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Abstract
In this paper, we are concerned with a kind of tempered fractional differential
equation Riemann–Stieltjes integral boundary value problems with p-Laplacian
operators. By means of the sum-type mixed monotone operators fixed point theorem
based on the cone Ph, we obtain not only the local existence with a unique positive
solution, but also construct two successively monotone iterative sequences for
approximating the unique positive solution. Finally, we present an example to
illustrate our main results.
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1 Introduction
In this paper, we are concerned with local existence–uniqueness of the following nonlinear
tempered fractional differential equation involving p-Laplacian operator:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
0D

α,λ
t (ϕp(R

0D
α,λ
t u(t))) = f (t, u(t), u(t)) + g(t, u(t)), 0 ≤ t ≤ 1,

u(0) = R
0D

γ ,λ
t u(0) = 0,

R
0D

β1,λ
t u(1) =

∫ η

0 a(s)R
0D

β2,λ
t u(s) dA(s),

ϕp(R
0D

α,λ
t u)(0) = R

0D
γ ,λ
t (ϕp(R

0D
α,λ
t u))(0) = 0,

R
0D

β1,λ
t (ϕp(R

0D
α,λ
t u))(1) =

∫ η

0 a(s)R
0D

β2,λ
t [ϕp(R

0D
α,λ
t u(s))] dA(s),

(1.1)

where 2 < α ≤ 3, 0 < β2 < β1 < α–1, 1 < α–γ < 2, a ∈ C(0, 1), ϕp is the p-Laplacian operator
with p = 2, and R

0D
α,λ
t u, R

0D
γ ,λ
t u, and R

0D
βi ,λ
t u (i = 1, 2) are the empered fractional derivatives

defined by

R
0D

α,λ
t u(t) = e–λtR

0 Dα
t
(
eλtu(t)

)
, λ ≥ 0.

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-021-02693-w
https://crossmark.crossref.org/dialog/?doi=10.1186/s13660-021-02693-w&domain=pdf
mailto:tyutzll@126.com


Zhou and Zhang Journal of Inequalities and Applications        (2021) 2021:159 Page 2 of 16

Here R
0 Dα

t is the standard Riemann–Liouville fractional derivative defined by

R
0 Dα

t u(t) =
dn

dtn

(
0In–α

t u(t)
)
,

where 0Iβ
t is the β-order fractional integral operator defined by

0Iβ
t ψ =

1
	(β)

∫ t

0
(t – s)β–1ψ(s) ds,

A is a function of bounded variation, and
∫ 1

0 a(s)R
0D

β2
t u(s) dA(s) is the Riemann–Stieltjes

integral with respect to A. By using the sum-type mixed monotone fixed point theorem
based on cone Ph we investigate the existence–uniqueness and monotone iteration of pos-
itive solutions for p-Laplacian differential systems with tempered fractional derivatives
(1.1).

In the past decades, fractional calculus and all kinds of fractional differential equations
have been proved to be powerful tools in the modeling of various phenomena in a great
deal of fields of science and engineering, such as chemical physics, fluid mechanics, heat
conduction, control theory, economics, and so on; see, for example, [1–4]. Abdullah and
Zeynep [5] investigated the generalized fractional integral inequalities for continuous ran-
dom variables and obtained new generalized integral inequalities for the generalized dis-
persion and the generalized fractional variance functions of a continuous random variable
having the probability density function. Muhammad et al. [6] considered one of the impor-
tant classes of Caputo fractional-order evolution equations by using fixed point theorems
of Banach and Krasnoselskii type, obtained the existence and uniqueness of the solution,
and studied Ulam–Hyer-type stability of the numerical solution.

In fact, a standard Riemann–Liouville (or Caputo) fractional derivative is a convolution
with power law, so does fractional integration, and the difference between the two frac-
tional derivatives only lies in the order of derivation and integration. Based on the defi-
nition of classical fractional derivative, the tempered fractional derivative multiplies the
power law kernel by exponential factor, and various differential equation models based on
tempered fractional derivative open up a new possibility for robust mathematical model-
ing of anomalous phenomena and complex multiscale problems; we refer the readers to
[7–10]. In [11], we studied two kinds of tempered fractional differential systems involving
the following Riemann–Stieltjes integral boundary value conditions:

⎧
⎪⎪⎨

⎪⎪⎩

R
0D

α,λ
t u(t) + f (t, u(t), u(t)) + g(t, u(t)) = 0, t ∈ (0, 1),

u(0) = R
0D

γ1,λ
t u(0) = R

0D
γ2,λ
t u(0) = · · · = R

0D
γn–2,λ
t u(0) = 0,

R
0D

β1,λ
t u(1) =

∫ η

0 b(s)R
0D

β2,λ
t u(s) dA(s) +

∫ 1
0 a(s)R

0D
β3,λ
t u(s) dA(s)

(1.2)

and

⎧
⎪⎪⎨

⎪⎪⎩

R
0D

α,λ
t u(t) + ψ(t, u(t)) = c, t ∈ (0, 1),

u(0) = R
0D

γ1,λ
t u(0) = R

0D
γ2,λ
t u(0) = · · · = R

0D
γn–2,λ
t u(0) = 0,

R
0D

β1,λ
t u(1) =

∫ η

0 b(s)R
0D

β2,λ
t u(s) dA(s) +

∫ 1
0 a(s)R

0D
β3,λ
t u(s) dA(s),

(1.3)
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where R
0D

α,λ
t u, R

0D
γk ,λ
t u (k = 1, 2, . . . , n – 2), and R

0D
βi ,λ
t u (i = 1, 2, 3) are the tempered frac-

tional derivatives. By using a class of sum-type mixed monotone operators fixed point
theorems and increasing ϕ-(h,σ )-concave operators fixed point theorems, respectively,
we constructed sufficient conditions to guarantee the existence–uniqueness of positive
solutions for Riemann–Stieltjes integral boundary value problems (1.2) and (1.3), respec-
tively.

It is well known that the p-Laplacian operator is used in analyzing various complex prob-
lems in physics, mechanics, and the related fields of mathematical modeling; see [12–14].
In [12], for studying the turbulent flow in a kind of porous media, Leibenson introduced
the p-Laplacian differential equation

(
ϕp

(
u′(t)

))′ = f
(
t, u(t), u′(t)

)
, t ∈ (0, 1), (1.4)

where ϕp(s) = |s|p–2s, p > 1. Motivated by Leibenson’s work, Ren, Li, and Zhang [15] studied
the existence of maximum and minimum solutions for the nonlocal p-Laplacian fractional
differential system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dβ1
t (ϕp1 (–Dα1

t x1))(t) = f1(x1(t), x2(t)),

–Dβ2
t (ϕp2 (–Dα2

t x2))(t) = f2(x1(t), x2(t)),

x1(0) = 0, Dα1
t x1(0) = Dα1

t x1(1) = 0, x1(1) =
∫ 1

0 x1(t) dA1(t),

x2(0) = 0, Dα2
t x2(0) = Dα2

t x2(1) = 0, x2(1) =
∫ 1

0 x2(t) dA2(t),

(1.5)

where ϕpi denotes the p-Laplacian operator, Dαi
t , Dβi

t are the standard Riemann–Liouville
derivatives with 1 < αi, βi < 2,

∫ 1
0 xi(t) dAi(t) denotes the Riemann–Stieltjes integral, and

Ai is a function of bounded variation. By employing the cone theory and monotone it-
erative technique, some new existence results on maximal and minimal solutions were
established. Furthermore, the estimation of the bounds of maximum and minimum solu-
tions was derived.

In [16], we investigated the existence of multiple positive solutions for the following p-
Laplacian fractional differential equations with two-point boundary values:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R
0 Dα

t (ϕp(R
0 Dα

t u(t))) = f (t, u(t), R
0 Dα

t u(t)), 0 ≤ t ≤ 1;

u(i)(0) = 0, [ϕp(R
0 Dα

t u)](i)(0) = 0, i = 0, 1, 2, . . . , n – 2;

[R
0 Dβ

t u(t)]t=1 = 0, 0 < β ≤ α – 1;

[R
0 Dβ

t (ϕp(R
0 Dα

t u(t)))]t=1 = 0;

(1.6)

where n – 1 < α ≤ n, R
0 Dα

t is the standard Riemann–Liouville fractional derivative, and ϕp is
the p-Laplacian operator. By employing the functional-type cone expansion–compression
fixed point theorem and Leggett–Williams fixed point theorem, we obtained the existence
of multiple positive solutions for p-Laplacian differential systems (1.6).

To study more boundary value problems for complex fractional differential equations,
we combine the Riemann–Stieltjes integral boundary value conditions with p-Laplacian
operators, where the nonlinear terms are sum-type nonlinear terms in (1.1). Comparing
with the previous references, this paper has the following characteristics. Firstly, the tem-
pered fractional derivative R

0D
α,λ
t is more general than the standard Riemann–Liouville
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fractional derivative R
0 Dα

t , for instance, for λ = 0, it is clear that R
0D

α,λ
t is equivalent to R

0 Dα

t .
Secondly, Riemann–Stieltjes integral boundary conditions are more general and cover
the common integral boundary conditions as particular cases. Finally, comparing with
p-Laplacian differential systems (1.6), the integral operator in this paper need not be com-
pletely continuous or compact. Furthermore, we not only obtain the local existence with a
unique positive solution, but also construct a Cauchy sequence to approximate the unique
positive solution.

The organization of the paper is as follows. In Sect. 2, we list some concepts, symbols,
definitions, and lemmas in abstract Banach spaces, which need to be used in the subse-
quent proof process. In Sect. 3, by employing the sum-type mixed monotone operators
fixed point theorem based on cone Ph we show that the existence–uniqueness and mono-
tone iteration of positive solutions of the two-point boundary value problems for the p-
Laplacian differential equation (1.1). In Sect. 4, we present an example to demonstrate our
main results.

2 Preliminaries
A nonempty closed convex set P ⊂ E is called a cone if it satisfies the following conditions:

(I1) x ∈ P, λ ≥ 0 ⇒ λx ∈ P;
(I2) x ∈ P, –x ∈ P ⇒ x = θ .
In addition, let (E,‖ · ‖) be a real Banach space that is partially ordered by a cone P ⊂ E,

that is, y – x ∈ P implies that x ≤ y. If x ≤ y and x 	= y, then we write x < y or y > x. We
denote the zero element of E by θ . If for all x, y ∈ E, there exists M > 0 such that θ ≤ x ≤ y
implies ‖x‖ ≤ ‖y‖, then the cone P is called normal; in this case, M is the infimum of such
constants and is called the normality constant of P.

Furthermore, for h > θ , denote Ph = {x ∈ E | x ∼ h}, where ∼ is an equivalence relation,
that is, for all x, y ∈ E, x ∼ y means that there exist λ > 0 and μ > 0 such that λx ≥ y ≥ μx.

Definition 2.1 ([17]) A : P → P is said to be subhomogeneous if

A(tx) ≥ tAx, ∀t ∈ (0, 1), x ∈ P.

Definition 2.2 ([18]) An operator A : P × P → P is said to be a mixed monotone operator
if A(x, y) is increasing in x and decreasing in y, that is, ui, vi (i = 1, 2) ∈ P, u1 < u2, v1 > v2

imply A(u1, v1) ≤ A(u2, v2). An element x ∈ P is called a fixed point of A if A(x, x) = x.

Definition 2.3 ([12]) For p > 1, the p-Laplacian operator is given by

ϕp(x) = |x|p–2x and ϕ–1
p = ϕq,

1
p

+
1
q

= 1.

Lemma 2.1 ([11]) Let h(t) ∈ C[0, 1] ∩ L1[0, 1], α > 0. Then

0Iα
t

R
0 Dα

t h(t) = h(t) + c1tα–1 + c2tα–2 + · · · + cntα–n,

where ci ∈ R, i = 1, 2, 3, . . . , n (n = [α] + 1).
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Lemma 2.2 ([16])
(1) If u ∈ L1(0, 1), α > β > 0, then

0Iα
t 0Iβ

t u(t) = 0Iα+β
t u(t), R

0 Dβ

t 0Iα
t u(t) = 0Iα–β

t u(t), R
0 Dβ

t 0Iβ
t u(t) = u(t);

(2) If ρ > 0, μ > 0, then

R
0 Dρ

t tμ–1 =
	(μ)

	(μ – ρ)
tμ–ρ–1.

Lemma 2.3 Given g ∈ C(0, 1), the unique solution of

⎧
⎪⎪⎨

⎪⎪⎩

R
0D

α,λ
t u(t) + g(t) = 0, 2 < α ≤ 3, t ∈ (0, 1),

u(0) = R
0D

γ ,λ
t u(0) = 0,

R
0D

β1,λ
t u(1) =

∫ η

0 a(s)R
0D

β2,λ
t u(s) dA(s),

(2.1)

is

u(t) =
∫ 1

0
G(t, s)g(s) ds, t ∈ [0, 1], (2.2)

where

G(t, s) = G1(t, s) +
tα–1e–λt


	(α – β2)

∫ η

0
a(t)G2(t, s) dA(t) (2.3)

with


 =
e–λ

	(α – β1)
–

δ

	(α – β2)
, δ =

∫ η

0
e–λssα–β2–1a(s) dA(s),

G1(t, s) =
eλ(s–t)

	(α)

⎧
⎨

⎩

(1 – s)α–β1–1tα–1 – (t – s)α–1, 0 ≤ s ≤ t ≤ 1,

(1 – s)α–β1–1tα–1, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =
eλ(s–t)

	(α)

⎧
⎨

⎩

(1 – s)α–β1–1tα–β2–1 – (t – s)α–β2–1, 0 ≤ s ≤ t ≤ 1,

(1 – s)α–β1–1tα–β2–1, 0 ≤ t ≤ s ≤ 1.

Proof For system (2.1), by means of Lemma 2.1 we have

eλtu(t) = –
∫ t

0

(t – s)α–1

	(α)
eλsg(s) ds + c1tα–1 + c2tα–2 + c3tα–3. (2.4)

From u(0) = 0 we get c3 = 0, and hence

u(t) = –e–λt
0Iα

t eλtg(t) + c1e–λttα–1 + c2e–λttα–2. (2.5)



Zhou and Zhang Journal of Inequalities and Applications        (2021) 2021:159 Page 6 of 16

By using the tempered fractional-order derivative operator R
0D

γ ,λ
t on both sides of (2.5),

we obtain

R
0D

γ ,λ
t u(t) = R

0D
γ ,λ
t

(
–e–λt

0Iα
t
(
eλtg(t)

)
+ c1e–λttα–1 + c2e–λttα–2)

= e–λtR
0 Dγ

t
(
–0Iα

t
(
eλtg(t)

)
+ c1tα–1 + c2tα–2)

= –e–λt
0Iα–γ

t
(
eλtg(t)

)
+ c1e–λtR

0 Dγ

t tα–1 + c2e–λtR
0 Dγ

t tα–2

= –
∫ t

0

(t – s)α–γ –1eλ(s–t)

	(α – γ )
g(s) ds + c1

	(α)e–λt

	(α – γ )
tα–1–γ

+ c2
	(α – 1)e–λt

	(α – 1 – γ1)
tα–2–γ .

From R
0D

γ ,λ
t u(0) = 0 and 1 < α – γ ≤ 2 we know that c2 = 0. Hence equation (2.5) can be

reduced to

u(t) = –e–λt
∫ t

0

(t – s)α–1eλs

	(α)
g(s) ds + c1e–λttα–1. (2.6)

Once again, applying the tempered fractional derivative operator R
0D

βi ,λ
t on the both sides

of (2.6), we have

R
0D

βi ,λ
t u(t) = –R

0D
βi ,λ
t

(
e–λt

0Iα
t
(
eλtg(t)

))
+ c1

R
0D

βi ,λ
t

(
e–λttα–1)

= –e–λtR
0 Dβi

t
(

0Iα
t
(
eλtg(t)

))
+ c1e–λtR

0 Dβi
t

(
tα–1)

= –e–λt
0Iα–βi

t
(
eλtg(t)

)
+ c1

	(α)
	(α – βi)

e–λttα–1–βi

= –
∫ t

0

(t – s)α–βi–1eλ(s–t)

	(α – βi)
g(s) ds + c1

	(α)
	(α – βi)

e–λttα–1–βi .

(2.7)

From (2.7) it is clear that

⎧
⎨

⎩

R
0D

β1,λ
t u(1) = –1

	(α–β1)
∫ 1

0 (1 – s)α–β1–1eλ(s–1)g(s) ds + c1
	(α)

	(α–β1) e–λ,
R
0D

β2,λ
t u(t) = –1

	(α–β2)
∫ t

0 (t – s)α–β2–1eλ(s–t)g(s) ds + c1
	(α)e–λt

	(α–β2) tα–1–β2 .
(2.8)

Substituting (2.8) into R
0D

β1,λ
t u(1) =

∫ η

0 a(s)R
0D

β2,λ
t u(s) dA(s), we obtain

c1 =
[
	(α)


]–1
{∫ 1

0

(1 – s)α–β1–1eλ(s–1)

	(α – β1)
g(s) ds

–
∫ η

0
a(t) dA(t)

∫ t

0

(t – s)α–β2–1eλ(s–t)

	(α – β2)
g(s) ds

}

.
(2.9)
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Finally, combining (2.9) with (2.6), we obtain

u(t) = –e–λt
∫ t

0

(t – s)α–1eλs

	(α)
g(s) ds +

e–λttα–1

	(α)


{∫ 1

0

(1 – s)α–β1–1e–λ

	(α – β1)
eλsg(s) ds

–
∫ η

0
a(t) dA(t)

∫ t

0

(t – s)α–β2–1eλ(s–t)

	(α – β2)
g(s) ds

}

= –
∫ t

0

(t – s)α–1eλ(s–t)

	(α)
g(s) ds +

e–λttα–1

	(α)

∫ 1

0
(1 – s)α–β1–1eλsg(s) ds

+
e–λttα–1δ

	(α)	(α – β2)


∫ 1

0
(1 – s)α–β1–1eλsg(s) ds

–
e–λttα–1

	(α)	(α – β2)


∫ η

0
a(t) dA(t)

∫ t

0
(t – s)α–β2–1eλ(s–t)g(s) ds

=
∫ 1

0
G1(t, s)g(s) ds +

tα–1e–λt

	(α – β2)


∫ 1

0
g(s) ds

∫ η

0
G2(t, s)a(t) dA(t)

=
∫ 1

0
G(t, s)g(s) ds,

where G(t, s) is the Green function of system (2.1). The proof is complete. �

Lemma 2.4 Suppose that

(H) 	(α – β1)eλδ < 	(α – β2).

Then for all (t, s) ∈ [0, 1] × [0, 1], G(t, s), G1(t, s), and G2(t, s) satisfy
(A1) G(t, s), G1(t, s), and G2(t, s) are all continuous in (t, s) ∈ [0, 1] × [0, 1];
(A2) Gi(t, s) ≥ 0 (i = 1, 2), and G(t, s) ≥ 0;
(A3) eλs[(1–s)α–β1–1–(1–s)α–1]

	(α) e–λttα–1 ≤ G1(t, s) ≤ eλs(1–s)α–β1–1

	(α) e–λttα–1;

(A4) eλs[(1–s)α–β1–1–(1–s)α–β2–1]
	(α) e–λttα–β2–1 ≤ G2(t, s) ≤ eλs(1–s)α–β1–1

	(α) e–λttα–β2–1;
(A5) m(s)e–λttα–1 ≤ G(t, s) ≤ M(s)e–λttα–1, where

M(s) =
[

1
	(α)

+
δ


	(α)	(α – β2)

]

eλs(1 – s)α–β1–1

and

m(s) =
eλs[(1 – s)α–β1–1 – (1 – s)α–1]

	(α)
+

δeλs[(1 – s)α–β1–1 – (1 – s)α–β2–1]

	(α)	(α – β2)

.

Proof Firstly, for (t, s) ∈ [0, 1] × [0, 1], it is obvious that G(t, s) and Gi(t, s) (i = 1, 2) are
continuous.

Secondly, for Gi(t, s) (i = 1, 2) in (A3) and (A4), it is evident that the right sides of the
inequalities hold, so we only need to prove the left sides of the inequalities. If 0 ≤ s ≤ t ≤ 1,
then we easily see that 0 ≤ t – s ≤ t – ts = (1 – s)t, and thus (t – s)α–1 ≤ (1 – s)α–1tα–1. So we
get

G1(t, s) ≥ eλ(s–t)

	(α)
[
tα–1(1 – s)α–β1–1 – (1 – s)α–1tα–1]
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=
eλs[(1 – s)α–β1–1 – (1 – s)α–1]

	(α)
e–λttα–1.

If 0 ≤ t ≤ s ≤ 1, then, evidently, G1(t, s) ≥ eλs[(1–s)α–β1–1–(1–s)α–1]
	(α) e–λttα–1.

Furthermore, from (1 – s)α–β1–1 > (1 – s)α–1 we get G1(t, s) ≥ 0 for all (t, s) ∈ [0, 1] × [0, 1].
In the same way, we can get that G2(t, s) ≥ 0 and inequality (A4) holds.

Finally, from (A3) and (A4) we can get that m(s)e–λttα–1 ≤ G(t, s) ≤ M(s)e–λttα–1. In ad-
dition, from condition (H) we can deduce that 
 > 0. Combining (1 – s)α–β1–1 > (1 – s)α–1

with 
 > 0, we obtain m(s) ≥ 0, that is, G(s, t) ≥ 0 for all (t, s) ∈ [0, 1] × [0, 1]. The proof is
complete. �

Lemma 2.5 ([17]) Let ξ ∈ (0, 1), let A : P ×P → P be a mixed monotone operator satisfying

A
(
tx, t–1y

) ≥ tξ A(x, y), ∀t ∈ (0, 1), x, y ∈ P. (2.10)

Let B : P → P be an increasing subhomogeneous operator. Assume that
(I) there exists h0 ∈ Ph such that A(h0, h0) ∈ Ph and Bh0 ∈ Ph;

(II) there exists a constant δ0 > 0 such that A(x, y) ≥ δ0Bx, ∀x, y ∈ P;
Then

(1) A : Ph × Ph → Ph, B : Ph → Ph;
(2) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 ≤ u0 < v0, u0 ≤ A(u0, v0) + Bu0 ≤ A(v0, u0) + B(v0) ≤ v0;

(3) the operator equation A(x, x) + Bx = x has a unique solution x∗ in Ph;
(4) for any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = A(xn–1, yn–1) + Bxn–1, yn = A(yn–1, xn–1) + Byn–1, n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.

3 Main results
Lemma 3.1 For g̃ ∈ C[0, 1], the p-Laplacian tempered fractional differential system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
0D

α,λ
t (ϕp(R

0D
α,λ
t u(t))) = g̃(t), 2 < α ≤ 3, 0 ≤ t ≤ 1,

u(0) = R
0D

γ ,λ
t u(0) = 0,

ϕp(R
0D

α,λ
t u(0)) = R

0D
γ ,λ
t (ϕp(R

0D
α,λ
t u(0))) = 0,

R
0D

β1,λ
t u(1) =

∫ η

0 a(s)R
0D

β2,λ
t u(s) dA(s),

R
0D

β1,λ
t (ϕp(R

0D
α,λ
t u(1))) =

∫ η

0 a(s)R
0D

β2,λ
t [ϕp(R

0D
α,λ
t u(s))] dA(s),

(3.1)

has a unique integral formal solution

u(t) =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )̃g(τ ) dτ

)

ds, (3.2)

where G(t, s) is given in (2.3).
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Proof Firstly, applying the fractional integral operator 0Iα
t on both sides of the first equa-

tion of integral boundary value problems (3.1), we have

eλtϕp
(R

0D
α,λ
t u(t)

)
= 0Iα

t
(
eλt̃g(t)

)
+ d1tα–1 + d2tα–2 + d3tα–3

=
∫ t

0

(t – s)α–1

	(α)
eλs̃g(s) ds + d1tα–1 + d2tα–2 + d3tα–3.

From ϕp(R
0D

α,λ
t u)(0) = 0 we can deduce that d3 = 0. So

ϕp
(R

0D
α,λ
t u(t)

)
= e–λt

0Iα
t
(
eλt̃g(t)

)
+ d1e–λttα–1 + d2e–λttα–2. (3.3)

Furthermore, applying the tempered fractional derivative operator R
0D

γ ,λ
t on both sides of

(3.3), we have

R
0D

γ ,λ
t

(
ϕp

(R
0D

α,λ
t u(t)

))
= R

0D
γ ,λ
t

(
e–λt

0Iα
t
(
eλt̃g(t)

)
+ d1e–λttα–1 + d2e–λttα–2)

= e–λt
0Iα–γ

t
(
eλt̃g(t)

)
+ d1e–λtR

0 Dγ

t tα–1 + d2e–λtR
0 Dγ

t tα–2

=
∫ t

0

(t – s)α–γ –1eλ(s–t)

	(α – γ )
g̃(s) ds + d1

	(α)e–λt

	(α – γ )
tα–1–γ

+ d2
	(α – 1)e–λt

	(α – 1 – γ1)
tα–2–γ .

From R
0D

γ ,λ
t (ϕp(R

0D
α,λ
t u))(0) = 0 and 1 < α – γ < 2 we deduce that d2 = 0, that is,

ϕp
(R

0D
α,λ
t u(t)

)
= e–λt

0Iα
t
(
eλt̃g(t)

)
+ d1e–λttα–1. (3.4)

Secondly, applying the tempered fractional derivative operator R
0D

βi ,λ
t (i = 1, 2) on both

sides of (3.4), we get

R
0D

βi ,λ
t

(
ϕp

(R
0D

α,λ
t u(t)

))
= R

0D
βi ,λ
t

(
e–λt

0Iα
t
(
eλt̃g(t)

))
+ d1

R
0D

βi ,λ
t

(
e–λttα–1)

= e–λt
0Iα–βi

t
(
eλt̃g(t)

)
+ d1e–λtR

0 Dβi
t

(
tα–1)

=
∫ t

0

(t – s)α–βi–1eλ(s–t)

	(α – βi)
g̃(s) ds + d1

	(α)
	(α – βi)

e–λttα–1–βi .

(3.5)

From (3.5) it is clear that

⎧
⎨

⎩

R
0D

β1,λ
t (ϕp(R

0D
α,λ
t u(1))) =

∫ 1
0

(1–s)α–β1–1eλ(s–1)

	(α–β1) g̃(s) ds + d1
	(α)

	(α–β1) e–λ,
R
0D

β2,λ
t (ϕp(R

0D
α,λ
t u(t))) =

∫ t
0

(t–s)α–β2–1eλ(s–t)

	(α–β2) g̃(s) ds + d1
	(α)e–λt

	(α–β2) tα–1–β2 .
(3.6)

Combining (3.6) with the Riemann–Stieltjes integral boundary value condition
R
0D

β1,λ
t (ϕp(R

0D
α,λ
t u))(1) =

∫ η

0 a(s)R
0D

β2,λ
t [ϕp(R

0D
α,λ
t u(s))] dA(s), we obtain

d1 =
–1

	(α)


{∫ 1

0

(1 – s)α–β1–1eλ(s–1)

	(α – β1)
g̃(s) ds

–
∫ η

0
a(t) dA(t)

∫ t

0

(t – s)α–β2–1eλ(s–t)

	(α – β2)
g̃(s) ds

}

.
(3.7)
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Substituting (3.7) into (3.4), we obtain

ϕp
(R

0D
α,λ
t u(t)

)
= –

∫ 1

0
G(t, s)̃g(s) ds. (3.8)

Furthermore, applying the p-Laplacian operator ϕq on both sides of (3.8), we get

R
0D

α,λ
t u(t) + ϕq

(∫ 1

0
G(t, s)̃g(s) ds

)

= 0. (3.9)

Finally, setting g(t) :� ϕq(
∫ 1

0 G(t, s)̃g(s) ds), we easily see that p-Laplacian fractional dif-
ferential system (3.1) is equivalent to the following fraction differential equation integral
boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

R
0D

α,λ
t u(t) + g(t) = 0, t ∈ (0, 1), 2 < α ≤ 3;

u(0) = R
0D

γ ,λ
t u(0) = 0,

R
0D

β1,λ
t u(1) =

∫ η

0 a(s)R
0D

β2,λ
t u(s) dA(s).

(3.10)

By means of Lemma 2.3 we get that the tempered fractional differential system with p-
Laplacian operator (3.10) has a unique integral solution

u(t) =
∫ 1

0
G(t, s)g(s) ds

=
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )̃g(τ ) dτ

)

ds.

This completes the proof. �

From Lemma 3.1 we can deduce that Riemann–Stieltjes integral boundary value prob-
lem with p-Laplacian operator (1.1) is equivalent to the integral formulation

u(t) =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )

[
f
(
τ , u(τ ), u(τ )

)
+ g

(
τ , u(τ )

)]
dτ

)

ds. (3.11)

For the convenience of further research, we define the operator T by

T(u, v)(t) =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )

[
f
(
τ , u(τ ), v(τ )

)
+ g

(
τ , u(τ )

)]
dτ

)

ds. (3.12)

Theorem 3.1 Suppose that condition (H) holds, a(t) : [0, 1] → R+, f (t, u, v) : [0, 1] ×
[0, +∞) × [0, +∞) → [0, +∞), and g(t, u) : [0, 1] × [0, +∞) → [0, +∞) are all continuous
functions with g(t, u) 	≡ 0, and the following conditions are satisfied:

(H1) for fixed t ∈ [0, 1], f (t, u, v) is increasing in u ∈ [0, +∞) and decreasing in v ∈ [0, +∞).
In addition, for all γ ∈ (0, 1) and u, v ∈ [0, +∞), there exists a constant ξ ∈ (0, 1) such
that

f
(
t,γ u,γ –1v

) ≥ ϕξ
p (γ )f (t, u, v); (3.13)
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(H2) for fixed t ∈ [0, 1], g(t, u) is increasing in u ∈ [0, +∞), and for all t ∈ [0, 1], u ∈
[0, +∞), and γ ∈ (0, 1),

g(t,γ u) ≥ ϕp(γ )g(t, u); (3.14)

(H3) for all u, v ∈ [0, +∞), there exists a constant δ0 > 0 such that

f (t, u, v) ≥ ϕp(δ0)g(t, u), t ∈ [0, 1]. (3.15)

Then we have:
(I) the tempered fractional differential equation Riemann–Stieltjes integral boundary

value problem involving the p-Laplacian operator (1.1) has a unique positive solution
u∗ ∈ Ph, where h(t) = e–λttα–1;

(II) for all t ∈ [0, 1], there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 < v0 and

u0(t) ≤
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )

[
f
(
τ , u0(τ ), v0(τ )

)
+ g

(
τ , u0(τ )

)]
dτ

)

ds,

v0(t) ≥
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )

[
f
(
τ , v0(τ ), u0(τ )

)
+ g

(
τ , v0(τ )

)]
dτ

)

ds;

(III) for any initial values x0, y0 ∈ Ph, making the successive sequences

xn =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )

[
f
(
τ , xn–1(τ ), yn–1(τ )

)
+ g

(
τ , xn–1(τ )

)]
dτ

)

ds,

yn =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )

[
f
(
τ , yn–1(τ ), xn–1(τ )

)
+ g

(
τ , yn–1(τ )

)]
dτ

)

ds,

n = 0, 1, 2, . . . ,

we obtain xn → u∗ and yn → u∗ as n → ∞.

Proof To begin with, we define two operators A : P × P → E and B : P → E by

A(u, v)(t) =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds, (3.16)

B(u)(t) =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )g

(
τ , u(τ )

)
dτ

)

ds. (3.17)

From p = 2 and 1
p + 1

q = 1 we easily see that q = 2. Evidently, we have T(u, v) = A(u, v) + B(u).
In addition, u∗ is a solution of the Riemann–Stieltjes integral boundary value problem
(1.1) if and only if T(u∗, u∗) = u∗. From Lemma 2.4 we get A : P × P → P and B : P → P.
Furthermore, it follows from (H1) and (H2) that A is a mixed monotone operator and B is
an increasing operator. For all γ ∈ (0, 1) and u, v ∈ P, from (3.13) we obtain

A
(
γ u,γ –1v

)
(t) =

∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ ,γ u(τ ),γ v(τ )

)
dτ

)

ds

≥
∫ 1

0
G(t, s)ϕq

(

ϕξ
p (γ )

∫ 1

0
G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

= γ ξ A(u, v)(t).

(3.18)
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Hence the mixed monotone operator A satisfies condition (2.10) in Lemma 2.5. In addi-
tion, for all γ ∈ (0, 1) and u ∈ P, from (3.14) we have

B(γ u)(t) =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )g

(
τ ,γ u(τ )

)
dτ

)

ds

≥ ϕq
(
ϕp(γ )

)
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )g

(
τ , u(τ )

)
dτ

)

ds

= γ B(u)(t).

(3.19)

So B is a subhomogeneous operator.
Next, we show that A(h, h) ∈ Ph and Bh ∈ Ph. From Lemma 2.4 we have

A(h, h)(t) =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , h(τ ), h(τ )

)
dτ

)

ds

≤
∫ 1

0
G(t, s)ϕq

(∫ 1

0
M(τ )e–λssα–1f

(
τ , h(τ ), h(τ )

)
dτ

)

ds

≤
∫ 1

0
M(s)e–λttα–1ϕq

(∫ 1

0
M(τ )e–λssα–1f

(
τ , h(τ ), h(τ )

)
dτ

)

ds

≤
(∫ 1

0

M(s)s(α–1)(q–1)

eλs(q–1) ϕq

(∫ 1

0
M(τ )f (τ , hmax, 0) dτ

)

ds
)

e–λttα–1

and

A(h, h)(t) =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , h(τ ), h(τ )

)
dτ

)

ds

≥
∫ 1

0
G(t, s)ϕq

(∫ 1

0
m(τ )e–λssα–1f

(
τ , h(τ ), h(τ )

)
dτ

)

ds

≥
∫ 1

0
m(s)e–λttα–1ϕq

(∫ 1

0
m(τ )e–λssα–1f

(
τ , h(τ ), h(τ )

)
dτ

)

ds

≥
(∫ 1

0

m(s)s(α–1)(q–1)

eλs(q–1) ϕq

(∫ 1

0
m(τ )f (τ , 0, hmax) dτ

)

ds
)

e–λttα–1,

where hmax = max{h(t) : t ∈ [0, 1]}. Letting

L1 �
∫ 1

0

M(s)s(α–1)(q–1)

eλs(q–1) ϕq

(∫ 1

0
M(τ )f (τ , hmax, 0) dτ

)

ds,

l1 �
∫ 1

0

m(s)s(α–1)(q–1)

eλs(q–1) ϕq

(∫ 1

0
m(τ )f (τ , 0, hmax) dτ

)

ds.

It is clear that L1 > l1 > 0. Hence l1h(t) ≤ A(h, h) ≤ L1h(t), that is, A(h, h) ∈ Ph. Similarly,
for the subhomogeneous operator B, from Lemma 2.4 we get

B(h)(t) =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )g

(
τ , h(τ )

)
dτ

)

ds

≤
(∫ 1

0

M(s)s(α–1)(q–1)

eλs(q–1) ϕq

(∫ 1

0
M(τ )g(τ , hmax) dτ

)

ds
)

e–λttα–1
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and

B(h)(t) =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )g

(
τ , h(τ )

)
dτ

)

ds

≥
(∫ 1

0

m(s)s(α–1)(q–1)

eλs(q–1) ϕq

(∫ 1

0
m(τ )g(τ , 0) dτ

)

ds
)

e–λttα–1.

Letting

L2 �
∫ 1

0

M(s)s(α–1)(q–1)

eλs(q–1) ϕq

(∫ 1

0
M(τ )g(τ , hmax) dτ

)

ds,

l2 �
∫ 1

0

m(s)s(α–1)(q–1)

eλs(q–1) ϕq

(∫ 1

0
m(τ )g(τ , 0) dτ

)

ds.

From L2 > l2 > 0 and l2h(t) ≤ B(h) ≤ L2h(t) we get Bh ∈ Ph. Since h ∈ Ph, letting h0 = h, we
get that condition (I1) in Lemma 2.5 holds.

Finally, for all u, v ∈ P, from (3.15) we have

A(u, v)(t) =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥
∫ 1

0
G(t, s)ϕq

(∫ 1

0
ϕp(δ0)G(s, τ )g

(
τ , u(τ )

)
dτ

)

ds

= δ0(Bu)(t),

(3.20)

that is, A(u, v) ≥ δ0Bu. All the conditions in Lemma 2.5 are satisfied. So the conclusion in
Theorem 3.1 follows from Lemma 2.5. �

Corollary 3.1 Assume that condition (H) holds and
(H ′

1) a(t) : [0, 1] → R+ and f (t, u, v) : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞) are all contin-
uous functions;

(H ′
2) for fixed t ∈ [0, 1], f (t, u, v) is increasing in u ∈ [0, +∞) and decreasing in v ∈ [0, +∞);

(H ′
3) for all u, v ∈ [0, +∞) and γ ∈ (0, 1), there exists a constant ξ ∈ (0, 1) such that

f
(
t,γ u,γ –1v

) ≥ ϕξ
p (γ )f (t, u, v), t ∈ [0, 1]. (3.21)

Then we have:
(I) the p-Laplacian differential equation Riemann–Stieltjes integral boundary value

problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
0D

α,λ
t (ϕp(R

0D
α,λ
t u(t))) = f (t, u(t), u(t)), 0 ≤ t ≤ 1,

u(0) = R
0D

γ ,λ
t u(0) = 0,

R
0D

β1,λ
t u(1) =

∫ η

0 a(s)R
0D

β2,λ
t u(s) dA(s),

ϕp(R
0D

α,λ
t u(0)) = R

0D
γ ,λ
t (ϕp(R

0D
α,λ
t u(0))) = 0,

R
0D

β1,λ
t (ϕp(R

0D
α,λ
t u(1))) =

∫ η

0 a(s)R
0D

β2,λ
t [ϕp(R

0D
α,λ
t u(s))] dA(s),

has a unique positive solution u∗ ∈ Ph, where h(t) = e–λttα–1;



Zhou and Zhang Journal of Inequalities and Applications        (2021) 2021:159 Page 14 of 16

(II) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 < v0 and

u0(t) ≤
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u0(τ ), v0(τ )

)
dτ

)

ds,

v0(t) ≥
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , v0(τ ), u0(τ )

)
dτ

)

ds;

(III) for any initial values x0, y0 ∈ Ph, making the successive sequences

xn =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , xn–1(τ ), yn–1(τ )

)
dτ

)

ds,

yn =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , yn–1(τ ), xn–1(τ )

)
dτ

)

ds,

n = 0, 1, 2, . . . ,

we obtain xn → u∗ and yn → u∗ as n → ∞.

Proof Setting g(t, u(t)) ≡ 0, by means of Theorem 3.1 we get the conclusions. �

4 Applications
Example 1 We consider the following tempered fractional differential systems involving
the p-Laplacian operator:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
0D

5
2 ,1
t (ϕp(R

0D
5
2 ,1
t u(t))) = F(t, u(t)), 0 ≤ t ≤ 1;

u(0) = R
0D

3
4 ,1
t u(0) = 0;

R
0D

1,1
t u(1) =

∫ η

0 a(s)R
0D

5
8 ,1
t u(s) dA(s);

ϕp(R
0D

5
2 ,1
t u(0)) = R

0D
3
4 ,1
t (ϕp(R

0D
5
2 ,1
t u(0))) = 0;

R
0D

1,1
t (ϕp(R

0D
5
2 ,1
t u(1))) =

∫ 1
0

R
0D

5
8 ,1
t [ϕp(R

0D
5
2 ,1
t u(s))] dA(s);

(4.1)

where F(t, u(t)) = f (t, u(t), u(t)) + g(t, u(t)), A(t) = t
2 , and p = 2, in which f (t, u, v) = (1 –

t)– 1
3 t– 2

3 u 1
3 + v– 1

5 , g(t, u) = (1 – t)– 1
8 t– 1

6 u 1
3 . In addition, for any t ∈ (0, 1), u > 0 and v > 0.

Let us check that all the conditions in Theorem 3.1 are satisfied. Evidently, α = 5
2 , β1 = 1,

β2 = 5
8 , γ = 3

4 , a(t) ≡ 1, λ = 1 > 0, and η = 1 in system (4.1).
(1) From δ =

∫ η

0 e–λssα–β2–1a(s) dA(s) = 0.1432 we can get 	(α–β1)eλδ = 0.345 < 0.9534 =
	(α – β2); clearly, condition (H) is satisfied.

(2) From the expressions of f and g it is evident that f (t, u, v) : (0, 1) × R+ × R+ → R+

and g(t, u) : (0, 1) × R+ → R+ are continuous. Furthermore, f (t, u, v) is increasing in
u for fixed t ∈ (0, 1) and v ∈ R+, decreasing in v for fixed t ∈ (0, 1) and u ∈ R+, and, in
addition, for fixed t ∈ (0, 1), g(t, u) is increasing in u.
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(3) For any γ ∈ (0, 1), t ∈ (0, 1), and u, v > 0, taking ξ = 1
2 ∈ (0, 1), we have

f
(
t,γ u,γ –1v

)
= (1 – t)– 1

3 t– 2
3 (γ u)

1
3 +

(
γ –1v

)– 1
5

≥ γ
1
2
[
(1 – t)– 1

3 t– 2
3 u

1
3 + v– 1

5
]

≥ γ
[
(1 – t)– 1

3 t– 2
3 u

1
3 + v– 1

5
]

= ϕξ
p (γ )f (t, u, v)

and

g(t,γ u) = (1 – t)– 1
8 t– 1

6 (γ u)
1
3

≥ γ 2[(1 – t)– 1
8 t– 1

6 u
1
3
]

= ϕp(γ )g(t, u).

(4) Taking δ0 = 1
2 , for all t ∈ (0, 1) and u, v ∈ [0, +∞), we have

f (t, u, v) = (1 – t)– 1
3 t– 2

3 u
1
3 + v– 1

5

≥ 1
4
[
(1 – t)– 1

8 t– 1
6 u

1
3
]

= ϕp(δ0)g(t, u).

From the above conclusions, obviously, Theorem 3.1 implies that the tempered frac-
tional differential equation integral boundary value problem (4.1) has a unique positive
solution u∗ ∈ Ph, where h(t) = e–tt 3

2 .
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