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Abstract
The scope of our investigation is to study the geometric properties of the normalized
form of the combination of generalized Lommel–Wright function Jμ,m

ν ,λ defined by
J

μ,m
ν ,λ (z) :=�m(λ + 1)�(λ + ν + 1)22λ+νz1–(ν/2)–λIμ,m

ν ,λ (
√
z), where

Iμ,m
ν ,λ (z) := (1 – 2λ – ν)Jμ,m

ν ,λ (z) + z(Jμ,m
ν ,λ (z))′ and

Jμ,m
ν ,λ (z) =

( z
2

)2λ+ν ∞∑
n=0

(–1)n

�m(n + λ + 1)�(nμ + ν + λ + 1)

( z
2

)2n
,

withm ∈ N, μ > 0 and λ,ν ∈ C, including starlikeness and convexity of order α
(0 ≤ α < 1) in the open unit disc using the two-sided inequality for the Fox–Wright
functions that has been proved by Pogány and Srivastava in (Comput. Math. Appl.
57(1):127–140, 2009). Further, the orders of starlikeness and convexity are also
evaluated using some classical tools. We then compare the orders of starlikeness and
convexity given by both techniques to illustrate the efficacy of the approach. In
addition, we proved that for some values of α, if λ > –1 then Re(Jμ,m

ν ,λ (z)/z) > α, z ∈ U,

and if λ ≥ (
√
10 – 6)/4 then the function (Jμ,m

ν ,λ (z2)/z) ∗ sin z is close-to-convex with
respect to 1/2 log((1 + z)/(1 – z)) where ∗ stands for the Hadamard product (or
convolution) of two power series.

MSC: 30C45; 30C50

Keywords: Analytic; Univalent; Starlike; Convex; Close-to-convex; Generalized
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1 Introduction and preliminaries
Special functions have attracted the particular attention of researchers due to their ap-
plications in many branches of mathematics and physics. Recently, special attention has
further been devoted by several mathematicians to study the geometric properties of spe-
cial functions like starlikeness, convexity, and close-to-convexity in the open unit disc.
One can see the following papers in this direction: for hypergeometric functions ([6, 7]
and [12, 13]), Bessel functions [1, 2], generalized Struve functions [8, 17], and Lommel
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functions [16]. Results of this type seem to be more and more visible in the developments
of Geometric Function Theory. Their analyses are not only auxiliary tools but also provide
powerful information to generalize to several types of functions and polynomials.

It is worthy of mention that generalized Lommel–Wright function have been con-
structed from concrete problems in mechanics, physics, engineering, and astronomy. Our
main results are summarized in the following: we study some geometric properties for
the normalized form of the combination of generalized Lommel–Wright function and its
derivative, including starlikeness and convexity of order α (0 ≤ α < 1) in the open unit
disc U := {z ∈C : |z| < 1} using the two-sided inequality for the Fox–Wright functions that
has been proved by Pogány and Srivastava in [11]. In addition, the orders of starlikeness
and convexity are also established using some classical tools. We then compare the or-
ders of starlikeness and convexity given by both techniques to illustrate the efficacy of the
approach.

For all of what follows, let H denote the space of all analytic functions in U. Denote by
A the subclass of H of functions of the form

f (z) = z +
∞∑

n=2

Anzn, z ∈U, (1.1)

and by S the subclass of all functions in A that are univalent in U. If g ∈A is given by

g(z) = z +
∞∑

n=2

Bnzn, z ∈U,

then the Hadamard product (or convolution) of f and g is defined by

(f ∗ g)(z) := z +
∞∑

n=2

AnBnzn = (g ∗ f )(z), z ∈U.

For 0 ≤ α < 1, a function f ∈ A is said to be in the class of starlike functions of order α,
denoted by S∗(α), if and only if Re(zf ′(z)/f (z)) > α, for all z ∈ U, and is said to be in the
class of convex functions of order α, denoted by K(α), if and only if 1 + Re(zf ′′(z)/f ′(z)) > α,
for all z ∈ U. Also, f ∈ H is said to be a close-to-convex function with respect to a fixed
starlike function g ∈ S∗(0) (which need not be normalized), denoted by Cg , if and only if
Re(zf ′(z)/g(z)) > 0, z ∈U. It is well known that K(α) ⊂ S∗(α), and all these three subclasses
of functions, namely S∗(α), K(α), and Cg , are subsets of S . In addition, for α < 1, let recall
the class

P(α) :=
{

p ∈H : p(0) = 1, Re p(z) > α, z ∈U
}

.

The generalized Lommel–Wright function Jμ,m
ν,λ (z) is defined by de Oteiza et al. in [3] as

Jμ,m
ν,λ (z) =

(
z
2

)2λ+ν ∞∑
n=0

(–1)n

�m(n + λ + 1)�(nμ + ν + λ + 1)

(
z
2

)2n

=
(

z
2

)2λ+ν

1�m+1

[
(1, 1)

(λ + 1, 1), . . . , (λ + 1, 1), (λ + ν + 1,μ)

∣∣∣∣∣ –
z2

4

]
, (1.2)
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for m ∈ N := {1, 2, . . . }, μ > 0 and λ,ν ∈ C where p�q denotes the Fox–Wright generaliza-
tion of the hypergeometric function which is defined by

p�q

[
(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

∣∣∣∣∣ z

]
=: p�q

[
(ap, Ap)
(bq, Bq)

∣∣∣∣∣ z

]
=

∞∑
n=0

ψn
zn

n!
, (1.3)

with

ψn =
�(a1 + A1n) · · ·�(ap + Apn)
�(b1 + B1n) · · ·�(bq + Bqn)

,

for ai, bj ∈ C and Ai, Bj ∈ R
+ (i = 1, . . . , p, j = 1, . . . , q). It is worth noting that the above

series converges absolutely in the whole complex z-plane when � :=
∑q

j=1 Bj –
∑p

i=1 Ai >
–1, while if � = –1, then the series (1.3) converges absolutely for |z| < ρ and |z| = ρ under
the condition Re(σ ) > 1/2 where

ρ =

( p∏
i=1

A–Ai
i

)( q∏
j=1

B–Bj
j

)
, σ =

q∑
j=1

bj –
p∑

i=1

ai +
p – q

2
.

We refer the interested readers to [5] for more details concerning the Fox–Wright func-
tions.

As a special case of the generalized Lommel–Wright function (1.2) obtained by taking
m = 1 in (1.2), we obtain the following generalization of the Bessel function introduced by
Pathak [10]:

Jμ
ν,λ(z) := Jμ,1

ν,λ (z) =
(

z
2

)2λ+ν ∞∑
n=0

(–1)n

�(n + λ + 1)�(nμ + ν + λ + 1)

(
z
2

)2n

,

for μ > 0 and λ,ν ∈ C. If m = 1, μ = 1 and λ = 1/2, we obtain the Struve function defined
by the power series expansion

Hν(z) := J1,1
ν,1/2(z) =

∞∑
n=0

(–1)n

�(n + 3/2)�(n + ν + 3/2)

(
z
2

)ν+2n

, ν ∈C.

For m = 1, μ = 1, and λ = 0 in (1.2), we get the Bessel function defined by

Jν(z) := J1,1
ν,1/2(z) =

∞∑
n=0

(–1)n

n!�(n + ν + 1)

(
z
2

)ν+2n

,

where z,ν ∈C, z 
= 0 and Reν > –1.
We shall base our discussion upon the following definition:

Definition 1.1 Let m ∈N, λ ∈C \Z– with Z
– := {–1, –2, –3, . . . } and ν,μ ∈ N0 := N∪ {0}.

We define the normalized form of the combination of generalized Lommel–Wright function
by

J
μ,m
ν,λ (z) := �m(λ + 1)�(λ + ν + 1)22λ+νz1–(ν/2)–λIμ,m

ν,λ (
√

z),

where Iμ,m
ν,λ (z) := (1 – 2λ – ν)Jμ,m

ν,λ (z) + z(Jμ,m
ν,λ (z))′.
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It can further be shown that

J
μ,m
ν,λ (z) = z +

∞∑
n=1

(–1)n(2n + 1)
4n[(λ + 1)n]m(λ + ν + 1)nμ

zn+1, (1.4)

where (a)n represents the Pochhammer symbol defined by

(a)n :=

⎧
⎨
⎩

1, if n = 0,

a(a + 1)(a + 2) · · · (a + n – 1), if n ∈N.

To establish our results, we need the following two lemma.
The first is a classical result of Fejér [4] and may be found in the next form in [14, The-

orem 2.10]:

Lemma 1.1 Assume A1 = 1 and An ≥ 0 for n ≥ 2 such that (An)n∈N is a convex decreas-
ing sequence, that is, An – 2An+1 + An+2 ≥ 0 and An+1 – An+2 ≥ 0, for all n ∈ N. Then,
Re(

∑∞
n=1 Anzn–1) > 1/2, z ∈U.

The next lemma is a special case of [9, Corollary 9] (see also [9, Theorem 10]) for the
odd functions. It follows since the hypothesis ensures that f is close-to-convex function
with respect to log

√
(1 + z)/(1 – z).

Lemma 1.2 Suppose that the function f defined by (1.1) is an odd function (that is, A2n =
0 for all n ∈ N), such that 1 ≥ 3A3 ≥ · · · ≥ (2n + 1)A2n+1 ≥ 0, or 1 ≤ 3A3 ≤ · · · ≤ (2n +
1)A2n+1 ≤ 2. Then f ∈ S .

2 Main results
Theorem 2.1 Suppose that λ > 0 and ν,μ ∈N satisfy the inequalities

1
�(2μ + λ + ν + 1)

>
21

20(λ + 3)m�(3μ + λ + ν + 1)
, (2.1)

21
20(λ + 3)m�(μ + λ + ν + 1)�(3μ + λ + ν + 1)

>
5

6(λ + 2)m�2(2μ + λ + ν + 1)
. (2.2)

If

0 ≤ α

≤ 1 –
3�(λ + ν + 1)

4(λ + 1)m · (λ + 1)m(λ + ν + 1)μ – 1
(λ + 1)m(λ + ν + 1)μ – 2

·
[

1
�(λ + ν + μ + 1)

–
5(1 – e)

6(λ + 2)m�(λ + ν + 2μ + 1)

]

=: α̃max, (2.3)

then J
μ,m
ν,λ ∈ S∗(α).
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Proof To obtain our result Jμ,m
ν,λ ∈ S∗(α), it is sufficient to prove that

∣∣∣∣
z(Jμ,m

ν,λ (z))′

J
μ,m
ν,λ (z)

– 1
∣∣∣∣ < 1 – α, z ∈U.

Using the theorem of the maximum of the module of an analytic function and the triangle
inequality, a simple computation shows that

∣∣∣∣
z(Jμ,m

ν,λ (z))′

J
μ,m
ν,λ (z)

– 1
∣∣∣∣ =

∣∣∣∣
∑∞

n=1
(–1)nn(2n+1)

4n[(λ+1)n]m(λ+ν+1)nμ
zn+1

z +
∑∞

n=1
(–1)n(2n+1)

4n[(λ+1)n]m(λ+ν+1)nμ
zn+1

∣∣∣∣

=
|∑∞

n=1
(–1)nn(2n+1)

4n[(λ+1)n]m(λ+ν+1)nμ
zn|

|1 +
∑∞

n=1
(–1)n(2n+1)

4n[(λ+1)n]m(λ+ν+1)nμ
zn|

<

∑∞
n=1

n(2n+1)
4n[(λ+1)n]m(λ+ν+1)nμ

1 –
∑∞

n=1
2n+1

4n[(λ+1)n]m(λ+ν+1)nμ

=:
F1

F2
, z ∈U. (2.4)

First, we see that

F1 =
∞∑

n=1

n(2n + 1)
4n[(λ + 1)n]m(λ + ν + 1)nμ

(1)n(2)2n

(1)n(2)2n

=
∞∑

n=1

1
4n[(λ + 1)n]m(λ + ν + 1)nμ

(1)n(2)2n

(1)n–1(1)2n
, n ∈N.

Using the Legendre’s formula

�(z)�
(

z +
1
2

)
=

√
π

22z–1 �(2z),

for z = n + 1 we get

�

(
n +

3
2

)
=

1 · 3 · · · (2n + 1)
2n+1

√
π , n ∈N, (2.5)

and also

(2)2n = 4n(1)n

(
3
2

)

n
, n ∈N. (2.6)

From the identities (2.5) and (2.6), it follows that

∞∑
n=1

1
4n[(λ + 1)n]m(λ + ν + 1)nμ

(1)n(2)2n

(1)n–1(1)2n

=
2�m(λ + 1)�(λ + ν + 1)√

π

·
∞∑

n=0

�(n + 2)�(n + 2)�(n + 5/2)
�m(n + λ + 2)�(nμ + μ + λ + ν + 1)�(n + 1)�(2n + 3)
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=
2�m(λ + 1)�(λ + ν + 1)√

π

· 3�m+2

[
(2, 1), (2, 1), (5/2, 1)

(λ + 2, 1), . . . , (λ + 2, 1), (λ + ν + μ + 1,μ), (3, 2)

∣∣∣∣∣1

]
. (2.7)

On the other hand, according to Theorem 4 of [11], the next inequality holds for all p�q

satisfying ψ1 > ψ2 and ψ2
1 < ψ0ψ2:

ψ0eψ1ψ–1
0 |z| ≤ p�q

[
(ap, Ap)
(bq, Bq)

∣∣∣∣∣ z

]
≤ ψ0 –

(
1 – e|z|)ψ1, z ∈R. (2.8)

For the Fox–Wright function that appears in (2.7), we have

ψn =
�(n + 2)�(n + 2)�(n + 5/2)

�m(n + λ + 2)�(nμ + μ + λ + ν + 1)�(2n + 3)
,

hence

ψ0 =
�(2)�(2)�(5/2)

�m(λ + 2)�(μ + λ + ν + 1)�(3)
,

ψ1 =
�(3)�(3)�(7/2)

�m(λ + 3)�(2μ + λ + ν + 1)�(5)
,

and

ψ2 =
�(4)�(4)�(9/2)

�m(λ + 4)�(3μ + λ + ν + 1)�(7)
.

It is easy to verify that the inequalities ψ1 > ψ2 and ψ2
1 < ψ0ψ2 are equivalent to the as-

sumptions (2.1) and (2.2), respectively. Hence, according to the right-hand side of the dou-
ble inequality (2.8), from (2.7) we obtain

F1 ≤ 3�(λ + ν + 1)
4(λ + 1)m

[
1

�(λ + ν + μ + 1)
–

5(1 – e)
6(λ + 2)m�(λ + ν + 2μ + 1)

]
. (2.9)

Moreover, since

3�m+2

[
(2, 1), (2, 1), (5/2, 1)

(λ + 2, 1), . . . , (λ + 2, 1), (λ + ν + μ + 1,μ), (3, 2)

∣∣∣∣∣1

]
> 0

for λ > 0 and ν,μ ∈N, it follows that the right-hand side of the inequality (2.9) is positive.
Secondly, using the fact that 2n + 1 ≤ 4n, n ∈N, and under our assumptions

(λ + ν + 1)nμ ≥ (λ + ν + 1)nμ, (2.10)

we have

F2 = 1 –
∞∑

n=1

2n + 1
4n[(λ + 1)n]m(λ + ν + 1)nμ
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≥ 1 –
∞∑

n=1

(
1

(λ + 1)m(λ + ν + 1)μ

)n

=
(λ + 1)m(λ + ν + 1)μ – 2
(λ + 1)m(λ + ν + 1)μ – 1

> 0, for λ > 0 and ν,μ ∈N. (2.11)

Using (2.9) and (2.11), from the inequality (2.4) we deduce that

∣∣∣∣
z(Jμ,m

ν,λ (z))′

J
μ,m
ν,λ (z)

– 1
∣∣∣∣ <

F1

F2

≤
3�(λ+ν+1)

4(λ+1)m [ 1
�(λ+ν+μ+1) – 5(1–e)

6(λ+2)m�(λ+ν+2μ+1)]
(λ+1)m(λ+ν+1)μ–2
(λ+1)m(λ+ν+1)μ–1

≤ 1 – α, z ∈ U,

whenever the assumption (2.3) holds, and the theorem is completely proved. �

Theorem 2.2 Suppose that λ > 0 and ν,μ ∈N satisfy the inequalities

1
�(2μ + λ + ν + 1)

>
7

5(λ + 3)m�(3μ + λ + ν + 1)
, (2.12)

7
5(λ + 3)m�(μ + λ + ν + 1)�(3μ + λ + ν + 1)

>
5

4(λ + 2)m�2(2μ + λ + ν + 1)
, (2.13)

2(λ + 1)m(λ + ν + 1)μ > 5. (2.14)

If

0 ≤ α

≤ 1 –
(λ + 1)m(λ + ν + 1)μ – 1

2(λ + 1)m(λ + ν + 1)μ – 5
· 3�(λ + ν + 1)

(λ + 1)m

·
[

1
�(λ + ν + μ + 1)

–
5(1 – e)

4(λ + 2)m�(λ + ν + 2μ + 1)

]

=: β̃max, (2.15)

then J
μ,m
ν,λ ∈K(α).

Proof A sufficient condition for the function J
μ,m
ν,λ to be convex of order α is to prove that

∣∣∣∣
z(Jμ,m

ν,λ (z))′′

(Jμ,m
ν,λ (z))′

∣∣∣∣ < 1 – α, z ∈U.
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Like in the proof of the previous theorem, using the theorem of the maximum of the mod-
ule of an analytic function and the triangle inequality, we find

∣∣∣∣
z(Jμ,m

ν,λ (z))′′

(Jμ,m
ν,λ (z))′

∣∣∣∣ <

∑∞
n=1

n(n+1)(2n+1)
4n[(λ+1)n]m(λ+ν+1)nμ

1 –
∑∞

n=1
(n+1)(2n+1)

4n[(λ+1)n]m(λ+ν+1)nμ

=:
G1

G2
. (2.16)

Like in the proof of the Theorem 2.1, from the identities (2.5) and (2.6), we have

G1 =
∞∑

n=1

n(n + 1)(2n + 1)
4n[(λ + 1)n]m(λ + ν + 1)nμ

(2)n(1)n(2)2n

(2)n(1)n(2)2n

=
∞∑

n=1

1
4n[(λ + 1)n]m(λ + ν + 1)nμ

(2)n(1)n(2)2n

(1)n(1)n–1(1)2n

=
2�m(λ + 1)�(λ + ν + 1)√

π

·
∞∑

n=0

�(n + 3)�(n + 2)�(n + 5/2)
�m(n + λ + 2)�(nμ + μ + λ + ν + 1)�(n + 1)�(2n + 3)

=
2�m(λ + 1)�(λ + ν + 1)√

π

· 3�m+2

[
(3, 1), (2, 1), (5/2, 1)

(λ + 2, 1), . . . , (λ + 2, 1), (λ + ν + μ + 1,μ), (3, 2)

∣∣∣∣∣1

]
. (2.17)

For the above Fox–Wright function (2.17), we have

ψn =
�(n + 3)�(n + 2)�(n + 5/2)

�m(n + λ + 2)�(nμ + μ + λ + ν + 1)�(2n + 3)
,

hence

ψ0 =
�(3)�(2)�(5/2)

�m(λ + 2)�(μ + λ + ν + 1)�(3)
,

ψ1 =
�(4)�(3)�(7/2)

�m(λ + 3)�(2μ + λ + ν + 1)�(5)
,

and

ψ2 =
�(5)�(4)�(9/2)

�m(λ + 4)�(3μ + λ + ν + 1)�(7)
.

We could easily check that the inequalities ψ1 > ψ2 and ψ2
1 < ψ0ψ2 are equivalent to the

assumptions (2.12) and (2.13), respectively. Using again the right-hand side of the double
inequality (2.8), from (2.17) we have

G1 ≤ 3�m(λ + 1)�(λ + ν + 1)
2�m(λ + 2)

[
1

�(λ + ν + μ + 1)
–

5(1 – e)
4(λ + 2)m�(λ + ν + 2μ + 1)

]
. (2.18)
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Also, since

3�m+2

[
(3, 1), (2, 1), (5/2, 1)

(λ + 2, 1), . . . , (λ + 2, 1), (λ + ν + μ + 1,μ), (3, 2)

∣∣∣∣∣1

]
> 0

for λ > 0 and ν,μ ∈ N, it follows that the right-hand side of the inequality (2.18) is positive.
Furthermore, since (n + 1)(2n + 1) ≤ (3/2)4n, n ∈N, using (2.10), we obtain

G2 = 1 –
∞∑

n=1

(n + 1)(2n + 1)
4n[(λ + 1)n]m(λ + ν + 1)nμ

≥ 1 –
3
2

∞∑
n=1

(
1

(λ + 1)m(λ + ν + 1)μ

)n

= 1 –
3
2

1
(λ + 1)m(λ + ν + 1)μ – 1

=
2(λ + 1)m(λ + ν + 1)μ – 5

2[(λ + 1)m(λ + ν + 1)μ – 1]
> 0, for λ > 0,ν,μ ∈N, (2.19)

if the assumption (2.14) holds.
Using (2.18) and (2.19), inequality (2.16) leads to

∣∣∣∣
z(Jμ,m

ν,λ (z))′′

(Jμ,m
ν,λ (z))′

∣∣∣∣ <
G1

G2

≤
3�(λ+ν+1)

4(λ+1)m [ 1
�(λ+ν+μ+1) – 5(1–e)

4(λ+2)m�(λ+ν+2μ+1)]
2(λ+1)m(λ+ν+1)μ–5

2[(λ+1)m(λ+ν+1)μ–1]

≤ 1 – α, z ∈ U,

whenever the assumption (2.15) holds, and our result is proved. �

Remark 2.1 We emphasize that the assumptions of Theorems 2.1 and 2.2 can be simulta-
neously fulfilled, as it is shown in the below Fig. 1 (the grey regions) obtained by using the
MAPLE™ software.

Theorem 2.3 Suppose that

0 ≤ α ≤ 1 –
3(λ + 2)m(λ + ν + 2)

4(λ + 1)m(λ + ν + 1)[(λ + 2)m(λ + ν + 2) – 1] – 3(λ + 2)m(λ + ν + 2)

=: α̂max, (2.20)

with λ > –1 and ν,μ ∈N, which also satisfies

4(λ + 1)m(λ + ν + 1)[(λ + 2)m(λ + ν + 2) – 1]
3(λ + 2)m(λ + ν + 2)

> 1. (2.21)

Then, Jμ,m
ν,λ ∈ S∗(α).
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Figure 1 The figures for Remark 2.1

Proof It is well-known from [15, Theorem 1] that if f of the form (1.1) satisfies
∑∞

n=2(n –
α)|An| ≤ 1 – α, then f ∈ S∗(α). Thus, according to (1.4), it is enough to prove that

H1 :=
∞∑

n=2

(n – α)
∣∣∣∣

(–1)n–1(2n – 1)
4n–1[(λ + 1)n–1]m(λ + ν + 1)(n–1)μ

∣∣∣∣ ≤ 1 – α.

Since λ > –1 and μ ∈N, we have

H1 =
∞∑

n=2

(n – α)(2n – 1)
4n–1[(λ + 1)n–1]m(λ + ν + 1)(n–1)μ

=
∞∑

n=1

n(2n + 1)
4n[(λ + 1)n]m(λ + ν + 1)nμ

+ (1 – α)
∞∑

n=1

2n + 1
4n[(λ + 1)n]m(λ + ν + 1)nμ

,

and using the fact that

(λ + ν + 1)nμ ≥ (λ + ν + 1)n, for all n,ν,μ ∈N, (2.22)

it follows that

H1 ≤ 1
4(λ + 1)m(λ + ν + 1)

∞∑
n=1

n(2n + 1)
4n–1[(λ + 2)n–1]m(λ + ν + 2)n–1

+
1 – α

4(λ + 1)m(λ + ν + 1)

∞∑
n=1

2n + 1
4n–1[(λ + 2)n–1]m(λ + ν + 2)n–1

. (2.23)

Moreover, it is easy to check that

n(2n + 1) ≤ 3 · 4n–1, 2n + 1 ≤ 3 · 4n–1,
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(λ + ν + 2)n–1 ≥ (λ + ν + 2)n–1, (λ + 2)n–1 ≥ (λ + 2)n–1

for all n ∈ N. From (2.23), using the above inequalities together with the assumptions (2.20)
and (2.21), as well as the facts that λ > –1 and ν ∈N, we get

H1 ≤ 3
4(λ + 1)m(λ + ν + 1)

∞∑
n=1

1
(λ + 2)(n–1)m(λ + ν + 2)n–1

+
3(1 – α)

4(λ + 1)m(λ + ν + 1)

∞∑
n=1

1
(λ + 2)(n–1)m(λ + ν + 2)n–1

=
3(2 – α)

4(λ + 1)m(λ + ν + 1)
· (λ + 2)m(λ + ν + 2)

(λ + 2)m(λ + ν + 2) – 1
≤ 1 – α,

and the proof is complete. �

Theorem 2.4 Suppose that

0 ≤ α ≤ 1 –
T1

T2
=: β̂max, (2.24)

where

T1 := 8(λ + 2)m(λ + ν + 2)
[
2(λ + 2)m(λ + ν + 2) – 1

]
,

T2 := 4(λ + 1)m(λ + ν + 1)
[
(λ + 2)m(λ + ν + 2) – 1

] · [2(λ + 2)m(λ + ν + 2) – 1
]

– 3(λ + 2)m(λ + ν + 2) · [2(λ + 2)m(λ + ν + 2) – 1
]

– 6(λ + 2)m(λ + ν + 2) · [(λ + 2)m(λ + ν + 2) – 1
]
,

with λ > –1 and ν,μ ∈N, which also satisfies

T2 > 0. (2.25)

Then, Jμ,m
ν,λ ∈K(α).

Proof Like in the proof of the previous theorem, if f of the form (1.1) satisfies
∑∞

n=2(n –
α)|An| ≤ 1 – α, then f ∈ S∗(α). From the Alexander duality relation, i.e., for f of the form
(1.1), we have f ∈K(α) if and only if zf ′(z) ∈ S∗(α). Thus, according to [15, Theorem 1], if
f of the form (1.1) satisfies

∑∞
n=2 n(n–α)|An| ≤ 1–α, then f ∈K(α) (see also [15, Corollary

on p. 110]).
Therefore, it is sufficient to prove that

H2 :=
∞∑

n=2

n(n – α)
∣∣∣∣

(–1)n–1(2n – 1)
4n–1[(λ + 1)n–1]m(λ + ν + 1)(n–1)μ

∣∣∣∣ ≤ 1 – α. (2.26)

Since λ > –1 and ν ∈N, we have

H2 =
∞∑

n=1

n2(2n + 1)
4n[(λ + 1)n]m(λ + ν + 1)nμ

+ (2 – α)
∞∑

n=1

n(2n + 1)
4n[(λ + 1)n]m(λ + ν + 1)nμ
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+ (1 – α)
∞∑

n=1

(2n + 1)
4n[(λ + 1)n]m(λ + ν + 1)nμ

,

and, using again inequality (2.22), we obtain

H2 ≤ 1
4(λ + 1)m(λ + ν + 1)

∞∑
n=1

n2(2n + 1)
4n–1[(λ + 2)n–1]m(λ + ν + 2)n–1

+
2 – α

4(λ + 1)m(λ + ν + 1)

∞∑
n=1

n(2n + 1)
4n–1[(λ + 2)n–1]m(λ + ν + 2)n–1

+
1 – α

4(λ + 1)m(λ + ν + 1)

∞∑
n=1

2n + 1
4n–1[(λ + 2)n–1]m(λ + ν + 2)n–1

.

Furthermore, a simple computation shows that the following inequalities hold:

n2(2n + 1) ≤ 5 · 4n–1, n(2n + 1) ≤ 3 · 4n–1, 2n + 1 ≤ 3 · 2n–1,

(λ + ν + 2)n–1 ≥ (λ + ν + 2)n–1, (λ + 2)n–1 ≥ (λ + 2)n–1

for all n ∈N. Using the above inequalities, together with the assumption (2.25), we get

H2 ≤ 5
4(λ + 1)m(λ + ν + 1)

∞∑
n=1

1
(λ + 2)(n–1)m(λ + ν + 2)n–1

+
3(2 – α)

4(λ + 1)m(λ + ν + 1)

∞∑
n=1

1
(λ + 2)(n–1)m(λ + ν + 2)n–1

+
3(1 – α)

4(λ + 1)m(λ + ν + 1)

∞∑
n=1

1
2n–1(λ + 2)(n–1)m(λ + ν + 2)n–1

=
11 – 3α

4(λ + 1)m(λ + ν + 1)
· (λ + 2)m(λ + ν + 2)

(λ + 2)m(λ + ν + 2) – 1

+
3(1 – α)

4(λ + 1)m(λ + ν + 1)
· 2(λ + 2)m(λ + ν + 2)

2(λ + 2)m(λ + ν + 2) – 1

=
(λ + 2)m(λ + ν + 2)

4(λ + 1)m(λ + ν + 1)

[
11 – 3α

(λ + 2)m(λ + ν + 2) – 1
+

6(1 – α)
2(λ + 2)m(λ + ν + 2) – 1

]

≤ 1 – α,

whenever (2.24) and (2.25) hold. Thus, inequality (2.26) is satisfied and hence J
μ,m
ν,λ ∈

K(α). �

Theorem 2.5 Suppose that

0 ≤ α ≤ 1 –
3(λ + 2)m(λ + ν + 2)

2(λ + 1)m(λ + ν + 1)[2(λ + 2)m(λ + ν + 2) – 1]
, (2.27)

with λ > –1 and ν,μ ∈N. Then, J
μ,m
ν,λ (z)

z ∈P(α).
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Proof To obtain the required result, it is sufficient to prove that |G(z) – 1| < 1, z ∈U, where

G(z) :=
1

1 – α

(
J

μ,m
ν,λ (z)

z
– α

)
, z ∈U. (2.28)

From the theorem of the maximum of the module of an analytic function, using the trian-
gle inequality, inequality (2.22), and

2n + 1 ≤ 3 · 2n–1, (λ + ν + 2)n–1 ≥ (λ + ν + 2)n–1, (λ + 2)n–1 ≥ (λ + 2)n–1,

we get

∣∣G(z) – 1
∣∣ =

∣∣∣∣∣
1

1 – α

[
1 +

∞∑
n=1

(–1)n(2n + 1)
4n[(λ + 1)n]m(λ + ν + 1)nμ

zn – α

]
– 1

∣∣∣∣∣

=
1

1 – α

∣∣∣∣∣
∞∑

n=1

(–1)n(2n + 1)
4n[(λ + 1)n]m(λ + ν + 1)nμ

zn

∣∣∣∣∣

<
1

1 – α

∣∣∣∣∣
∞∑

n=1

(–1)n(2n + 1)
4n[(λ + 1)n]m(λ + ν + 1)nμ

einθ

∣∣∣∣∣

≤ 1
1 – α

∞∑
n=1

2n + 1
4n[(λ + 1)n]m(λ + ν + 1)nμ

≤ 1
4(1 – α)(λ + 1)m(λ + ν + 1)

∞∑
n=1

2n + 1
4n–1[(λ + 2)n–1]m(λ + ν + 1)n

≤ 3
4(1 – α)(λ + 1)m(λ + ν + 1)

∞∑
n=1

1
2n–1(λ + 2)m(n–1)(λ + ν + 2)n–1

=
3(λ + 2)m(λ + ν + 2)

2(1 – α)(λ + 1)m(λ + ν + 1)[2(λ + 2)m(λ + ν + 2) – 1]
≤ 1, z ∈U,

with θ ∈ R, and the proof of our theorem is complete. �

Remark 2.2 The assumptions of Theorems 2.3–2.5 can be simultaneously fulfilled, as it is
shown in Fig. 2 (the grey regions) obtained by using the MAPLE™ software.

Theorem 2.6 Suppose that m ∈N, λ ≥
√

13–3
2 � 0.302775 . . . and ν,μ ∈ N. Then,

Re

((
J

μ,m
ν,λ (z)

)′ ∗ 1
1 + z

)
>

1
2

, z ∈U.

Proof We have the following power series expansion:

(
J

μ,m
ν,λ (z)

)′ ∗ 1
1 + z

=
∞∑

n=1

Anzn–1, z ∈U,

An =
n(2n – 1)

4n–1[(λ + 1)n–1]m(λ + ν + 1)(n–1)μ
, n ∈N.
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Figure 2 The figures for Remark 2.2

We will use Lemma 1.1 to obtain the required conclusion. Thus, A1 = 1, An > 0 for n ≥ 2,
and

An – An+1 =
1

4n–1[(λ + 1)n–1]m

[
n(2n – 1)

(λ + ν + 1)(n–1)μ
–

(n + 1)(2n + 1)
4(λ + n)m(λ + ν + 1)nμ

]
.

It is easy to check that

(λ + ν + 1)nμ ≥ (
λ + ν + 1 + (n – 1)μ

)
(λ + ν + 1)(n–1)μ, (2.29)

hence

An – An+1 ≥ 1
4n[(λ + 1)n–1]m(λ + ν + 1)(n–1)μ
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·
[

4n(2n – 1) –
(n + 1)(2n + 1)

(λ + n)m(λ + ν + 1 + (n – 1)μ)

]

=
M(n)

4n[(λ + 1)n]m(λ + ν + 1)(n–1)μ(λ + ν + 1 + (n – 1)μ)
, (2.30)

where

M(n) := 4n(2n – 1)(λ + n)m(
λ + ν + 1 + (n – 1)μ

)
– (n + 1)(2n + 1)

= 4n(λ + n)m[
(λ + ν + 1)(2n – 1) + μ(2n – 1)(n – 1)

]

– (2n – 1)(n + 2) – 3, n ∈N.

First, to show that An – An+1 ≥ 0 for all n ∈N, we will prove that M(n) ≥ 0, n ∈N.
Thus, since m ∈ N, λ ≥ 0 and ν,μ ∈ N, we have λ + ν + 1 + (n – 1)μ > 0, and it follows

that

M(n) = (2n – 1)
[
4n(λ + n)m(

λ + ν + 1 + (n – 1)μ
)

– (n + 2)
]

– 3

≥ (2n – 1)
[
4n(λ + n)

(
λ + ν + 1 + (n – 1)μ

)
– (n + 2)

]
– 3 =: P(n). (2.31)

For n = 1, we get P(1) = 4(λ + 1)(λ + ν + 1) – 6 ≥ 4(ν + 1) – 6 > 0 because ν ∈N.
For n ≥ 2, since

P(n) = (2n – 1)
[
4n(λ + n)

(
λ + ν + 1 + (n – 1)μ

)
– (n + 2)

]
– 3

and

4(λ + n)
(
λ + ν + 1 + (n – 1)μ

)
– (n + 2) ≥ 4n(n + 1) – (n + 2) > 0, n ∈N,

it follows that

P(n) ≥ 3
[
4n(λ + n)

(
λ + ν + 1 + (n – 1)μ

)
– (n + 2)

]
– 3 := 3Q(n), (2.32)

where

Q(n) := 4n(λ + n)
(
λ + ν + 1 + (n – 1)μ

)
– (n + 3).

Under the assumptions of the theorem, we have

4n(λ + n) ≥ 4n2 > n + 3, if n ≥ 2,

λ + ν + 1 + (n – 1)μ > 1,

therefore Q(n) > 0 for all n ≥ 2. Thus, according to inequalities (2.31) and (2.32), it follows
that M(n) > 0, n ∈ N, hence from (2.30) we conclude that (An)n∈N is a decreasing sequence.

Secondly, we need to show that

An – 2An+1 + An+2 ≥ 0, for all n ∈N.
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Since An+2 > 0 for all n ∈N, using inequality (2.29), we easily get

An – 2An+1 + An+2 > An – 2An+1

≥ 1
4n[(λ + 1)n–1]m(λ + ν + 1)(n–1)μ

·
[

4n(2n – 1) –
2(n + 1)(2n + 1)

(λ + n)m(λ + ν + 1 + (n – 1)μ)

]

=
L∗(n)

4n[(λ + 1)n]m(λ + ν + 1)(n–1)μ(λ + ν + 1 + (n – 1)μ)
, (2.33)

where

L∗(n) := 4n(2n – 1)(λ + n)m(
λ + ν + 1 + (n – 1)μ

)
– 2(n + 1)(2n + 1)

= 4n(λ + n)m[
(λ + ν + 1)(2n – 1) + μ(2n – 1)(n – 1)

]

– 2(2n – 1)(n + 2) – 6.

Thus, to show that An – 2An+1 + An+2 ≥ 0 for all n ∈N, it is sufficient prove that L∗(n) ≥ 0
for all n ∈N.

Since m ∈N, λ ≥ 0 and ν,μ ∈N, we have λ + ν + 1 + (n – 1)μ > 0, and it follows that

L∗(n) = (2n – 1)
[
4n(λ + n)m(

λ + ν + 1 + (n – 1)μ
)

– 2(n + 2)
]

– 6

≥ (2n – 1)
[
4n(λ + n)

(
λ + ν + 1 + (n – 1)μ

)
– 2(n + 2)

]
– 6 =: P∗(n). (2.34)

For n = 1, we get

P∗(1) = 4(λ + 1)(λ + ν + 1) – 12 ≥ 4(λ + 1)(λ + ν + 1) – 12

≥ 4(λ + 1)(λ + 2) – 12 > 0

whenever λ ≥
√

13–3
2 � 0.302775 . . . .

For n ≥ 2, since

P∗(n) = (2n – 1)
[
4n(λ + n)

(
λ + ν + 1 + (n – 1)μ

)
– 2(n + 2)

]
– 6

and

4(λ + n)
(
λ + ν + 1 + (n – 1)μ

)
– 2(n + 2) ≥ 4n(n + 1) – 2(n + 2) > 0, n ∈N,

it follows that

P∗(n) ≥ 3
[
4n(λ + n)

(
λ + ν + 1 + (n – 1)μ

)
– 2(n + 2)

]
– 6 =: 3Q∗(n), (2.35)

where

Q∗(n) := 4n(λ + n)
(
λ + ν + 1 + (n – 1)μ

)
– 2(n + 3).
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Under the assumptions of the theorem, we have

4n(λ + n) ≥ 4n2 > 2(n + 3), if n ≥ 2,

λ + ν + 1 + (n – 1)μ > 1,

therefore Q∗(n) > 0 for all n ≥ 2. Thus, according to inequalities (2.34) and (2.35), it follows
that L∗(n) > 0, n ∈ N, hence from (2.33) we conclude that (An)n∈N is a convex sequence,
which ends the proof. �

Theorem 2.7 Suppose that m ∈ N, λ ≥
√

10–6
4 � –0.709430 . . . , and ν,μ ∈ N. Then,

J
μ,m
ν,λ (z2)

z ∗ sin z is a close-to-convex function with respect to 1
2 log 1+z

1–z .

Proof From (1.4), since

sin z = z +
∞∑

n=1

(–1)n

(2n + 1)!
z2n+1, z ∈C,

it follows that

J
μ,m
ν,λ (z2)

z
∗ sin z = z +

∞∑
n=1

A2n+1z2n+1, z ∈U,

where

A2n+1 =
2n + 1

4n[(λ + 1)n]m(λ + ν + 1)nμ(2n + 1)!
, n ∈N.

In order to use Lemma 1.2, we have A1 = 1, A2n+1 > 0 for n ≥ 1, and

(2n – 1)A2n–1 – (2n + 1)A2n+1

=
(2n – 1)2

4n–1[(λ + 1)n–1]m(λ + ν + 1)(n–1)μ(2n – 1)!
–

(2n + 1)2

4n[(λ + 1)n]m(λ + ν + 1)nμ(2n + 1)!

=
2n – 1

4n–1[(λ + 1)n–1]m(λ + ν + 1)(n–1)μ(2n – 2)!
–

2n + 1
4n[(λ + 1)n]m(λ + ν + 1)nμ(2n)!

≥ 4(2n – 1)(λ + n)m[λ + ν + 1 + (n – 1)μ](2n – 1)(2n) – (2n + 1)
4n[(λ + 1)n]m(λ + ν + 1)nμ(2n)!

=
8n(2n – 1)2(λ + n)m[λ + ν + 1 + (n – 1)μ] – (2n + 1)

4n[(λ + 1)n]m(λ + ν + 1)nμ(2n)!

=
W(n)

4n[(λ + 1)n]m(λ + ν + 1)nμ(2n)!
, n ∈N,

where

W(n) := 8n(2n – 1)2(λ + n)m[
λ + ν + 1 + (n – 1)μ

]
– (2n + 1), n ∈N.

It is easy to check that for n ∈N,

W(n) := 8n(2n – 1)2(λ + n)m[
λ + ν + 1 + (n – 1)μ

]
– (2n + 1)
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Table 1 Comparison of the order of starlikeness given by Theorems 2.1 and 2.3

μ ν λ m A := α̃max Theorem 2.1 B := α̂max Theorem 2.3 A – B ≤ 0

1 1 20 3 0.99999630843873496490 0.99999631884528808850 true
1 1 40 3 0.99999974069866645409 0.99999974090403376158 true
1 1 75 3 0.99999997780611645794 0.99999997781140602240 true
2 6 30 3 0.99999998209380420596 0.99999931958308410376 false
3 6 60 3 0.99999999998948912236 0.99999995068295983574 false
4 6 80 3 0.99999999999997698708 0.99999998377865092704 false

Table 2 Comparison of the order of convexity given by Theorems 2.2 and 2.4

μ ν λ m A := β̃max Theorem 2.2 B := β̂max Theorem 2.4 A – B ≤ 0

1 1 90 2 0.99999803110440570718 0.99999737481228676390 false
1 1 60 5 0.99999999997135489658 0.99999999996180652878 false
2 4 90 6 0.99999999999999971037 0.99999999999996292697 false
2 4 60 2 0.99999990603320991858 0.99999173086604042377 false
1 3 70 5 0.99999999998876513662 0.99999999998502018216 false
1 3 50 4 0.99999999589402028998 0.99999999452536041351 false

≥ 8n(2n – 1)2(λ + n)
[
λ + ν + 1 + (n – 1)μ

]
– (2n + 1)

= (2n – 1)
{

8n(2n – 1)(λ + n)
[
λ + ν + 1 + (n – 1)μ

]
– 1

}
– 2 =: W∗(n).

To show that (2n – 1)A2n–1 – (2n + 1)A2n+1 ≥ 0 for all n ∈ N, we will prove that W∗(n) ≥ 0,
n ∈N. For n = 1, since ν ∈N, we have

W∗(1) = 8(λ + 1)(λ + ν + 1) – 3 ≥ 8(λ + 1)(λ + 2) – 3 ≥ 0,

whenever λ ≥
√

10–6
4 � –0.709430 . . . . For n ≥ 2, since ν,μ ∈N, we get

W∗(n) ≥ 3
[
48(λ + 2)(λ + 2 + μ) – 1

]
– 2 ≥ 3

[
48(λ + 2)(λ + 3) – 1

]
– 2 > 0,

if λ ≥
√

10–6
4 � –0.709430 . . . .

Therefore, (2n – 1)A2n–1 – (2n + 1)A2n+1 ≥ 0 for all n ∈N, and, according to Lemma 1.2,
we get our result. �

Remark 2.3 1. Theorems 2.1 and 2.3 give us sufficient conditions for the starlikeness of
order α for the function J

μ,m
ν,λ . Like we see in the above table, for some values of the pa-

rameters the first theorem gives a better result than the second, and vice versa. See Table 1.
2. For the sufficient conditions of convexity of order α for the function J

μ,m
ν,λ given by

Theorems 2.2 and 2.4, we cannot formulate any opinion since in the above table, for some
particular values of the parameters, we obtained better results by using Theorem 2.2. See
Table 2.

3 Conclusions
In our present investigation we have studied some geometric properties of the normalized
form of the combination of generalized Lommel–Wright function, including starlikeness
and convexity of order α (0 ≤ α < 1), in the open unit disc using the two-sided inequal-
ity for the Fox–Wright functions that has been proved by Pogány and Srivastava in [11].
Further, we have also successfully considered conditions on λ, ν , μ, and m to evaluate the
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orders of starlikeness and convexity using some classical tools. We have compared the or-
ders of starlikeness and convexity given by both techniques to illustrate the efficacy of the
approach.
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