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1 Introduction

Peng [7, 8] initiated an important concept of the sublinear expectation space to study the
uncertainty of probability and distribution. The seminal works of Peng [7, 8] attracted
people to study inequalities and limit theorems under sublinear expectation space. Zhang
[12-14] obtained important inequalities including exponential and Rosenthal’s inequali-
ties and studied Donsker’s invariance principle under sublinear expectations. Inspired by
the works of Zhang [12-15], Huang and Wu [5] and Zhong and Wu [16] studied some lim-
its theorems under sublinear expectation space. Recently, under sublinear expectations,
Wu [10] proved precise asymptotics for complete integral convergence, and Xu and Cheng
[11] established precise asymptotics in the law of iterated logarithm. Under sublinear ex-
pectations for more limit theorems, the interested reader can refer to Chen [1], Xu [2], Hu
et al. [3], Hu and Yang [4], and references therein.

Recently, Meng et al. [6] studied the convergence for sums of asymptotically almost neg-
atively associated random variables. For references on complete convergence in linear ex-
pectation space, the interested reader can refer to Meng et al. [6], Shen and Wu [9], and
references therein. The work of Meng et al. [6] motivates us to wonder whether or not
the equivalent conditions of complete moment convergence of the maximum for partial
weighted sums of independent identically distributed random variables under sublinear
expectations hold. Here we get that the equivalent conditions of complete moment conver-
gence of the maximum for partial weighted sums of independent identically distributed
random variables hold under sublinear expectations, which complement the results of
Meng et al. [6] to those under sublinear expectations.
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We organize the rest of this paper as follows. In the next section, we recall necessary
notions, concepts, and relevant properties and present necessary lemmas under sublinear
expectations. In Sect. 3, we present our main results, Theorems 3.1 and 3.2, whose proofs

are given in Sect. 4.

2 Preliminaries

We use the notations as in the work by Peng [8]. Let (€2, ) be a measurable space, and
let H be a subset of all random variables on (2, F) such that I, € H, where A € F,
and Xi,...,X, € H implies that ¢(X,...,X,) € H for each (locally Lipschitz) function
¢ € CyLip(R") satisfying

o) —py)] = C(L+ IxI" +|y")(Ix~y]), VxyeR”,
for some C > 0 and m € N, which depend on ¢.

Definition 2.1 A sublinear expectation E on # is a functional E : H R := [~00,00]
satisfying the following properties: for all X, Y € H, we have

(a) If X > Y, then E[X] > E[Y];

(b) E[c] =¢, VceR;

(c) E[rX] = AE[X], VA > 0;

(d) E[X + Y] <E[X] + E[Y] whenever E[X] + E[Y] is not of the form co — co or

—00 + 00.

We refer to (a)—(d) as monotonicity, constant preserving, positive homogeneity, and sub-
additivity of E[-] respectively.

A set function V : F — [0,1] is called a capacity if

(@) V0)=0,V(Q)=1;

(b) V(A)<V(B),ACB,ABeF.
A capacity V is said to be subadditive if V(A + B) < V(A) + V(B), A,Be F.

In this paper, given a sublinear expectation space (2, H, E), we set the capacity V(A) :=
E[14] for A € F. Clearly, V is subadditive. We set the Choquet expectations Cy by

Cy(X) := /OOV(X >x)dx + /0 (V(X >x) — 1) dx.
0 —00

Given two random vectors X = (X1,...,X,u), X; € H,and Y = (Y3,...,Y,), Y; € H, on
(2, H,E), Y is said to be independent of X if for each Borel-measurable function ¥ on
R™ x R” with ¢¥(X,Y) such that ¥ (x,Y) € H for each x € R, we have E[¢/(X,Y)] =
E[Ey (x,Y)|x-x] whenever E[|(x,Y)]|] < oo for each x and E[|Ey (X, Y)|x=x|] < 00 (cf. Def-
inition 2.5 in Chen [1]). {X,,};°, is said to be a sequence of independent random variables
if X,,1 is independent of (X3, ...,X,,) for each n > 1.

Let X; and X; be two n-dimensional random vectors defined, respectively, in sublinear
expectation spaces (21, 1, Eq) and (23, Ha, E2). They are said to be identically distributed
if for every Borel-measurable function v such that ¥ (X1), ¥ (X3) € H,

Ei[v(X1)] = Eo[¢(X2)]
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whenever the sublinear expectations are finite. {X,,}32, is said to be identically distributed
if for each i > 1, X; and X; are identically distributed.

Throughout this paper, we assume that E is countably subadditive, that is, E(X) <
> o E(X,) whenever X <Y X,,, X,X, € H,and X >0, X, >0,n=1,2,.... By C
we denote positive constants, which may differ in different places; I(A) or I4 stands for
the indicator function of A; a, < b, means that there exists a constant C > 0 such that
a, < Cb, for n large enough, and a, ~ b, means that a, < b, and b, < a,. We denote
logx := Inmax{e, x}.

To establish our results, we need the following lemmas.

Lemma 2.1 Let Y be a random variable under sublinear expectation space (2, H,E). Then
foranyoa >0,y >0,and > -1,

O [ wes YY) du = o ()
1

(i) f u? In()Cy (1Y*I(1Y]> u”)) du < CCV(|Y|(ﬂ+1)/y+a In(1+Y1)).
1

Proof (i)

/ uﬁCV(|Y|"‘I(|Y| > u”)) du
1

[e9) u’ o9
=/ Wb (/ V(Y] > u? )are ! dt+f V(Y| > t“)at""ldt) du
1 0 u

Y

[e’e} e} tl/V
= / uﬂ+"‘VV(|Y| > uy) du + / ato‘_lV(|Y| > t) (/ uf du) de
1 1 1

o]
< CCy(|Y|PrDIree) 4 cf By (1Y) > £) de
1

< CCV(|Y|(ﬂ+1)/y+a).

(i) As in the proof of Lemma 2.2 in Zhong and Wu [16], let Z(x) = x#*D/7*¢In(1 + x), and
let Z7!(x) be the inverse function of Z(x). Then

/00 ub ln(u)CV(|Y|"‘I(|Y| > u”)) du

1

[’} u’ 00
= / u? ln(u)(/ V(|Y| > u")ozt‘)‘_1 dt + / V(|Y|“ > t“)at""l dt) du
1 0 u

v

[ee} e} tl/V
= / ubrey ln(u)V(|Y| > uy) du + / at"‘_IV(|Y| > t) (/ uP In(u) du) det
1 1 1
[o¢]
A / (P Y In(1 + &7 ) + AP0 ) 1Y (Y] > &) d
1

o0
+ C/ DY I V(Y] > ¢) de
1

%/ V(Y] >x)dZ(x) + CCy (1 Y|V In(1 + | Y]))
1

Page 3 of 14
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<C [ V(YI>Z'()dx+ CCy(1Y|#V7 " n(1+]Y]))

<C [ V(Y|BD7In(1+]Y]) > x)dx+ CCy (Y|4 In(1 +Y]))

_—
3 3

< CCy(IY|# 7 1n(1 + |Y])) + CCy (1Y|# V7 In(1 + |Y]))

< CCy(lY B+ n(1 + |Y1)). O
Denote Sg = X1 + -+ + Xi, So = 0.
Lemma 2.2 (cf. Corollary 2.2 and Theorem 2.3 in Zhang [14]) Suppose that Xi,1 is

independent of (Xi,...,Xx) under sublinear expectation space (Q,H,E) with E(X;) <0,
k=1,...,n—1. Then

M n
]E[‘Tax(sn - Sk)‘ ] <2 MY B[] forl<M <2, (2.1)
=" k-1

. " M2
E[|max(s, - 50| | < CM{ZE[|Xk|M] + (ZE[|Xk|2) } forM=2.  (22)
= k=1

k=1

We also cite Lemma 4.5(iii) in Zhang [13] as follows.

Lemma 2.3 (Lemma 4.5 (iii) in Zhang [13]) IfE is countably subadditive and Cy(|X|) < oo,
then

E(I1X1) < Cy(IX]) < co.

Lemma 2.4 Let Y be a random variable under sublinear expectation space (2, H,E). Then

foranyo >0,y >0,and g <-1,

(i) /oo WPE[|Y1I(]Y] < u”)]du < CCy(|Y|B+Dr+),
1
(2.3)

(ii) /OO uP m@E[|Y|I(1Y| < u”)]du < CCy (1Y In(1 +1Y])).
1

Proof (i) By Lemma 2.3 we have
oo
/ WPE[IYI*I()Y] < u”)]du

1
[eS) u?

5/ uﬂ/ VIYI(IY| <u”) > t)at* " dedu
1 0

o0

o0
5cf V(I >t)t“’1f ub dudt
0 1\ dly

o0
< C/ V(Y] > ) DY de < Cy (1Y B+,
0
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(ii) By Lemma 2.3 and the proof of Lemma 2.2 in Zhong and Wu [16] we have

o0
/ u’ mW)E[|Y1*I()Y| < u”)] du
1
oo u?
5/ uf ln(u)/ VYI(1YI <u”) > t)at* " dt du
1 0
SC/ V(Y] >t)t°‘"1/ uP In(u) du de
0 1\ ey
< cf V(Y] > £)e B0 In(g 4+ 1) de < CCy (1Y [P+ In(1 + |Y1)). 0
0

Lemma 2.5 Let {X,;n > 1} be a sequence of independent random variables under sublin-

ear expectation space (2, ’H,E). Then for alln > 1 and x > 0,
[1—V<max |Xj|>x>] ZV |X|>x)<4V(max |X|>x) (2.4)
1<j<n i1

Proof We borrow the idea from Shen and Wu [9]. Write Ax = (| Xk| > x) and
Bo=1-V(Uj_AL) =1~ V(lmax 1X;| > x)
<j<n

Without loss of generality, we may assume that g, > 0. Since {I(|Xg| > x) - EI(| Xx| > x), k <
1} is a sequence of independent random variables under sublinear expectations, combin-

ing C,’s inequality and Lemma 2.2 results in

]E|:Z( (i) - EI(AQ } <ZE )~ El(40)]

k=

< 2ZIE [(I(AD) + (V(4p))*] < 4ZV(Ak) (2.5)

k=1 k=1

By (2.5), the independence of I(Ax), k = 1,..., n, the subadditivity of sublinear expectations,
and Holder’s inequality under sublinear expectations, and the equality E(X + ¢) = E(X) + ¢

for constant ¢ and X € H, we conclude that

n n n-2
Y V(A = Y E[I(A0)] = Y EII(A)] + E[I(A,-1) + E[I(A,)]]
k= = k=1

n-2 n
= ZE[I(Ak)] +E[I(Ay1) +1(A)] =+ = ]E[I(Al) + E|:Z I(Ak):|:|

k=1 k=2

_ E[gI(Ak)] _ E[guAk)z(QA,ﬂ
sE[i(I(Ak) EI(A) (UA)}+ZV(A,<)V(IH )

k=1 k=1 j=1
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k=1 k=1

5[15(2”:(1(Ak) EI(Ak)> ((}LJA,))} +(1—,3,,)2n:V(Ak)

n

{4(1 b ﬁnZVA)} (1- 50> Vidp
k=1

n

_2[4(15 B) ﬁnZWAk)}(l B3 VA,
" k=1

which immediately results in (2.4). The proof is finished. O

3 Main results

Throughout the rest of this paper, we assume that {X,,, n > 0} is a sequence of independent
random variables, identically distributed as X under sublinear expectation space (€2, H,E)
with E(X;) = -E(-X;) =0,i=0,1,2,.... Our main results are as follows.

Theorem 3.1 Let 8 > -1 and r > 1. Let {b,; ~ (i/n)?(1/n),1 < i < n,n > 1} satisfy
Y byi=1foralln>1.Letforr>1,

Cy (|1 X|-D/0+A)) < 00 for —1<B<-1/r;
Cv(IX"In(1 + |X])) <o0 for B =-1/r; (3.1)
Cv(X]") < o0 for B >-1/r.

Then for all € > 0,

o0
r—2 _
;n EI <1m<}a<>§l meX e) } < 00, (3.2)
o0
r=2
;n V{lmqag meX >8}<OO (3.3)

Property (3.2) also implies (3.1).

Corollary 3.1 Let 8 > -1 and r > 1. Assume that {b,; ~ [(n — i)/n)?(1/n),0 <i<n -1,
n > 1} satisfies Z?:—Ol by =1foralln> 1. Let (3.1) hold. Then for all ¢ > 0,

00 +
Z n"zE{ < max - 8) ] < 00, (3.4)
p—t 0<j=n-1

o j
-2 X; . .
;n V{og§i1 Zo:bm ; >8} <00 (3.5)

j
> buiX;
-0

Property (3.4) also implies (3.1).

For « > 0, we write the Cesaro summation

1 2)...
pramCaiCis ‘) Crnm 1,401, (3.6)
n.
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Theorem 3.2 LetO<a <1,r>1.Let

Cy(1X|TV) < 00 forO<a<1-1/r
Cy(IX|"In(1 + |X|)) <00 fora=1-1/r; (3.7)
Cv(1X|") <00 fora>1-1/r.

Then for all € > 0,

00 +
r=2 a-1 4
E AT XA - , 3.8
S| -] e
00 J
an*zv max ZAz:}X,-/A‘;‘ >& ¢ <00, (3.9)
n=1 0=j<n i=0

Property (3.8) also implies (3.7).
In Theorem 3.2, taking o = 1, we get the following corollary.

Corollary 3.2 Let r > 1. Suppose Cy(|X|") < 0co. Then for all € > 0,

| = 8) } <00, (3.10)

>£} < 0. (3.11)

Z nr—ZEl <1II<1;2.<);
p ZX

o0
Z n’_2Vi max
1<j<n

n=1
Property (3.10) also implies Cy(|X|") < oo.

Remark 3.1 Under the same assumptions of Theorem 3.1, we obtain for all ¢ > 0,

)
>8)/2

> buX;

j
Z buiX;
-1

[o.¢]
r-2
o0 > Z n E: <1n<1]a<);
n=1
Z buiXi

o0
> e’ 2V | max

1<j<nm
n=1 ==

> 8) (3.12)

_ r—2
=(£/2) Zn V<1n<1;2<>;

By (3.12) we can deduce that (3.2) implies (3.3). Similarly, (3.4) implies (3.5). Hence we
complement the results of Meng et al. [6] to those under sublinear expectations.

4 Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1 Here we borrow the idea of the proof of Theorem 16 in Meng et al.
[6]. We first prove that (3.1) implies (3.2). Forall 1 <i <n, n > 1, write

1 1
Yii = ——1(bpXi < =1) + X (1buiXi] < 1) + b_l(b’”'x" > 1).

ni ni

Page 7 of 14
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Since E(X;) = —-E(-X;) = 0, we conclude that

J J J
D buiXi Y bu(Yu = EY,) + Y [1buXill (1buiXil > 1) + ElbyXilI(16,:Xi] > 1)]
i=1 i=1 i=1
J

J
+ Z[I(bm»X,- < —1) +I(bm'Xi > 1)] + ZV(|me,| > 1)
i=1

i=1
and
j n
11151;35); ;bm’Xi =< 1m<;a<)§; me Ym ]EYm) ;[1“me,| > 1) +V(|bm'Xi| > 1)]
+ Y [buXl (1buiXil > 1) + ElbuXilI (1buiXil > 1)]. (4.1)
i=1
Then

o0 j
r—2 Y.
Zn E(lrgaf); Zb,,,)(l

n=1

Z bm(Ym IEY}’!Z)

+ 0
- SCE W ’E| max
1<j<mn

n=1

o0 n
+ CX:nr*2 ZV(|met| >1)]
n=1 =1

+C Y n Y BlbuXill (1baiXil > 1)

n=1 i=1
=1+ II+IIL
Thus, to prove (3.2), we need to establish I < 0o, II < 00, and III < co. We first prove I < co.
For fixed n > 1, since {Y,; — EY,;,1 <i < n} is a sequence of independent identically dis-

tributed random variables under sublinear expectation space (2, H, E), for M > 2, com-
bining Lemma 2.2, C,’s inequality, Markov’s inequality, and Jensen’s inequality under sub-

>t+8)dt

linear expectations results in

j

D bui(Yi ~EYy)

< r—2
I CZn / <1n<1;a<>;

o0
<C E n- 2 max
0 (t +&)M | 1sj=n

n=1

me(ym EYm)

o0 00 1
<C r=2 bm v Eym

Xn: bm’(Ym' - EYm’)

i=ji+1

]

N . M2

CZn’_z |:Z E(b{z\gf'Ym _EYniIM (Z b2 ]E|Ym EYni|2) :|
i=1

n=1

o0
<C E #2E| max
] 0<j<n

n=

Page 8 of 14
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oo n oo n M2
<CY WY EB)YulM)+CY a7 (Z E(|b,,iY,,i|2)) =1 +L.
n=1 i=1 n=1 i=1

oo n oo n
L<CY WY V(buX|>1)+CY 0> ElbuXMI(buX| <1) =Ty +L1a.

n=1 i=1 n=1 i=1

By b,; ~ (i/n)?(1/n), Lemma 2.1 (or Lemma 2.2 in Zhong and Wu [16]), and (3.1) we see
that

(o] n
I <CY ™) V(X > Cn'FiF)

n=1 i=1
o0 X
< C/ x"Z/ V(IX] > Cx"*PyF) dydx
1 1
(Setting s = x“ﬂy_’g, t=y,)

Cfloos%_lVﬂXl > Cs)ds for -1 < B < -1/r;

~ 1 C [ Hn(s)V(X| > Cs)ds  for B =-1/r;
C [°s1V(X| > Cs)ds for B> —1/r;
. r—1 .
(taking g8 = ﬁ —lorB=r-1,0=0,y =1in Lemma 2.1
+

and using Lemma 2.3)
CCy (|X|r+D/0+A)) < o0 for -1 < B < -1/r;
< {CCy(IX|"In(1 +|X|)) <oo for B =-1/r; (4.2)
CCy(|X]") < o0 for 8 >-1/r.

A

Taking M large enough satisfying (r—1)/(1+ 8)-1-M < -1,r—1—-M < -1, we combine
Lemma 2.4 and (3.1) to obtain

o0 n
Lp=CY w2 wMUAMPE(XMI(1X| < Cn'*Pi )

n=1 i=1
o0 X
~C / a2 / xMEBMBE (I XIMI(1X] < Cx"*Py~P)) dy dw
1 1

C [2 T I ME(XMI(X| < Cs)ds  for 1< B <—1/r;

A C [ Min()E(IXIMI(IX| < Cs))ds  for B = —1/r;

C[° s ME(XIMI(1X| < Cs))ds for B> —1/r;
-1
(taking 8 = I—ﬂ —-1-MorB=r-1-M,a=M,y =1in Lemma 2.4 and
+

using Lemma 2.3)
CCy (1 X|-D0+P) < 00 for-1<pB<-1/r;

<1 CCy(IX|"In(1 + |X])) <oo for B =-1/r;
CCy(IX]") <0 for B > -1/r.
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We next prove I; < co. By C,’s inequality we see that

o0 [ n n M/2
I = Cznr—Z ZV“mel' > 1) + ZE|bniXi|21(|mel'| < 1):|
n=1 L i=1 i=1
00 [ n n M/2
<C)Y n? ZV(|bm»X| >1)+ ZIE|b,,,»X|21(|bm«X| < 1)}
n=1 L i=1 i=1
00 r n M/2 00 " MJ/2
<CY Y V(lbuX| > 1)} +CY |:ZE|b,,,-X|2I(|me| < 1)]
n=1 L i=1 n=1 i=1

= 121 + 122. (43)

Taking M large enough satisfying r —2 — (r— 1)M/2 < —1 and combining Markov’s inequal-

ity under sublinear expectations and (3.1) result in

o0 n M/2
Iy ~CY 2 [Z V(x| > Cn“ﬂi‘ﬂ):|

n=1 i=1
CY 2 1(,,1+ﬁ b= 1)/(“ﬂ)]j\m for-1<B<-1/r;
S CXin P 1(,,1+/3) In(1 + 1+,3 M2 for B =—-1/r;
Cy i 2 1+ﬂ )M for B > -1/r;
CY 2, =2 (r-DM2 oo for -1 < B < -1/r;
SNCY0, w2 UM (In M2 < 00 for B = ~1/r;
CY 02 =2 r-M2 oo for B > -1/r.

We next establish I, < 0o in the following two cases.
(i) If 1 < < 2, then taking M large satisfying r —2 - Mr(1+ 8)/2< -1, r-2-M(r—-1)/2 <
-1, by E(|X]") < Cv(]X|") < 0o we see that

o0 n M/2
wecyi(Ln)
n=1 i=1
o0 n M/2
C Z w2 (Z n—r(l+ﬂ)l~rﬂ>
i=1

n=1
cy 2, a-Mr(148)12 o for -1 < B < —1/r;

~{ O, nr 2 DM (In M2 ¢ o6 for B = —1/r;
Cy5 n "2 =DMI2 ¢ oo for B> —1/r.

(i) If r > 2, then (3.1) yields E(X?) < oo. Taking M large enough to satisfy r—2 - M(1 + B) <
-1,r-1-p/2 < -1, we deduce that

0 " M2
m=cyn(Ln)
n=1 i=1
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. " MJ2
~ CZ nr—2 (Z 2(1+8) ; ﬁ)

n=1 i=1
CY%°, w2MI+B) ¢ oo for -1 < B <-1/r;

RACY 2 n M2 (Inm)M2 < oo for B=-1/r;
CY2, m=2M2 ¢ oo for g > -1/r.

By the proof of I;; < co we see that II < co. We finally establish III < co. Since b,; ~

(i/n)P (1/n), combining Lemmas 2.1, and 2.3 results in

(o] n
M <CY w2y w CPPE(XII(1X] > Cn'*Pi )

n=1 i=1
oo X
<C / X2 / T Pybey (IXII(1X| > Cx' Py P)) dydx
1
(settings =x'"Py P t=y)

C [ sTF 20y (IXII(X| > Cs))ds  for -1 < B <—1/r;
C [ s In(s)Cy(IX1I(1X| > Cs))ds  for B =-1/r;
C [{° s 2Cy(IXII(1X| > Cs))ds for B > —1/r;

%

CCy (|1 X|r+1/0+A)) < 00 for-1<pB<-1/r;
CCy(IX)"In(1 + |X])) <00 for 8 =-1/r;
CCy(IX]") < o0 for B > —1/r.

IA

We now prove that (3.2) implies (3.1). By Remark 3.1 we see that (3.2) gives

j
12V max buiXi|>¢e | <o0. 4.4
Sl .
Observing that
j
< X
1mlax |bVl}X| 1n<];a<); ;bmxl ’ (4’5)
by (4.4) we obtain
Zn’ 2V(max |b,i X > e) <00, (4.6)
n=1
V(lmax |b,i X > 8) — 0 asn— oo. (4.7)
<j<n

By Lemma 2.5 and (4.7) we see that

ZV |me| > 8) < CV(max |b,i X > 8). (4.8)

i=1
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Hence combining (4.8) and (4.6) results in

[e¢] n
D> Y V(1buiXil > €) < 0. (4.9)
n=1 i=1

As in the proof of I1; < 0o, we obtain
[o¢] n
o0 > Zn”z ZV(lbniX,-| > 8)
n=1 i=1

oo X
%f x”Z/ V(IX] > Cex"*Py ) dy dx
1 1

floos%_IV(|X| > Cs)ds for -1 < B < -1/r;
[ n(s)V(IX| > Cs)ds  for B = —1/r;
[V (X > Cs)ds for B> —1/r;

%

Cy(1X|0-D/0+A)) < 00 for—-1<p <-1/r;
Cy(IX)"In(1 + |X])) <00 for 8 =-1/r;
Cy(IX|") <00 for B> -1/r.

%

Consequently, this finishes the proof of Theorem 3.1. d

Proof of Corollary 3.1 The proofs here are similar to that of Theorem 16 in Meng et al. [6].
For reader’s convenience, we give a brief explanation here. For 0 <i <n -1, n > 1, write

1 1
Yyi = ——1(byiX; < =1) + Xl (1b,iXi] < 1) + —I(byiX; > 1).
bm‘ bni

As in the proof of Theorem 3.1, we obtain
+ 00
_ <C 772]E

0 n-1
+CY Y V(1buXil > 1)]
n=1 i=0

J

Z buiX;
0

0<j<n-1|4
i=

j
Z bni(Yni - EYm)
i=0

o0
Z n’E ( max

n=1

0 n-1
+CY n Y ElbuXill (|buXil > 1)
n=1 i=0
=1+ +1IL

For instance, combining Lemmas 2.1 and 2.3 results in

oo n-1
M <CY w2y w @D - i B(XII(1X] > Cn'*P(n—i)F))
n=1 i=0
[o¢] n
<C)d n? Zn’(l*’s)kﬂE(|X|I(|X| > Cn'PkP)) < 0.
n=1 k=1

The rest of proof is similar to that of Theorem 3.1, so they are omitted. O

Page 12 of 14
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Proof of Theorem 3.2 The proof is similar to that of Theorem 18 in Meng et al. [6]. Taking
by =A%} /A%, 0 <i<n,n>1,wenote that for« > -1, A” ~ n*/T'(« + 1). Hence for a > 0,

we see that
buy~n*m-i*"1, 0<i<n, Ay =1 C. (4.10)

From A% = Y77 A%~1 it follows that

n
Y =1 (4.11)
i=0

It follows from (4.10) and (4.11) that the assumptions of Corollary 3.1 hold. Hence (3.8)
follows from (3.4). The proof of Theorem 3.2 is finished. a
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