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Abstract
In this paper, the dynamical behaviors for multiple delayed latent virus model with
virus-to-cell infection and cell-to-cell transmissions and humoral immunity are
investigated. The virus-to-cell and cell-to-cell incidence rates are modeled by general
nonlinear functions. The basic reproduction number R0 and the humoral immune
response number R1 are calculated and proved to be threshold conditions
determining the local and global properties of the virus model. The existence of Hopf
bifurcation with immune delay as a bifurcation parameter is presented, and the
effects of some key parameters on viral dynamics are revealed by numerical
simulations.
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1 Introduction
The role of immune response in controlling within-host dynamics of human viruses such
as human immunodeficiency virus (HIV), human T-cell leukemia virus (HTLV), hepati-
tis C virus (HCV), and hepatitis B virus (HBV) is important. Mathematical modeling and
analysis have been essential tools to get a better systematic understanding of within-host
viral infection. Nowak et al. [1] designed a mathematical model including uninfected cells,
infected cells, and virus to describe HIV-1 infection. Several virus dynamics models have
been further constructed and analyzed [2–19]. In different virus infections, immunity sys-
tem protects us against pathogens. In cell-mediated immune response, activated effector
T cells can detect peptide antigens and destroy infected cells. As for humoral immunity,
matured B cells migrate from bone marrow to other lymphatic organs, where they begin to
generate antibodies to remove the viruses [20]. In some diseases such as malaria, humoral
immune response is more powerful than cell-mediated immune response [21]. Murase
et al. [22] have extended the basic viral infection model presented in [1] by integrating
the basic dynamics of the interaction between uninfected cells, infected cells, viruses, and
immune cells.

It is mentioned in [2, 3] that cell-to-cell transmission seems to be a more potent and
efficient means of virus propagation than the virus-to-cell transmission. Various models
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of viral infection with two ways of transmission have been developed by many researchers
[4–11, 16, 17, 19]. A recent review on modeling viral spread can be found in [8]. Li and
Wang in [9] dealt with the global dynamics of an HIV infection model which incorpo-
rated direct cell-to-cell transmission. Meanwhile, Lai and Zou [10] studied the effect of
cell-to-cell transfer of HIV-1 on the virus dynamics. Lin et al. [11] have proposed a de-
layed viral infection model with humoral immunity and both virus-to-cell and cell-to-cell
transmissions, but the latently infected cells has been ignored. Miao et al. [12] have pro-
posed a virus dynamics model with humoral impairment. The model presented in [12] has
neglected the latently infected cells and cell-to-cell transmission. In a very recent work,
Elaiw et al. [13] have studied the global stability of an HIV infection model with impair-
ment of B-cell functions, but the cell-to-cell transmission has been ignored.

In case of HIV infection, current treatment consisting of several antiretroviral drugs
can suppress viral replication to a low level but cannot eradicate the virus. An important
reason is that HIV provirus can reside in latently infected cells [14, 15]. Latently infected
cells live long, are not affected by antiretroviral drugs or immune responses, but can be
activated to produce HIV by relevant antigens [16]. Motivated by the works in [6, 10, 11,
13, 16], in this paper we investigate the effects of combining both virus-to-cell and cell-
to-cell transmissions in delayed latent virus infection model with humoral immunity

˙T(t) = s – d1T(t) – f1
(
T(t), V (t)

)
– f2

(
T(t), I(t)

)
,

˙L(t) = ηe–m1τ1
{

f1
(
T(t – τ1), V (t – τ1)

)
+ f2

(
T(t – τ1), I(t – τ1)

)}

– d2L(t) – αL(t),

˙I(t) = (1 – η)e–m1τ2
{

f1
(
T(t – τ2), V (t – τ2)

)
+ f2

(
T(t – τ2), I(t – τ2)

)}

+ αL(t) – d3I(t),

˙V (t) = kI(t) – d4V (t) – qV (t)Z(t),

˙Z(t) = cV (t – τ3)Z(t – τ3) – d5Z(t),

(1)

where T(t), L(t), I(t), V (t), and Z(t) denote the concentration of uninfected cells, latently
infected cells, productively infected cells, viruses, and B cells at time t. The terms s and
d1T represent the production and death rates of the uninfected cells. The death rates of
latently infected cells, productively infected cells, viruses, and B cells are given by d2L, d3I ,
d4V , and d5Z, respectively. The viruses are produced at rate kI , and removed by the B cells
at rate qVZ. The B cells are proliferated at rate cVZ. Latently infected cells can be activated
by their relevant antigens to become productively infected cells at a rate α, The fractions
1 – η and η with 0 < η < 1 are the probabilities that an uninfected cell will turn into either
latently infected cell or productively infected cell. The functions f1(T , V ) and f2(T , I) are
the virus-to-cell and cell-to-cell incidence rates, respectively; τ1 and τ2 represent the times
between virus particle touches an uninfected cell and the cell becomes latently infected
and actively infected cell, respectively; e–m1τi , i = 1, 2, represents the damage of uninfected
cells during the interval [t – τi, t]. Antigenic stimulation generating antibody response in-
volves a sequence of processes and needs a period of time τ3.

We need the following assumptions on the function fi(T , θ ), i = 1, 2:
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Define

f11(T) = lim
V→0

f1(T , V )
V

=
∂f1(T , 0)

∂V
, f21(T) = lim

I→0

f2(T , I)
I

=
∂f2(T , 0)

∂I
.

(H1) fi(T , θ ) is continuously differentiable; fi(T , θ ) > 0 for T ∈ (0,∞), θ ∈ (0,∞); fi(T , θ ) =
0 if and only if T = 0 or θ = 0.

(H2) ∂fi(T ,θ )
∂T > 0 and ∂fi(T ,θ )

∂θ
> 0, for all T > 0 and θ > 0, i = 1, 2.

(H3) fi1(T) > 0 and f ′
i1(T) > 0 for all T > 0, i = 1, 2.

(H4) fi(T ,θ )
θ

is nonincreasing with respect to θ for all θ > 0, i = 1, 2.
In this paper, the aim is to investigate a virus dynamics model which includes: (i) B-

cell functions, (ii) both latently and productively infected cells, (iii) both virus-to-cell and
cell-to-cell transmissions, (iv) three time delays, (v) general virus-to-cell and cell-to-cell
incidence rates. Our purpose is to investigate the dynamical properties of model (1), ex-
pressing the stability of equilibria and the existence of Hopf bifurcation. The reproduction
numbers for viral infection and antibody response are calculated. By using Lyapunov func-
tionals and LaSalle’s invariance principle, the threshold conditions for the global asymp-
totic stability of infection-free equilibrium E0, immune-free equilibrium E1, and infection
equilibrium E2 with antibody response when the delay τ3 = 0 are established. By using
the linearization method, the instability of equilibria E0 and E1, respectively, are also es-
tablished. Furthermore, by using the numerical simulation method, we will discuss the
existence of the Hopf bifurcation and stability switches at equilibrium E2 when τ3 > 0.

The organization of our paper is as follows. In Sect. 2, the basic properties of model (1)
for the boundedness of solutions, the threshold values and the existence of equilibria are
discussed. In Sect. 3, the threshold conditions on the global stability and instability for
equilibria E0, E1, and E2 are stated. In Sect. 4, the numerical simulations are presented
to further illustrate the dynamical behavior of the model and study the effects of cell-to-
cell transmission, viral production rate, death rate of infected cells, and viral removal rate
on viral dynamics, respectively. Besides, we perform a sensitivity analysis of reproduction
ratios. Finally, we will give a conclusion.

2 Boundedness and equilibrium
Let τ = max{τ1, τ2, τ3} and R5

+ = {(x1, x2, x3, x4, x5) : xi ≥ 0, i = 1, 2, 3, 4, 5}. By C([–τ , 0], R5
+)

we denote the space of continuous functions mapping interval [–τ , 0] into R5
+ with norm

‖φ‖ = sup–τ≤t≤0{|φ(t)|} for any φ ∈ C([–τ , 0], R5
+).

The initial conditions for model (1) are given as follows:

⎧
⎨

⎩
(T(θ ), L(θ ), I(θ ), V (θ ), Z(θ )) = (φ1(θ ),φ2(θ ),φ3(θ ),φ4(θ ),φ5(θ )),

φi(θ ) ≥ 0, θ ∈ [–τ , 0), φi(0) > 0 (i = 1, 2, 3, 4, 5),
(2)

where (φ1(θ ),φ2(θ ),φ3(θ ),φ4(θ ),φ5(θ )) ∈ C([–τ , 0], R5
+). By the fundamental theory of

functional differential equations [23, 24], it is easy to see that model (1) admits a unique so-
lution (T(t), L(t), I(t), V (t), Z(t)) satisfying the initial conditions (2). We have the following
basic result of model (1).

Theorem 2.1 Let (T(t), L(t), I(t), V (t), Z(t)) be the solution of model (1) satisfying initial
conditions (2), then T(t), L(t), I(t), V (t), and Z(t) are positive and ultimately bounded.
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Proof We first show that T(t) > 0 for all t > 0. Assume that there exists a t1 > 0 such that
T(t1) = 0, T(t) > 0, t ∈ [0, t1). Thus, T ′(t1) ≤ 0. From the first equation of (1), we have
T ′(t1) = s > 0, which is a contradiction. This implies that T(t) > 0 for all t > 0. By the last
three equations of model (1), we have

L(t) = L(0)e–(α+d2)t +
∫ t

0
ηe–m1τ1

{
f1

(
T(ξ – τ1), V (ξ – τ1)

)

+ f2
(
T(ξ – τ1), I(ξ – τ1)

)}
e–(α+d2)(t–ξ ) dξ ,

I(t) = I(0)e–d3t +
∫ t

0
(1 – η)e–m1τ2

{
f1

(
T(ξ – τ2), V (ξ – τ2)

)

+ f2
(
T(ξ – τ2), I(ξ – τ2)

)
+ αL(ξ )

}
e–d3(t–ξ ) dξ ,

V (t) = V (0)e–(qZ+d4)t +
∫ t

0
kI(ξ )e–(qZ+d4)(t–ξ ) dξ ,

Z(t) = Z(0)e–d5t +
∫ t

0
cV (ξ – τ3)Z(ξ – τ3)e–d5(t–ξ ) dξ ,

which shows that L(t) > 0, I(t) > 0, V (t) > 0, and Z(t) > 0 for a small t > 0. Now, we prove
that L(t) > 0, I(t) > 0, V (t) > 0, and Z(t) > 0 for all t > 0. Assume that t2 > 0 is the first time
such that

min
{

L(t2), I(t2), V (t2), Z(t2)
}

= 0.

If L(t2) = 0, L(t) > 0 for t ∈ [0, t2) and I(t) > 0, V (t) > 0, Z(t) > 0, t ∈ [0, t2], then we have
L′(t2) ≤ 0. On the other hand, from the second equation of (1), we have

˙L(t2) = ηe–m1τ1
{

f1
(
T(t2 – τ1), V (t2 – τ1)

)
+ f2

(
T(t2 – τ1), I(t2 – τ1)

)}
> 0.

This leads to a contradiction.
If I(t2) = 0, I(t) > 0 for t ∈ [0, t2) and L(t) > 0, V (t) > 0, and Z(t) > 0, t ∈ [0, t2], we also

have ˙I(t2) ≤ 0. However, from the third equation, we have

˙I(t2) = (1 – η)e–m1τ2
{

f1
(
T(t2 – τ2), V (t2 – τ2)

)

+ f2
(
T(t2 – τ2), I(t2 – τ2)

)
+ αL(t2)

}

> 0.

This also leads to a contradiction.
Similarly, we know that V (t2) = 0 and Z(t2) = 0 are impossible. Thus, T(t) > 0, L(t) > 0,

I(t) > 0, V (t) > 0, and Z(t) > 0 for all t > 0.
Next, we prove the boundedness of the solution of model (1) with the initial condition

(2). From the positivity of the solution and the first equation of (1), we obtain

˙T(t) = s – d1T(t),

which yields

lim sup
t→∞

T(t) ≤ s
d1

.
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Let

N1(t) = ηT(t) + L(t + τ1)em1τ2 .

Calculating the derivative of N1(t) along solutions of model (1), we have

Ṅ1(t) = ηs – ηd1T(t) – (α + d2)em1τ1 L(t + τ1)

≤ ηs – σ1N1(t),

where σ1 = min{d1,α + d2}. This yields

lim sup
t→∞

N1(t) ≤ s
σ1

.

Denote

N2(t) = (1 – η)T(t – τ2) + em1τ2 I(t) +
d3em1τ2

2k
V (t) +

d3qem1τ2

2ck
Z(t + τ3).

Calculating the derivative of N2(t) along solutions of model (1), we have

Ṅ2(t) = (1 – η)s – d1(1 – η)T(t – τ2) + αem1τ2 L(t) –
d3em1τ2

2
I(t)

–
d3d4em1τ2

2k
V (t) –

d3d5qem1τ2

2ck
Z(t + τ3)

≤ a – σ2N2(t),

where

σ2 = min

{
d1,

d3

2
, d4, d5

}
,

a = (1 – η)s +
αηsem1(τ2–τ1)

σ1
.

This implies that lim supt→∞ N2(t) ≤ a
σ2

, and hence, I(t), V (t), and Z(t) are bounded.
Next, we discuss the existence of equilibria of model (1). It always has an infection-

free equilibrium E0 = (T0, 0, 0, 0, 0), where T0 = s
d1

. Inspired by the method in [25, 26], we
consider the infection and viral production, and define matrices F and V as

F =

⎛

⎜⎜
⎝

0 ηe–m1τ1 · ∂f2( s
d1

)
∂I ηe–m1τ1 · ∂f1( s

d1
)

∂V

0 (1 – η)e–m1τ2 · ∂f2( s
d1

)
∂I (1 – η)e–m1τ2 · ∂f1( s

d1
)

∂V
0 0 0

⎞

⎟⎟
⎠

and

V =

⎛

⎜
⎝

α + d2 0 0
–α d3 0
0 –k d4

⎞

⎟
⎠ .
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Thus, the basic reproductive number, R0, can be defined as the spectral radius of the next
generation operator FV–1, where

FV
–1 =

⎛

⎜
⎝

a11 a12 a13

a21 a22 a23

0 0 0

⎞

⎟
⎠ ,

where

a11 = ηe–m1τ1
α

α + d2

(
1
d3

· ∂f2( s
d1

, 0)
∂I

+
k

d3d4
· ∂f1( s

d1
, 0)

∂V

)
,

a12 = ηe–m1τ1

(
1
d3

· ∂f2( s
d1

, 0)
∂I

+
k

d3d4
· ∂f1( s

d1
, 0)

∂V

)
,

a13 = ηe–m1τ1
∂f1( s

d1
, 0)

∂V
1
d4

,

a21 = (1 – η)e–m1τ2
α

α + d2

(
1
d3

· ∂f2( s
d1

, 0)
∂I

+
k

d3d4
· ∂f1( s

d1
, 0)

∂V

)
,

a22 = (1 – η)e–m1τ2

(
1
d3

· ∂f2( s
d1

, 0)
∂I

+
k

d3d4
· ∂f1( s

d1
, 0)

∂V

)
,

a23 = (1 – η)e–m1τ2
∂f1( s

d1
, 0)

∂V
1
d4

.

Therefore,

R0 =
(

ηe–m1τ1
α

α + d2
+ (1 – η)e–m1τ2

)(
1
d3

· ∂f2( s
d1

, 0)
∂I

+
k

d3d4
· ∂f1( s

d1
, 0)

∂V

)
,

which biologically describes the average number of secondary infections produced by one
infected cell at the beginning of infection. In the above expression of R0, divided into parts

as R0 = R01 + R02, where R01 = (ηe–m1τ1 α
α+d2

+ (1 – η)e–m1τ2 ) · k
d3d4

· ∂f1( s
d1

,0)
∂V is the basic

reproduction number via the virus-to-cell infection and R02 = (ηe–m1τ1 α
α+d2

+(1–η)e–m1τ2 ) ·
1

d3
· ∂f2( s

d1
,0)

∂I is the basic reproduction number via the cell-to-cell transmission, respectively.
To find the equilibria of model (1), we need to solve

s – d1T(t) – f1
(
T(t), V (t)

)
– f2

(
T(t), I(t)

)
= 0,

ηe–m1τ1
{

f1
(
T(t), V (t)

)
+ f2

(
T(t), I(t)

)}
– d2L(t) – αL(t) = 0,

(1 – η)e–m1τ2
{

f1
(
T(t), V (t)

)
+ f2

(
T(t), I(t)

)}
+ αL(t) – d3I(t) = 0,

kI(t) – d4V (t) – qV (t)Z(t) = 0,

cV (t)Z(t) – d5Z(t) = 0.

(3)

When Z(t) = 0, the fourth equation of (3) leads to I = d4V
k . From the second and third

equations of (3), we obtain L = d3ηe–m1τ1
αηe–m1τ1 +(α+d2)(1–η)e–m1τ2 · d4V

k . Solving T from (3), we get
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T = s
d1

– (α+d2)d3d4V
d1k(αηe–m1τ1 +(α+d2)(1–η)e–m1τ2 ) � h(V ). We get from the second equation that

f1
(
h(V ), V

)
+ f2

(
h(V ),

d4V
k

)
–

(α + d2)d3d4V
k(αηe–m1τ1 + (α + d2)(1 – η)e–m1τ2 )

= 0.

Define

F(V ) = f1
(
h(V ), V

)
+ f2

(
h(V ),

d4V
k

)
–

(α + d2)d3d4V
k(αηe–m1τ1 + (α + d2)(1 – η)e–m1τ2 )

,

then F(0) = 0, the positive solution of h(V ) = 0 is given by

V̄ =
sk(αηe–m1τ1 + (α + d2)(1 – η)e–m1τ2 )

(α + d2)d3d4
.

We can see that

F(V̄ ) = f1(0, V̄ ) + f2

(
0,

d4V̄
k

)
–

(α + d2)d3d4V̄
k(αηe–m1τ1 + (α + d2)(1 – η)e–m1τ2 )

= –
(α + d2)d3d4V̄

k(αηe–m1τ1 + (α + d2)(1 – η)e–m1τ2 )
< 0.

Moreover,

F ′(V ) =
∂f1(h(V ), V )

∂T
· h′(V ) +

∂f1(T , V )
∂V

+
∂f2(h(V ), d4V

k )
∂T

· h′(V )

+
∂f2(T , I)

∂I
· d4

k
–

(α + d2)d3d4

k(αηe–m1τ1 + (α + d2)(1 – η)e–m1τ2 )
.

Assumption (H1) implies that ∂f1(T0,V )
∂T = 0 and ∂f2(T0,I)

∂T = 0, then

F ′(0) =
∂f1( s

d1
, V )

∂V
+

∂f2( s
d1

, I)
∂I

· d4

k
–

(α + d2)d3d4

k(αηe–m1τ1 + (α + d2)(1 – η)e–m1τ2 )

=
d3d4

k( α
α+d2

ηe–m1τ1 + (1 – η)e–m1τ2 )
(R0 – 1).

Therefore, if R0 > 1, then F ′(0) > 0 and ∃V1 ∈ (0, V̄ ) such that F(V1) = 0. Hence, model (1)
has a unique immune-free equilibrium E1 = (T1, L1, I1, V1, 0), where

T1 =
s

d1
–

(α + d2)d3d4V1

d1k(αηe–m1τ1 + (α + d2)(1 – η)e–m1τ2 )
,

I1 =
d4V1

k
, L1 =

d3ηe–m1τ1

αηe–m1τ1 + (α + d2)(1 – η)e–m1τ2
· d4V1

k
.

When Z(t) 
= 0, the fourth equation of (3) leads to V = d5
c . From the second and third

equations of (3), we obtain L = d3ηe–m1τ1 I
αηe–m1τ1 +(α+d2)(1–η)e–m1τ2 . Solving T from (3), we get T =

s
d1

– (α+d2)d3I
d1(αηe–m1τ1 +(α+d2)(1–η)e–m1τ2 ) � h(I). We get from the second equation that

f1

(
h(I),

d5

c

)
+ f2

(
h(I), I

)
–

(α + d2)d3I
αηe–m1τ1 + (α + d2)(1 – η)e–m1τ2

= 0.
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Define

F(I) = f1

(
h(I),

d5

c

)
+ f2

(
h(I), I

)
–

(α + d2)d3I
αηe–m1τ1 + (α + d2)(1 – η)e–m1τ2

,

then F(0) = f1( s
d1

, d5
c ) > 0 and the positive solution of h(I) = 0 is given by

Ī =
s(αηe–m1τ1 + (α + d2)(1 – η)e–m1τ2 )

(α + d2)d3
.

We can see that

F(Ī) = f1

(
0,

d5

c

)
+ f2(0, Ī) –

(α + d2)d3 Ī
αηe–m1τ1 + (α + d2)(1 – η)e–m1τ2

= –
(α + d2)d3 Ī

αηe–m1τ1 + (α + d2)(1 – η)e–m1τ2
< 0.

Moreover,

F ′(I) =
∂f1(h(I), d5

c )
∂T

· h′(I) +
∂f2(h(I), I)

∂T
· h′(I)

+
∂f2(T , I)

∂I
–

(α + d2)d3

αηe–m1τ1 + (α + d2)(1 – η)e–m1τ2
,

then we have

F ′(0) =
∂f2( s

d1
, 0)

∂I
–

(α + d2)d3d4

αηe–m1τ1 + (α + d2)(1 – η)e–m1τ2

=
(α + d2)d3d4

αηe–m1τ1 + (α + d2)(1 – η)e–m1τ2
(R02 – 1).

Therefore, if R02 > 1, then F ′(0) > 0 and ∃I2 ∈ (0, Ī) such that F(I2) = 0.
Define

R1 =
cV1

d5
.

From the fourth equation of (3), we obtain that Z2 = kI2–d4V2
qV2

=
d4( kcI2

d4d5
–1)

q = d4(R1–1)
q . Hence,

when R1 > 1, model (1) has a unique infection equilibrium E2 = (T2, L2, I2, V2, Z2) with
antibody response, where

T2 =
s

d1
–

(α + d2)d3I2

d1(αηe–m1τ1 + (α + d2)(1 – η)e–m1τ2 )
,

L2 =
d3ηe–m1τ1 I

αηe–m1τ1 + (α + d2)(1 – η)e–m1τ2
, V2 =

d5

c
. �

3 Stability analysis
To state the global stability on E0, we need an additional assumption:

(H5) The supremum of f21(T)
f11(T) on (0, T0] is achieved at T = T0.
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Theorem 3.1 (a) If R0 ≤ 1, then the infection-free equilibrium E0 is globally asymptotically
stable.

(b) If R0 > 1, then the equilibrium E0 is unstable.

Proof Consider claim (a). Define a Lyapunov functional

U1(t) =
(

αηe–m1τ1

α + d2
+ e–m1τ1 (1 – η)

)(
T(t) –

∫ T(t)

T̄0

lim
V→0

f1(T0, V )
f1(θ , V )

dθ

)

+
α

α + d2
L(t) + I(t) +

(1 – R02)d3V (t)
k

+
(1 – R02)d3q

ck
Z(t)

+
αηe–m1τ1

α + d2

∫ 0

–τ1

(
f1

(
T(t + θ ), V (t + θ )

)
+ f2

(
T(t + θ ), I(t + θ )

))
dθ

+ e–m1τ2 (1 – η)
∫ 0

–τ1

(
f1

(
T(t + θ ), V (t + θ )

)

+ f2
(
T(t + θ ), I(t + θ )

))
dθ +

(1 – R02)d3q
k

∫ 0

–τ1

V (t + θ )Z(t + θ ) dθ .

Calculating the derivative of U1(t) along positive solution of model (1) and noting that
T0 = s

d1
, we obtain

dU1(t)
dt

=
(

αηe–m1τ1

α + d2
+ e–m1τ1 (1 – η)

)(
1 – lim

V→0

f1(T0, V )
f1(T , V )

)
(d1T0 – d1T)

+
(

αηe–m1τ1

α + d2
+ e–m1τ1 (1 – η)

)
lim

V→0

f1(T0, V )
f1(T , V )

· f1(T , V )

+
(

αηe–m1τ1

α + d2
+ e–m1τ1 (1 – η)

)
lim

V→0

f1(T0, V )
f1(T , V )

· f2(T , I)

–
(1 – R02)d3d4

k
V – R02d3I –

(1 – R02)d3d5q
ck

Z,

where

(
αηe–m1τ1

α + d2
+ e–m1τ1 (1 – η)

)
lim

V→0

f1(T0, V )
f1(T , V )

· f1(T , V ) –
(1 – R02)d3d4

k
V

=
d3d4

k
(R0 – 1)V (t)

and

(
αηe–m1τ1

α + d2
+ e–m1τ1 (1 – η)

)
lim

V→0

f1(T0, V )
f1(T , V )

· f2(T , I) – R02d3I

=
{(

αηe–m1τ1

α + d2
+ e–m1τ1 (1 – η)

)
· lim

V→0

f1(T0, 0)
f1(T , 0)

· lim
I→0

f2(T , I)
I

–
∂f2(T0, 0)

∂I

(
αηe–m1τ1

α + d2
+ e–m1τ1 (1 – η)

)}
I

< 0.
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From Assumption (H3), we have

(
1 – lim

V→0

f1(T0, V )
f1(T , V )

)
(d1T0 – d1T) < 0.

Moreover, by utilizing Assumptions (H4)–(H5), we obtain

f1(T0, V )
f1(T , V )

· f2(T , I)
I

≤ f21(T)/f11(T)
f21(T0)/f11(T0)

· f21(T0) ≤ f21(T0) for T ≤ T0.

Therefore, we obtain

dU1(t)
dt

≤ d3d4

k
(R0 – 1)V (t) –

(1 – R02)d3d5q
ck

Z.

Note that dU1(t)
dt = 0 if and only if T = T0, L = 0, V = 0, and Z = 0. So, the maximal com-

pact invariant set in {(T , L, I, V , Z) ∈ R5
+ : dU1(t)

dt = 0} is the singleton {E0}. By the LaSalle’s
invariance principle [23], E0 is globally asymptotically stable when R0 ≤ 1.

Next, we consider conclusion (b). The characteristic equation of the linearized system
of model (1) at the equilibrium E0 is

(λ + d1)(λ + d5)F(λ) = 0,

where

F(λ) = λ3 + a1λ
2 + a2λ + a3,

with

a1 = α + d2 + d3 + d4 – e–(λ+m1)τ2 (1 – η)
∂f2(T0, 0)

∂I
,

a2 = e–(λ+m1)τ2 (1 – η)
∂f2(T0, 0)

∂I
(α + d2 + d4) + d3d4 + (α + d2)(d3 + d4)

– αηe–(λ+m1)τ1
∂f2(T0, 0)

∂I
– k(1 – η)e–(λ+m1)τ2

∂f1(T0, 0)
∂V

,

a3 = (α + d2)
(

d4

(
–e–(λ+m1)τ2 (1 – η)

∂f2(T0, 0)
∂I

+ d3

)

– k(1 – η)e–(λ+m1)τ2
∂f1(T0, 0)

∂V

)

+ α

(
–d4ηe–(λ+m1)τ1

∂f2(T0, 0)
∂I

– kηe–(λ+m1)τ1
∂f1(T0, 0)

∂V

)
.

When R0 > 1, we have F(0) = d3d4(α + d2)(1 – R0) < 0 and limλ→∞ F(λ) = +∞. Hence, there
is a λ∗ > 0 such that F(λ∗) = 0. Therefore, when R0 > 1, E0 is unstable. This completes the
proof. �

We establish a set of conditions which are sufficient for the global stability of equilibria
for E1 and E2. Here, we assume that the functions f1(T , V ) and f2(T , I) satisfy the following:
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(H6)

f1(Ti, Vi)f2(T , I)Ii – f1(T , Vi)f2(Ti, Ii)I < 0,

f1(T , V )Vi – f1(T , Vi)V < 0, i = 1, 2.

Theorem 3.2 Let R0 > 1. (a) If R1 ≤ 1, then the immune-free equilibrium E1 is globally
asymptotically stable.

(b) If R1 > 1, then the equilibrium E1 is unstable.

Proof Letting H(ξ ) = ξ – 1 – ln ξ , we have that H(ξ ) ≥ 0 for all ξ > 0 and H(ξ ) = 0 if and
only if ξ = 1. Consider claim (a). Define a Lyapunov functional

U2(t) =
(

αηe–m1τ1

α + d2
+ e–m1τ2 (1 – η)

)(
T(t) –

∫ T(t)

T̄1

f1(T1, V1)
f1(θ , V1)

dθ

)

+
αL1

α + d2
H

(
L
L1

)
+ I1H

(
I
I1

)

+
(

αηe–m1τ1

α + d2
+ e–m1τ2 (1 – η)

)
f1(T1, V1)

d4V1
V1H

(
V
V1

)

+
(

αηe–m1τ1

α + d2
+ e–m1τ2 (1 – η)

)
f1(T1, V1)q

cd4V1
Z

+
αηe–m1τ1

α + d2
f1(T1, V1)

∫ 0

–τ1

H
(

f1(T(t + θ ), V (t + θ ))
f1(T1, V1)

)
dθ

+ e–m1τ2 (1 – η)f1(T1, V1)
∫ 0

–τ2

H
(

f1(T(t + θ ), V (t + θ ))
f1(T1, V1)

)
dθ

+
αηe–m1τ1

α + d2
f2(T1, I1)

∫ 0

–τ1

H
(

f2(T(t + θ ), I(t + θ ))
f2(T1, I1)

)
dθ

+ e–m1τ2 (1 – η)f2(T1, I1)
∫ 0

–τ2

H
(

f2(T(t + θ ), I(t + θ ))
f2(T1, I1)

)
dθ

+
(

αηe–m1τ1

α + d2
+ e–m1τ2 (1 – η)

)
f1(T1, V1)q

d4

∫ 0

–τ3

V (t + θ )Z(t + θ ) dθ .

Calculating the derivative of U2(t) along positive solution of model (1), it follows that

dU2(t)
dt

=
(

αηe–m1τ1

α + d2
+ e–m1τ2 (1 – η)

)(
1 –

f1(T1, V1)
f1(T , V1)

)
(d1T1 – d1T)

–
(

αηe–m1τ1

α + d2
+ e–m1τ2 (1 – η)

)(
f1(T1, V1) + f2(T1, I1)

)
H

(
f1(T1, V1)
f1(T , V1)

)

–
αηe–m1τ1

α + d2
f1(T1, V1)

(
H

(
L1f1(T(t – τ1), V (t – τ1))

Lf1(T1, V1)

)

+ H
(

I1L
IL1

)
+ H

(
IV1

I1V

))

–
αηe–m1τ1

α + d2
f2(T1, I1)

(
H

(
L1f2(T(t – τ1), I(t – τ1))

Lf2(T1, I1)

)
+ H

(
I1L
IL1

))

– e–m1τ2 (1 – η)f2(T1, I1)H
(

I1f2(T(t – τ2), I(t – τ2))
If2(T1, I1)

)
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– e–m1τ2 (1 – η)f1(T1, V1)
(

H
(

I1f1(T(t – τ1), V (t – τ1))
If1(T1, V1)

)
+ H

(
IV1

I1V

))

–
(

αηe–m1τ1

α + d2
+ e–m1τ2 (1 – η)

)
f1(T1, V1)q

d4V1
(V2 – V1)Z

+
(

αηe–m1τ1

α + d2
+ e–m1τ2 (1 – η)

)(
f1(T1, V1)f2(T , I)

f1(T , V1)
–

f2(T1, I1)I
I1

)

+
(

αηe–m1τ1

α + d2
+ e–m1τ2 (1 – η)

)
f1(T1, V1)

(
f1(T , V )
f1(T , V1)

–
V
V1

)
.

From (H2), (H4), and (H6), we have

(
1 –

f1(T1, V1)
f1(T , V1)

)
(d1T1 – d1T) < 0,

f1(T , V )
f1(T , V1)

–
V
V1

< 0,

f1(T1, V1)f2(T , I)
f1(T , V1)

–
f2(T1, I1)I

I1
< 0.

Hence, dU2(t)
dt ≤ 0 and dU2(t)

dt = 0 if and only if T(t) = T1, L(t) = L1, I(t) = I1, V (t) = V1, and
Z(t) = 0. From the LaSalle’s invariance principle [23], we have that E1 is globally asymp-
totically stable when R0 > 1 and R1 ≤ 1.

Next, we consider conclusion (b). The characteristic equation of the linearized system
of model (1) at the equilibrium E1 is

h1(λ)h2(λ) = 0,

where

h1(λ) = λ + d5 – ce–λτ3 V1

and

h2(λ) =

∣∣
∣∣∣
∣∣
∣∣

a11 0 ∂f2(T1,I1)
∂I

∂f1(T1,V1)
∂V

a21 λ + α + d2 a23 a24

a31 –α a33 a34

0 0 –k λ + d4

∣∣
∣∣∣
∣∣
∣∣

,

with

a11 = α + d1 +
∂f1(T1, V1)

∂T
+

∂f2(T1, I1)
∂T

,

a21 = –e–(m1+λ)τ1η

(
∂f1(T1, V1)

∂T
+

∂f2(T1, I1)
∂T

)
,

a23 = –e–(m1+λ)τ1η
∂f2(T1, I1)

∂I
, a24 = –e–(m1+λ)τ1η

∂f1(T1, V1)
∂V

,

a31 = –e–(m1+λ)τ2 (1 – η)
(

∂f1(T1, V1)
∂T

+
∂f2(T1, I1)

∂T

)
,

a33 = λ – e–(m1+λ)τ2 (1 – η)
∂f2(T1, I1)

∂I
+ d3,
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a34 = –e–(m1+λ)τ2 (1 – η)
∂f1(T1, V1)

∂V
.

When R1 > 1, we have h1(0) = d5 – cV1 < 0. Since limλ→∞ h1(λ) = +∞, there is also a pos-
itive root λ∗ such that h1(λ∗) = 0. Therefore, when R1 > 1, E1 is unstable. This completes
the proof. �

Theorem 3.3 If R1 > 1 and τ3 = 0, then the infection equilibrium E2 with antibody response
is globally asymptotically stable.

Proof Define a Lyapunov functional

U3(t) =
(

αηe–m1τ1

α + d2
+ e–m1τ2 (1 – η)

)(
T(t) –

∫ T(t)

T̄2

f1(T2, V2)
f1(θ , V2)

dθ

)

+
αL2

α + d2
H

(
L
L2

)
+ I2H

(
I
I2

)

+
(

αηe–m1τ1

α + d2
+ e–m1τ2 (1 – η)

)
f1(T2, V2)

(d4 + qZ2)V2
V2H

(
V
V2

)

+
(

αηe–m1τ1

α + d2
+ e–m1τ2 (1 – η)

)
f1(T2, V2)q

(d4 + qZ2)V2
Z2H

(
Z
Z2

)

+
αηe–m1τ1

α + d2
f1(T2, V2)

∫ 0

–τ1

H
(

f1(T(t + θ ), V (t + θ ))
f1(T2, V2)

)
dθ

+ e–m1τ2 (1 – η)f1(T2, V2)
∫ 0

–τ2

H
(

f1(T(t + θ ), V (t + θ ))
f1(T2, V2)

)
dθ

+
αηe–m1τ1

α + d2
f2(T2, I2)

∫ 0

–τ1

H
(

f2(T(t + θ ), I(t + θ ))
f2(T2, I2)

)
dθ

+ e–m1τ2 (1 – η)f2(T2, I2)
∫ 0

–τ2

H
(

f2(T(t + θ ), I(t + θ ))
f2(T2, I2)

)
dθ .

Calculating the derivative of U3(t) along positive solution of model (1), it follows that

dU3(t)
dt

=
(

αηe–m1τ1

α + d2
+ e–m1τ2 (1 – η)

)(
1 –

f1(T2, V2)
f1(T , V2)

)
(d1T2 – d1T)

–
(

αηe–m1τ1

α + d2
+ e–m1τ2 (1 – η)

)(
f1(T2, V2) + f2(T2, I2)

)
H

(
f1(T2, V2)
f1(T , V2)

)

–
αηe–m1τ1

α + d2
f1(T2, V2)

(
H

(
L2f1(T(t – τ1), V (t – τ1))

Lf1(T2, V2)

)

+ H
(

I2L
IL2

)
+ H

(
IV2

I2V

))

–
αηe–m1τ1

α + d2
f2(T2, I2)

(
H

(
L2f2(T(t – τ1), I(t – τ1))

Lf2(T2, I2)

)
+ H

(
I2L
IL2

))

– e–m1τ2 (1 – η)f2(T2, I2)H
(

I2f2(T(t – τ2), I(t – τ2))
If2(T2, I2)

)

– e–m1τ2 (1 – η)f1(T2, V2)
(

H
(

I2f1(T(t – τ1), V (t – τ1))
If1(T2, V2)

)
+ H

(
IV2

I2V

))
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+
(

αηe–m1τ1

α + d2
+ e–m1τ2 (1 – η)

)(
f1(T2, V2)f2(T , I)

f1(T , V2)
–

f2(T2, I2)I
I2

)

+
(

αηe–m1τ1

α + d2
+ e–m1τ2 (1 – η)

)
f1(T2, V2)

(
f1(T , V )
f1(T , V2)

–
V
V2

)
.

From (H2), (H4), and (H6), we have

(
1 –

f1(T2, V2)
f1(T , V2)

)
(d1T2 – d1T) < 0,

f1(T , V )
f1(T , V2)

–
V
V2

< 0,

f1(T2, V2)f2(T , I)
f1(T , V2)

–
f2(T2, I2)I

I2
< 0.

Hence, dU3(t)
dt ≤ 0 and dU3(t)

dt = 0 if and only if T(t) = T2, L(t) = L2, I(t) = I2, V (t) = V2, and
Z(t) = Z2. From the LaSalle’s invariance principle [23], we have that E2 is globally asymp-
totically stable when R1 > 1. This completes the proof. �

4 Numerical simulations
In the above sections, we established the global asymptotic stability of equilibrium E2

when τ1 ≥ 0, τ2 ≥ 0, and τ3 = 0. However, considering the case τ1 ≥ 0, τ2 ≥ 0, and
τ3 ≥ 0, by using the numerical simulation, it is shown that stability switches occur at E2

as τ3 increases. In model (1), we have f1(T , V ) = β1T(t)V (t)
1+α1T(t)+α2V (t) , f2(T , I) = β2T(t)I(t). Take

s = 10, d1 = 0.01, d2 = 0.8, β1 = 0.25, β2 = 0.001, α1 = 0.01, α2 = 0.01, d3 = 0.5, α = 0.01,
η = 0.49, k = 0.4, d4 = 3, q = 1, c = 1.5, m1 = 0.01, m2 = 0.01, d5 = 1, τ1 = 2, and τ2 = 5, and
choose τ3 as a free parameter. Computing we obtain R0 = 3.0743 > 1, R1 = 1.7440 > 1, and
E2(112, 5.2649, 8.72, 0.6667, 2.2321).

In the following Figs. 1–4, panels (a), (b), (c), (d), and (e) show the time evolution of T(t),
L(t), I(t), V (t), and Z(t).

Figure 1 Taking τ3 = 3, we have R0 = 3.0743 > 1 and R1 = 1.7440 > 1, and the infection equilibrium E2 with
antibody response is asymptotically stable
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Figure 2 Taking τ3 = 10, we have R0 = 3.0743 > 1 and R1 = 1.7440 > 1, and the Hopf bifurcation at infection
equilibrium E2 with antibody response occurs

Figure 3 Taking τ3 = 45, we have R0 = 3.0743 > 1 and R1 = 1.7440 > 1, the infection equilibrium E2 with
antibody response is asymptotically stable

4.1 Effect of cell-to-cell transmission
In order to investigate the effect of cell-to-cell transmission, we carry out some numerical
simulations to show the contribution of cell-to-cell transmission during the whole infec-
tion. Figure 5 (β2 = 0, β2 = 0.001, β2 = 0.0025, β2 = 0.005) shows that latently infected cells,
productively infected cells, and virus reach the peak levels quicker and they become larger
as β2 increases. Therefore, cell-to-cell transmission plays an important role in the whole
virus infection.
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Figure 4 Taking τ3 = 60, we have R0 = 3.0743 > 1 and R1 = 1.7440 > 1, and the Hopf bifurcation at infection
equilibrium E2 with antibody response occurs

Figure 5 The effect of β2 on the dynamical behavior of model (1)

Figure 6 The effect of k on the dynamical behavior of model (1)

4.2 Effect of viral production rate
Viral production rate also has a great influence on the dynamical behavior of the model.
We set the viral production rate k as 0.4, 4, and 40. In Fig. 6, we observe that the time to
reach the peak levels of latently infected cells, productively infected cells, and virus be-
comes shorter as k increases, which means that a larger viral production rate contributes
to the viral infection. In terms of the prevention and treatment of virus infection, decreas-
ing k contributes to inhibiting virus reproduction.
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Figure 7 The effect of d3 on the dynamical behavior of model (1)

Figure 8 The effect of d4 on the dynamical behavior of model (1)

4.3 Effect of death rate of infected cells and viral removal rate
Usually, the death rate of infected cells is larger than the death rate of uninfected cells due
to the fact that virus infection can kill more host cells. From Fig. 7, we can observe that
latently infected cells, productively infected cells, and virus increase more slowly as d3 in-
creases, which indicates that increasing the death rate of infected cells can slow down the
virus infection. Humoral immunity is used to clear virus in our body, so the viral remove
rate d4 has an effect on viral infection as well. Figure 8 implies that as d4 increases, latently
infected cells, productively infected cells, and virus increase more slowly, which has sim-
ilar results to d3. Therefore, promoting body’s immunity helps increase the mortality of
infected cells and viral removal rate.

4.4 Sensitivity analysis
Sensitivity analysis is used to quantify the range of variables in reproduction ratios and
to identify the key factors giving rise to reproduction ratios. In [27, 28], Latin hypercube
sampling (LHS) is found to be a more efficient statistical sampling technique which has
been introduced to the field of disease modeling. In [28], Marino et al. mentioned that
partial rank correlation coefficients (PRCCs) provide a measure of the strength of a linear
association between the parameters and the reproduction ratios. We perform sensitivity
analysis by using the Latin hypercube sampling method to generate 5000 parameter com-
binations with each parameter. In Fig. 9, we obtain the PRCCs of R0 and R1. Specially, we
show that β1, β2, and k are positively correlative variables with R0 and R1, while others are
negatively correlated variables.

5 Discussion
In this paper, we developed a delayed latent virus model with both virus-to-cell and cell-
to-cell transmissions and humoral immunity. We see that intracellular delay τ1 and virus
replication delay τ2 do not affect the stability of the equilibria. However, immune response
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Figure 9 PRCCs of the basic reproduction numbers R0 and R1 with respect to some model parameters

delay τ3 strongly impacts the stability of infection equilibrium with antibody response E2.
Under certain assumptions (H1)–(H6), we have shown that, when R0 < 1, E0 is globally
asymptotically stable for any delays τ1 ≥ 0, τ2 ≥ 0, and τ3 ≥ 0, which means that the virus
is eradicated. When R0 > 1 and R1 ≤ 1, E1 is globally asymptotically stable for any delays
τ1 ≥ 0, τ2 ≥ 0, and τ3 ≥ 0, which means that the antibody response would not be activated
and the viral infection vanishes. When R1 > 1 and τ3 = 0, E2 is globally asymptotically
stable for any delays τ1 ≥ 0 and τ2 ≥ 0, that is, uninfected cells, latently infected cells,
productively infected cells, virus and antibodies coexist in vivo.

When τ3 ≥ 0, by numerical simulations, it is shown that the Hopf bifurcation and sta-
bility switches occur at E2 as τ3 increases. From Figs. 1–4, we see when τ3 is small enough,
E2 is asymptotically stable and, when τ3 is increasing, the stability switch occurs at E2,
while, when E2 is unstable, Hopf bifurcation occurs. Finally, when τ3 is large enough, E2

is always unstable. This illustrates that τ3 plays a negative role in disease prevalence and
control. Besides, we can see in Figs. 5–8 the effects of cell-to-cell transmission β2, viral
production rate k, death rate of infected cells d3, and viral remove rate d4 on viral dynam-
ics. Figure 9 shows a sensitivity analysis of reproduction ratios, which implies some useful
consequences on the prevention and treatment of the viral infection.

It is easy to see that basic reproduction ratios R0 is the sum of the reproduction ratio
determined by virus-to-cell infection R01 and cell-to-cell transmission R02. Therefore, ne-
glecting the cell-to-cell transmission will lead to an underevaluated basic reproduction
number. Observing all obtained results in this paper, we can directly put forward the fol-
lowing open questions which need to be further studied in the future. First, based on the
model in [29, 30], we wonder whether the results obtained in this paper can be extended to
control the dynamic process. Second, this model can be extended to incorporate a stochas-
tic perturbation. Meanwhile, model (1) can be extended to describe the HIV dynamics
with two classes of target cells and more stages. We leave these problems as possible fu-
ture works.
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