn+2);

w}? (xn+1 yKXn+2s xn+2)’ w}? (xn+1 »Kn+2s xn+2): wf (xn+1 »Kn+2s xn+2)

= pmax{wy (4, X1, %n41), OF Kps1r X2 Xns2) |- (3.80)
We have
OF (R 1> 20 Xpr2) < POF Ky a1, Xna1)- (3.81)
Therefore,

w)cf(xnﬂ;xnﬂ»xnﬂ) =< pwg(xmxnﬂrxnﬂ)
2. .G
=p w; (xn—lvxnrxn)

3G
< 1% w; (xn—Z; xn—l;xn—l)

< p"of (%9, %1,%1). (3.82)

But ), 0" < +00. Now >, O (%11, Xns2r Xnr2) < 0 (%0, %1,%1) D uen P" < +oo0 for all
A > 0. Suppose that m,n € N and m > n € N. Observe that, for any arbitrary €, using the

rectangle inequality repeatedly and condition (2) of Proposition 2.2, we have

G

G G
A (Kt 1s Xne20 Xne2) + 075 (Kpa2s Xpa3s Xpa3)
m-n

A
m—n m—n

wf(xmxm:xm) <w (%> Xps1,Xn11) + ©

G

A
m—n

G
(xn+37xn+4:xn+4) t--tw, (xm—l’xm,xm)

m-n

+w

<w

3> Q

G G
(X X 15 Xpa1) + w; (Kne1s Xne2s Xne2) + w3 (%420 Xpe3s X pe3)
m m
G G
+w; (xn+3r Kn+ds xn+4) t--tw; (xm—lr Xms xm)
m m

§ G
=< w; (xn+lrxn+2: xn+2)
n=N

<€ (3.83)
for all m > n > N for some N € N. As € is arbitrary, we have
wf(x,,,xm,xm) =0 asmm— 00 oOr lim wf(x,,,xm,xm) =0. (3.84)
n,m—> 00

For n,m, k € N, condition (2) of Proposition 2.2 implies that

0 Xy Xy 1) < S (Koiy Xy Xor) + 05 (Xbey Xty Xo), (3.85)
2 2
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so that on taking the limit of both sides of inequality (3.85) as n, m,! — oo and by applying
Definition 2.11 and Eq. (3.84), we get

. G : G . G
Hm @) (K X, %) < 1M @3 (K Xy Xe) + T @7 (5 X Xn)
n,m,k— 00 nmm—>00 3 km—o00 3

SCZ lim w}?(xmxmrxm)"'CZ lim w}?(xkﬂxmrxm)
k,m— 00

1,mM—> 00
= Cz( lim a)f(x,,,xm,xm) + lim wf(xk,xm,xm)); (3.86)
n,m— 00 k,m— 00
thus, we have
lim wf(xn,xm,xk) =0 Vi>0. (3.87)

n,m,k— 00

By Equation (3.87), {x,},cn is @ modular G-Cauchy sequence.

The completeness of (X, w®) implies that, for any A > 0, lim,, ;o wf(xn,xm, u) =0, ie.
for any € > 0, there exists 1y € N such that wf(xn,xm, u) < € for all m,m € N and n,m >
1o, which implies that lim,_, ,, x, — u. Suppose, if possible, that Tu # u, i.e. for A > 0,
a)AG(u, Tu, Tu) > 0 then from inequality (3.76), with x = x,,, y = u = z, then we have

wf(xml, Tu, Tu) = a),\G(Txn, Tu, Tu) < pK, (%, u,u) forallx,,u,€ X6, >0, (3.88)
so that

K (%, u, 1)
wf(xn, u,u), a)f(x,,, Tx,, u), a)f(x,,, Tx,, Tx,), wf(xn, Tx,, u),
= pmax wf(u, Tu, Tu), wf(u, Tu, Tu), wf (u, T?x,, Tu), wAG(u, Tx,, Tx,),

w,\G(u, Tu, Tu), a)f (u, T?x,, Tu), a)f(Txn, T2x,, Tu), wf(Tx,,, T2x,, Tu)
(3.89)

wf(‘xn’ u, M), a))(\;(xn’ Xn+1s u)) wf(xn’ xVH—l!x}H—l)’ a)f(x,,, Xn+1s u):

= pmax { of (u, Tu, Tu), wf (u, Tu, Tu), 0F (U, %42, Tir), OF (U, X1, %41, ,

@ (u, Tu, Tu), 0f (U, %42, T), 0F (1, Xii2, T), 05 (K41, X2, Toh)
(3.90)

as n — 00, we get
wf(u, Tu, Tu) < p max{a)f(u, Tu, Tu), a)f(u, u, Tu)}. (3.91)
Now we consider the following cases.
Case 1. If max{w?(u, Tu, Tu), oS (u,u, Tu)} = of (u, Tu, Tu), then inequality (3.91) be-

comes

wf(u, Tu, Tu) < pwf(u, Tu, Tu), (3.92)
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which implies that
(1 - p)of(u, Tu, Tu) <0, pe(0,1). (3.93)

Hence for all A >0, Tu = u.
Case 2. If max{a)AG(u, Tu, Tu),wf(u, u, Tu)} = wf(u, u, Tu), then, by condition (4) of

Proposition 2.2, inequality (3.91) becomes

a)AG(u, Tu, Tu) < pwf(u, u, Tu)

<2p0$ (1, Tu, T)
3

1
<2Cypws (u, Tu, Tu), C,e (o, 2—), (3.94)
0

which implies that
1- 2,0C2)a),\G(u, Tu, Tu) <0, (3.95)

for all A > 0 and C, € (0, ﬁ), which is a contradiction. Hence, Tu = u. Following Theo-
rem 3.1 carefully, T has a unique fixed point in X,¢ and T is modular G-continuous at
say u. 0

Remark 3.7 Let (X,w%) be a G-complete G-modular metric space satisfying a Az-type
condition, such that C; € (0, ﬁ), A>0,andlet T: X, ¢ — X, be a mapping for which the
following condition holds:

wf(Tx, Ty, Tz)
wf (%, 9,2), a)f (%, Tx, y), a)l\G (x, Tx, Tx), wf(x, Tx, z),
<pmax { oS(y, Ty, Ty), oF (y, Tz, Tz), ¢ (% T?x, Ty), w¥(z, Tx, Tx), (3.96)
of(z, Tz, Tz), of (2, T*x, Tz), of (Tx, T*x, Ty), 0 (Tx, T, TZ)
= awf(x, Tx, Tx) + ﬁwf(y, Ty, Ty) + wa(z, Tz, Tz) (3.97)

for « + B + y €(0,1). Then T has a unique fixed point in X, ¢ and T is modular G-
continuous at «. In fact this is Theorem 3.2 of [14].

Remark 3.8 Let (X,0%) be a G-complete G-modular metric space satisfying a As-type
condition, such that C; € (0, ip), A>0,andlet T: X ¢ — X, be a mapping for which the
following condition holds:

wf(Tx, Ty, Tz)
wf(x, 9,2), w,\G(x, Tx,y), w,\G(x, Tx, Tx), a)f(x, Tx,z),

< pmax { o (y, Ty, Ty), 0§ (v, Tz, T2), 0 (3, T2x, Ty), o (z, Tx, Tx), (3.98)

of (z, Tz, Tz), of (2, T*x, Tz), of (Tx, T*x, Ty), ) (Tx, T, Tz)
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= otw,\G(x, Tx, Tx) + ﬂwf(y, Ty, Ty) + wa(z, Tz, 17) + Swf(x,y, 2), (3.99)

fora + B+y + 8 €(0,1). Then T has a unique fixed point in X ¢ and T is modular G-
continuous at . This is Theorem 3.3 of [14].

Corollary 3.14 Let (X,w®) be a G-complete modular G-metric space satisfying a Az-type
condition, such that C, € (0, %), A>0,m=1,2,....k,andlet T : X ¢ — X, c be a mapping
for which the following condition holds:

wf (T"x, T™y, T"'z)
of (x,9,2), 0F (x, T"%,y), 0 (x, T"x, T"x),
S (x, T"x,2), € (y, T™y, T™y), &€ (y, Tz, T"z),
- i ) ol ( )@ ( )  6.100)
¢ (3 T"x, T™y), ¢ (z, T"x, T"x), ¢ (2, T"z, T"z),
of (2, T"x, T"z), 0f (T"x, T"x, T™y), 0 (T"x, T"x, T"'z)
where p € (0,1). Then T has a unique fixed point in X 6 and T is modular G-continuous

at its fixed point (say u).

Proof T"u has aunique fixed point u say, thatis 7" u = u. Now we see that Tu = T(T"u) =
T"* 1y = T"(Tu). But Tu is another fixed point for 7% and by uniqueness of limit, Tz = u.

By Theorem 3.13, T"u is modular G-continuous at u, i.e. T"x, = u = T"u. O

Remark 3.9 Let (X,w%) be a G-complete modular G-metric space satisfying a Az-type
condition, such that C, € (0, %) and there is some positive integer, m > 1, X > 0, and let

T:X,c — X,c be a mapping such that

of (7%, T™y, T"z)
of (%,9,2), 0f (x, T"%,), 0f (x, T"x, T"x),
¢ (% T"x,2), ¢ (%, Ty, T™y), f (% T"z, T"z),
< pmax (3.101)
¢ (% T"x, T™y), ¢ (z, T"x, T"x), oy (2, Tz, T"z),
of (2, T"x, T"z), 0f (T"x, T"x, T™y), w (T"x, T"x, T"'z)
= awf (x, T"x, T"x) + ot (y, ™y, T™y)

+y0l(z, Tz, T"z2) + 80%(x,3,2), (3.102)

fora + B+ y + 8 €(0,1). Then T has a unique fixed point in X,c and 7T is modular G-

continuous at its fixed point «. This is a variant form of Theorem 3.3 in [14].

4 Fixed point theorems of weakly compatible mappings in modular G-metric
space
In this section we will briefly investigate fixed point theorems of compatible mappings in

modular G-metric space.
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Theorem 4.1 ([15]) Let (X,w®) be a modular G-metric space and g,h : X — X be two
self-mappings satisfying either

of (gx,gy,g2) < ¢(max{wy (hx, gx, gx), of (hy, gy, &), w5 (hz,g2,82)}), (4.1)

or

of (gx,g7,g2) < ¢(max{wf (hx, hx, gx), of (hy, hy, gy), of (hz, hz,g2)}), (4.2)

for all x,y,x € X, and X > 0. If the range of h contains the range of g and h(X ) is a
complete subspace of X, then g and h has a unique point of coincidence in X,,. Furthermore,

if g, h are weakly compatible, then g and h have a unique common fixed point.

Theorem 4.2 Let (X,w®) be a modular G-metric space satisfying a As-type condition,
Cy+Cie(0,3) and T,S : X,.6 > X, be two self-mappings for which T(X,6) € S(X,6),
where S(X,,6) is a G-complete subspace of X ,c. Suppose that, for all 1 > 0, the following
condition holds:

wf (Sx, Sy, Sz), wf(Tx, Tx, Sz),

G o (Ty, Ty, Sy), & (Sy, Tz, Sz),
wy (Tx, Ty, Tz) < k max , (4.3)

S (Sy, Tx, Sy), 0¥ (Sz, Tz, Tz),

¥ (Tz, Sx, Tz), ¥ (Tx, Sx, Sy)

wherek < 1, forallx,y,z € X 6. Then T, S has a unique coincidence point in X ,c. Moreover,

if T and S are weakly compatible, then T and S have a unique common fixed point in X .

Proof Let %y € X, be an arbitrary point. Since T'(X,6) € S(X,c), there exists x; € X6
such that Txo = Sx;. Continuing in this way we have Tx, = Sx,,1, for n € N. So for any

A >0, wf(an+1,an,an) < wf(Tx,,, Txy-1, Tx4-1). From inequality (4.3), we have

a)AG(Sx,Hl, Sxm an)

a)f(Sx,,, an—ly an—l)’ wf(Txn’ Txn’ anfl)’
w}?(Txn—b Txn—lt anfl)’ wg(sx”*h Txnfl’sxnfl)’

< kmax (4.4)
w}?(sxn—l) Txn, an_l), wf(an_l, Txn—l; Txn—l)’
wf(Txn—li anr Txn—l)’ w)(L;(Tx”’ Sx”’ an_l)
a)xG(Sxm SXp_1,8%,-1), a)}?(sxn+lr SXns1, Sx1),
wf(an: Sxn, an—l)’ wf(sx”—l’ Skns Sx”_l)’

= k max , (4.5)

wf(sxn—l» Sxnr15 SXu1)s wf (S%_1, S%, SX,),

w)cj(sxm Sxm an), wf(sxwrlr an, an—l)
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using condition (4) of Definition 2.2 which we simplify as

wf(sxm Sxp_1, an—l); wf(sx;ﬁl; SXpi1s an—l);
@5 (Sxp41, Sxy Sxn) < kmax { @ (Sx, S, Sxu_1), 0 (Skpra1, SXp1, Sxp1), ¢ (4.6)

a)AG(Sxml, S, S%_1)

here we have the following cases.

Case 1. If the right hand side of inequality (4.6) is kwf(Sx,,, Sx,-1,8%,_1), then we have
wf(an+1,an,an) < kwf(an,an_l,an_l), ke (0,1). (4.7)
Case 2. If the right hand side of inequality (4.6) is kwf(Sx,Hl, Sx,41,8%,_1), then we have
OF (S%r11, S, Sx) < koo (i1, S%op11, S0, (4.8)
using conditions (6), (3) of Proposition 2.2 and Definition 2.11, we have

wf(sxmlr S, %) < kwf(sxn+1» SXp41, Sxp_1)

=< k{wf (an+1’ Sxu, an) + w?(sxwrl; SX, an)
2 4
+ a)f (an’ an’ an—l)}
4

=< k{ CZCUS(erle Sk, Sxn) + C4wf(5xn+1: 8%, Sx1)
+ C4w)CL7’ (an; SXpy Sxu_1 ) }

= k{ (CZ + C4)wf(sxn+lr an: an) + 2C4a)§ (an, an—lx an—l) }
2

< k{(Cy + Co) (Sxi1, S, Sx) + 2C5 Caw (S, SX1-1, S%-1) }-
Hence
W5 (SXps1, Sxny Sx) < pOF (S, Sk, Skn1), (4.9)

where p = % <1,and Cy + C4 € (0, %).

Case 3. If the right hand side of inequality (4.6) is kwf(an, Sx,,Sx,_1), then we have
0 (X1, Sy Sx) < kT (S%y1, S%11y SXi_1), (4.10)
using condition (3) of Proposition 2.2 and Definition 2.11, we have

wf(sxn+l7 an, an) < kw}?(sxnr an; an—l)

< 2kw§ (S%py Sp—1, 1)

< 2kCr¥ (Sxs, SX1,S%n1),
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hence
0 (X1, Sy Sx) < A (S, Sp1,S%-1), (4.11)

where d = 2kC; < 1 and C; € (0, %).
Case 4. If the right hand side of inequality (4.6) is kwf(Sxml, Sx,-1,8%,_1), then we have

a)l\G(anH, Sxyy Sxyy) < kwf(an+1,an_1,an_1), (4.12)
using condition (5) of Definition 2.1 and Definition 2.11, we have

wAG(Sx,,H, S, S%) < kwf(sxnﬂ» Sx-1, S%p_1)

=< k(wf (an+1: an, an) + a)? (an, an—l: an—l))
2 2

< kCo (S (Sx11, Sk Sx) + 05 (Sry SX1, S%-1)),
so that

wf(Sx,Hl,Sx,,,an) < bwf(Sx,,,Sx,,_l,an_l), (4.13)

where b = — kC <1land C, € (0, k)
Case 5. If the right hand side of inequality (4.6) is ka)f(Sx,Hl, Sxy, Sx,-1), using condition
(1) of Definitions 2.1, 2.11 and condition (6), (3) of Proposition 2.2, then we have
w)cj(sxn+1’ any an) = ka)}?(sxn+11 an, an—l)

= k{wA (%41, S, SX) + w»\ (an, Sy Situ)

+w, (anr an: an—l)}
4

el (Sxni1, Ssin, S5 + 0F (S, S S 1)}

I/\

CZC’))\ an+1:5xmsxn)+c4w (Sxmsxmsxn l)}

k{
{Czw)\ Sx,,+1,Sx,,,Sx,,)+2C4wk(Sxy,,Sx,, 1, SX,_ 1)}
{

< k{ Cooo (Sxy11, Sxny ) + 2C2 Ca0 (SKy Su1, Skne1) },

which implies that

2k C2 C4
1-kC,

w}?(sxnle! anr an) = w)cj(sxn; an—l, an—l)-

Therefore,

W5 (SXs1, Sxy Sx) < 1T (S, SK1, S%1), (4.14)

_ 2kCyCy 1
where r = ic; < land C; € (0, ¢).
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So take n = max{k, p,d, b,r} < 1, so we have

w}?(sxnle! Sy Sxy) < nwf(sxn; Sxn-1, S%p-1)

< n"wf (Sxo, Sx1, Sx1). (4.15)

But Y, 1" < +00. Now Y, @0 (Sxs1, Sxy, Sx) < S (Sxg, Sx1,S%1) Y ey " < +00 for
all A > 0. Suppose that m,n € N and m > n € N. Observe that, for any arbitrary ¢, using the
rectangle inequality repeatedly and condition (2) of Proposition 2.2, we have

w5, (anvsxm¢ Sxm) = w (an, an+1¢ an+1) + (1) (an+1) an+2: an+2)

n

G
+w (8425 SX43, SXy3)

m

:

G
+ A (an+3:sxn+4¢5xn+4)+' 7(Sxm 1,Sxm,Sxm)

m-n -

G

w5 (8%, SX11, SXni1) + @5 (an+1,an+2, Sxyr2)

m
+ @G (S%n42) Sks3, Sxn3)
w; Kn+2> OXn+3r OXp+3
m
+ @5 (Sxps3, Skar Skra) G (X1, Sy S
W5 OXp43, OXp4dr OXp44) + - w‘ﬁ( Kin—-15 %Xy OXm
m m

< wf(Sxml, Sxp, Sxy,)
<€ (4.16)
for all m > n > N for some N € N. As ¢ is arbitrary, we have
wf(Sx,,,Sxm,Sxm) =0 asum,m— 00 or ml}goo wf(an,Sxm,Sxm) =0. (4.17)
For n,m, k € N, condition (2) of Proposition 2.2 implies that
(Sx,,,Sxm,Sxk) < a)A G (S, Sy Sxyn) + @6 (Sxk,Sxm,Sxm) (4.18)

so that on taking the limit of both sides of inequality (4.18) as n,m,l — 0o and applying
Definition 2.11 and Eq. (4.17), we get

lim wl\G (Sx,1, Sxy5 Sx1)

n,m,k— 00

< lim a)A(SxV,,Sxm,SxW,)+ lim wA(Sxk,Sxm,Sxm)
n,m— 00 k,m— 00

<Cy lim oF (Sxu %y, Sx) + Co lim @S (Sxg, Sy Sxin)

n,m—>00 k,m— 00
:C2< lim w; (Sx,,,Sxm,Sxm)+ lim ; (Sxk,Sxm,Sxm)> (4.19)
n,m— 00 VV[—)OO

hence, we have

lim o; G (S, Sxm, Sxx) = 0. (4.20)

n,m,k— 00
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By Eq. (4.20), the sequence {Sx;,},cn is a modular G-Cauchy sequence in S(X,,). Because of
completeness of S(X,,), Sx, — v and there exists u € X, such that Su = v. Hence, inequality
(4.3) becomes wf(Sx,,, Tu, Tu) = a))\G(Txn,l, Tu, Tu), so
@S (Sx1, Sth, Sur), 5 (Txu1, T-1, Sa),
wf(Tu, Tu, Su), wf(Su, Tu, Su),
a),\G(Sx,,, Tu, Tu) < kmax , (4.21)
wf(Su, Tx,_1,Su), wf(Su, Tu, Tu),

a)f(Tu, Sx,-1, Tu), wf(Tx,,_l, Sxp,_1,Sut)
so that

% (Sxy_1, Stt, Su), 0 (S, S, Sut),

wf(Tu, Tu, Su), wf(Su, Tu, Su),

w,\G(Sx,,, Tu, Tu) < kmax , (4.22)
wf(Su, Sx,,, Su), wf(Su, Tu, Tu),

a)f(Tu, Sx,_1, Tu), a)f(Sx,,,Sx,,_l, Su)
as n — 00, and Su = v we obtain
wf(v, Tu, Tu) < kmax{wf(v, Tu, Tu), wf(v, v, Tu)}, VA > 0. (4.23)
We consider the following cases.

Case 1. If kmax{a)f(v, Tu, Tu),a)f(v, v, Tu)} = a)f(v, Tu, Tu), then inequality (4.23) be-
comes

wf(v, Tu, Tu) < kwf(v, Tu, Tu), (4.24)
which implies that
(1 -k (v, Tu, Tu) <0 VA >0,ke(0,1), (4.25)
hence Tu = v = Su.
Case 2. If kmax{a))\G(v, Tu, Tu), wf(v, v, Tu)} = wf(v, v, Tu), then inequality (4.23) be-
comes
a),\G(v, Tu, Tu) < kwf(v, v, Tu), (4.26)

using condition (4) of Proposition 2.2, and Definition 2.11, we get

wf(v, Tu, Tu) < k(a)f(v, Tu, Tu) + 0% (Tu, v, Tu))
3 3

< k(Cza)f(v, Tu, Tu) + Cga)f(v, Tu, Tu))

= 2kC2wf(V, Tu, Tu), (4.27)
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which implies that
(1 = 2kCy) S (v, Tu, Tu) < 0, (4.28)

for some C, € (0, %), hence wf(v, Tu, Tu) < 0, this implies that Tu = v = Su, which shows
that v is a point of coincidence of T'and S. Now suppose that v is not a point of coincidence
of T and S, then there exists another point of coincidence (say v*) of T and S such that
Tu* = v* = Su*. For A > 0, oY (Su, Su*, Su*) = o (Tu, Tu*, Tu*), so from inequality (4.3), we

obtain
wf (Su, Su*, Su*), wf (Tu, Tu, Su*),
S ) o (Tu*, Tu*, Su*), wf (Su*, Tu*, Su*), @29)
wy (Su, Su™, Su™) < kmax , 4.29
’ wf (Su*, Tu, Su™), f (Su*, Tu*, Tu*),
wf (Tu*, Su, Tu*), F (Tu, Su, Su™)
hence
of (Su, Su*, Su*) < kmax{w (Su, Su*,Su*), w (Su, Su, Su*)}. (4.30)

If k max{o? (Su, Su*, Su*), ¥ (Su, Su, Su*)} = ko (Su, Su*, Su*), then inequality (4.30) be-
comes

(1 - K)oy (Su,Su*,Su*) <0, ke (0,1), (4.31)

which implies that Su = Su*.
Again, if k max{wf (Su, Su*, Su*), o (Su, Su, Su*)} = ko (Su, Su, Su*), then using condi-
tion (4) of Proposition 2.2, and Definition 2.11, we get
w? (Su, Su*,Su*) < k(wf (Su, Su*,Su*) + oS (Su*,Su, Su*))
3 3
< k(Crf (Su, Su*, Su*) + Croof (Su, Su*, Su*))

= 2kCow (Su, Su*, Su’*), (4.32)
which implies that
(1 - 2kCy) o (Su, Su*, Su*) <0, (4.33)

for some C, € (0, %), hence wf(Su, Su*,Su*) < 0. Therefore, Su = Su*, which shows that
v is a unique point of coincidence of T and S. By Proposition 2.1, v is a common unique
point of T"and S. g

We give some examples here.

Example 4.1 Let X = [0,1] U {oo}, and for A > 0, define wf : X x X x X — [0,00) by

wf(x,y,z) = %max{lx -9y, ly—zl,|x —z|]} and T,S : X, 6 — X6 such that Tx = % and
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Sx = % — x. Evidently, the range of T contains the range of S, R(S) € R(T) and S(X,c) is
a complete subspace of X6, also 7" and S has a unique point of coincidence at x = 0 in X.

Furthermore, T and S are weakly compatible. But oS (Tx, Ty, Tz) = 0, so T satisfies inequal-

ity (4.3).

Example 4.2 Let X =R"U {oo} for r > 1. Define G: R” x R" x R” — [0, 00) by G(x,7,2) =

% max{|x — y|,|y — z|, |x — z|} for all distinct x,y,z € R" and 0 for x = y = z, where |x — y| =
r 1

(et (e = ) )2 x=(%1,%2...,%), ¥ = y1,92,...,9,) and z = (z1,2,...,2,). For any A > 0,

xyz

let of (x,y,2) = for all x,7,z € R”. Suppose that two mappings 7, S : R” — R" defined
by Tx = % and Sx = ’§‘ Indeed observe that R(S) € R(T) and S(X,c) is a complete subspace
of X, T(S(0)) = S(T(0)) also T and S has a unique point of coincidence at x = 0 in X, i.e.
u = T(0) = S(0) = 0, so that the common unique fixed point of 7 and S is 0. Now

wf(Tx, Ty, Tz)

__max:(z(xk yk>2) (g(yk-z@z)%,@(xk-zk)z);}

1
- a) 5 G(Sx, Sy, Sz), (4.34)

so that

a)f (Sx, Sy, Sz), wf(Tx, Tx, Sz),

G 1 cuf(Ty, Ty, Sy), a)f(Sy, Tz, Sz),
w; (Tx, Ty, Tz) < — max , (4.35)

2 % (Sy, Tx, Sy), S (Sz, Tz, Tz),

(Tz, Sx, 1z), w; G(Tx, Sx, Sy)

hence all the conditions of Theorem 4.2 are satisfied. Thus T and S has a unique point of

coincidence at x = 0 in X.
Corollary 4.3 Let (X, ) be a modular G-metric space satisfying a As-type condition

and T,S : X6 — X6 be two self-mappings for which T(X ,c) € S(X,), where S(X ) isa
G-complete subspace of X ,c. Suppose that, for all ) > 0, the following condition holds:

wf(Tx, Ty, Tz) < kwf(Sx, Sy, Sz), (4.36)

wherek < 1, forallx,y,z € X 6. Then T, S has a unique coincidence point in X ,c. Moreover,

if T and S are weakly compatible, then T and S have a unique common fixed point in X .

Proof Let xy € X6 be an arbitrary point. Since T(X,c) C S(X,c), there exists x; € X ¢

such that Txo = Sx;. Continuing in this way we have Tx, = Sx,,1, for n € N. So for any
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A>0, wf(an+1,an,an) < wf(Txn, Tx,_1, Tx,_1). From inequality (4.36), we have
wf(an+1,an,an) < kwf(an,an_l,an_l), ke (0,1). (4.37)

Theorem 4.2 tells us that 7 and S have a unique common fixed point in X 6. O

Corollary 4.4 Let (X,w®) be a modular G-metric space satisfying a As-type condition,
such that C, + Cy4 € (0, %) and T,S : X, 6 — X6 be two self-mappings for which T" (X ,c)
S"™(X,,6), where S™(X,,6) is a G-complete subspace of X,,c. Suppose that, for all A > 0, the
following condition holds:

wf (S"x,8™y,S"z), 0§ (T"x, T™x,S"z),
Z),
) . (438)
z

i (

(™, T"x,S™y), wy (S"z, "z, T"'z),
G

Al

G Ty, T"y,S™y), w5 (S™y, Tz, ™
w (T"x, T"y, T"z) < kmax

g

wf (T"z, 8", T"z), w5 (T™x,S"x, S™y)

where k < 1 for all x,y,z € X, 6. Then T, S has a unique coincidence point in X. Moreover,
if T and S are weakly compatible, then T and S have a unique common fixed point in X 6
for some positive integer m > 1.

Proof By Theorem 4.2, Ty = §”u = v. Hence v is a common unique point of 7" and
S, O
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