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Abstract
In a real Hilbert space, let GSVI and CFPP represent a general system of variational
inequalities and a common fixed point problem of a countable family of
nonexpansive mappings and an asymptotically nonexpansive mapping, respectively.
In this paper, via a new subgradient extragradient implicit rule, we introduce and
analyze two iterative algorithms for solving the monotone bilevel equilibrium
problem (MBEP) with the GSVI and CFPP constraints, i.e., a strongly monotone
equilibrium problem over the common solution set of another monotone
equilibrium problem, the GSVI and the CFPP. Some strong convergence results for the
proposed algorithms are established under the mild assumptions, and they are also
applied for finding a common solution of the GSVI, VIP, and FPP, where the VIP and
FPP stand for a variational inequality problem and a fixed point problem, respectively.
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1 Introduction
Throughout this paper, suppose that C is a nonempty closed convex subset of a real Hilbert
space (H,‖ · ‖) with the inner product 〈·, ·〉. Let PC be the metric projection from H onto
C. Recall that a mapping T : C → C is said to be asymptotically nonexpansive if there
exists a sequence {θk} ⊂ [0,∞) such that limk→∞ θk = 0 and ‖Tkx – Tky‖ ≤ (1 + θk)‖x –
y‖ ∀x, y ∈ C, k ≥ 1. In particular, if θk = 0 ∀k ≥ 1, then T is said to be nonexpansive. We
denote by Fix(T) the fixed point set of the mapping T and by R the set of all real numbers,
respectively. Let A be a self-mapping on H. The classical variational inequality problem
(VIP) is to find x∗ ∈ C s.t. 〈Ax∗, y – x∗〉 ≥ 0 ∀y ∈ C. The solution set of the VIP is denoted
by VI(C, A).

Let � : H × H → R ∪ {+∞} be a bifunction satisfying �(x, x) = 0 ∀x ∈ C. The equilib-
rium problem (shortly, EP(C,�)) for bifunction � on the constraint domain C is to find
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x∗ ∈ C such that

�
(
x∗, y

) ≥ 0 ∀y ∈ C. (1.1)

The solution set of EP(C,�) is denoted by Sol(C,�). It is worth pointing out that the
EP(C,�) is a unified model of several problems, namely, variational inequality problems,
optimization problems, saddle point problems, complementarity problems, fixed point
problems, Nash equilibrium problems, and so forth. Till now the existence and algorithms
for variational inequality and equilibrium problems have been widely studied by many
authors; see, e.g., [1–4, 6–9, 11, 13, 14, 16, 19, 24–26] and the references therein. In 2009,
by using the viscosity approximation method, Chang et al. [16] introduced an iterative
algorithm for finding an element in the common solution set � of the common fixed point
problem (CFPP) of a countable family of nonexpansive self-mappings {Tk}∞k=1 on C, the
VIP for an α-inverse-strongly monotone mapping A, and the EP(C,�) for bifunction �

on C, that is, for any initial x1 ∈H, the sequence {xk} is generated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�(uk , y) + 1
rk

〈y – uk , uk – xk〉 ≥ 0 ∀y ∈ C,

yk = PC(uk – λkAuk),

vk = PC(yk – λkAyk),

xk+1 = αkf (xk) + βkxk + γkWkvk ∀k ≥ 1,

where f : H →H is a contraction, and each Wk is a W -mapping generated by Tk , Tk–1, . . . ,
T1 and ζk , ζk–1, . . . , ζ1 with ζi ∈ (0, l] ⊂ (0, 1) ∀i ≥ 1. Assume that the sequences {αk}, {βk},
{γk} ⊂ [0, 1], {λk} ⊂ [a, b] ⊂ (0, 2α), and {rk} ⊂ (0,∞) satisfy the conditions: (i) αk + βk +
γk = 1; (ii) limk→∞ αk = 0,

∑∞
k=1 αk = ∞; (iii) 0 < lim infk→∞ βk ≤ lim supk→∞ βk < 1; (iv)

0 < lim infk→∞ rk ,
∑∞

k=1 |rk+1 – rk| < ∞; and (v) limk→∞ |λk+1 – λk| = 0. Then it was proven
in [16] that {xk} converges strongly to x∗ = P�f (x∗) under some appropriate assumptions.

Let B1, B2 : H → H be two nonlinear mappings. The general system of variational in-
equalities (GSVI) is the following problem of finding (x∗, y∗) ∈ C × C s.t.:

⎧
⎨

⎩
〈μ1B1y∗ + x∗ – y∗, x – x∗〉 ≥ 0 ∀x ∈ C,

〈μ2B2x∗ + y∗ – x∗, y – y∗〉 ≥ 0 ∀y ∈ C,
(1.2)

with constants μ1,μ2 ∈ (0,∞). In particular, if B1 = B2 = A and x∗ = y∗, then GSVI (1.2)
reduces to the classical VIP. Note that problem (1.2) can be transformed into a fixed point
problem in the following way.

Lemma 1.1 (see, e.g., [20]) For given x∗, y∗ ∈ C, (x∗, y∗) is a solution of GSVI (1.2) if and
only if x∗ ∈ GSVI(C, B1, B2), where GSVI(C, B1, B2) is the fixed point set of the mapping
G := PC(I – μ1B1)PC(I – μ2B2), and y∗ = PC(I – μ2B2)x∗.

Let � denote the common solution set of the fixed point problem (FPP) of asymptoti-
cally nonexpansive mapping T : C → C with {θk} and GSVI (1.2) for two inverse-strongly
monotone mappings B1, B2. In 2018, using a modified extragradient method, Cai et al.
[2] introduced a viscosity implicit rule for finding a solution of GSVI (1.2) with the FPP
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constraint, that is, for any initial x1 ∈ C, the sequence {xk} is generated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uk = skxk + (1 – sk)pk ,

vk = PC(uk – μ2B2uk),

pk = PC(vk – μ1B1vk),

xk+1 = PC[αkf (xk) + (I – αkρF)Tkpk],

(1.3)

where f : C → C is a δ-contraction with δ ∈ [0, 1), and the sequences {αk}, {sk} ⊂ (0, 1] sat-
isfy the conditions: (i) limk→∞ αk = 0,

∑∞
k=1 αk = ∞,

∑∞
k=1 |αk+1 – αk| < ∞; (ii) limk→∞ θk

αk
=

0; (iii) 0 < ε ≤ sk ≤ 1,
∑∞

k=1 |sk+1 – sk| < ∞; and (iv)
∑∞

k=1 ‖Tk+1pk – Tkpk‖ < ∞. They
proved the strong convergence of {xk} to an element x∗ ∈ �, which solves the VIP:
〈(ρF – f )x∗, x – x∗〉 ≥ 0 ∀x ∈ �. Subsequently, Ceng and Wen [3] proposed a hybrid
extragradient-like implicit method with strong convergence for finding a solution of GSVI
(1.2) with the constraint of a common fixed point problem (CFPP). Very recently, Ceng
et al. [22] suggested a modified inertial subgradient extragradient method for finding a
common solution of the VIP with pseudomonotone and Lipschitz continuous mapping
A : H → H and the CFPP of finitely many nonexpansive mappings {Ti}N

i=1 on H. Under
some suitable conditions, they proved strong convergence of the constructed sequence to
a common solution of the VIP and the CFPP.

On the other hand, Anh and An [24] introduced the monotone bilevel equilibrium prob-
lem (MBEP) with the fixed point problem (FPP) constraint, i.e., a strongly monotone equi-
librium problem EP(�,
) over the common solution set � of another monotone equilib-
rium problem EP(C,�) and the fixed point problem of K-demicontractive mapping T :

Find x∗ ∈ � such that 

(
x∗, y

) ≥ 0 ∀y ∈ �, (1.4)

where 
 : C × C →R∪ {+∞} such that 
(x, x) = 0 ∀x ∈ C and � = Sol(C,�) ∩ Fix(T).
Pick the parameter sequences {λk} and {βk} such that

⎧
⎪⎪⎨

⎪⎪⎩

{λk} ⊂ (α,α) ⊂ (0, min{ 1
2c1

, 1
2c2

}), limk→∞ λk = λ,

βk ↓ 0, 2βkη – β2
k ϒ2 < 1,

∑∞
k=0 βk = +∞,

0 < τ < min{η,ϒ}, 0 < βk < min{ 1
τ

, 2η–2τ

ϒ2–τ2 , 2η

ϒ2 },
(1.5)

where ϒ is a constant associated with 
 . The following modified subgradient extra-
gradient method is proposed in [24, Algorithm 4.1] for finding a unique element of
Sol(�,
).

Algorithm 1.1 Initial step: Choose an initial point x0 ∈ C and {αk} ⊂ [r, r̄] ⊂ (0, 1 – K).
The parameter sequences {λk} and {βk} satisfy conditions (1.5).

Iterative steps: Compute xk+1(k ≥ 0) as follows:
Step 1. Compute vk = argmin{λk�(xk , v)+ 1

2‖v–xk‖2 : v ∈ C} and qk = argmin{λk�(vk , z)+
1
2‖z – xk‖2 : z ∈ Ck}, where Ck = {y ∈H : 〈xk – λkwk – vk , y – vk〉 ≤ 0} and wk ∈ ∂2�(xk , vk).

Step 2. Compute pk = (1 – αk)qk + αkTqk and xk+1 = argmin{βk
(pk , p) + 1
2‖p – pk‖2 : p ∈

C}. Set k := k + 1 and return to Step 1.
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It was proven in [24] that {xk} converges strongly to a unique element of Sol(�,
) un-
der some mild conditions. In what follows, let the CFPP indicate a common fixed point
problem of a countable family of nonexpansive mappings and an asymptotically nonex-
pansive mapping. In this paper, via a new subgradient extragradient implicit rule, we in-
troduce and analyze two iterative algorithms for solving the monotone bilevel equilibrium
problem (MBEP) with the GSVI and CFPP constraints, i.e., a strongly monotone equilib-
rium problem EP(�,
) over the common solution set � of another monotone equilib-
rium problem EP(C,�), the GSVI and the CFPP. Some strong convergence results for the
proposed algorithms are established under the suitable assumptions, and also applied for
finding a common solution of the GSVI, VIP, and FPP, where VIP and FPP stand for a
variational inequality problem and a fixed point problem, respectively. Our results im-
prove and extend some corresponding results in the earlier and very recent literature; see,
e.g., [3, 16, 22, 24].

2 Preliminaries
Let C be a nonempty closed convex subset of a real Hilbert space H. In the following,
we denote by “⇀” strong convergence and by “→” weak convergence. A bifunction 
 :
C × C →R is said to be

(i) η-strongly monotone if 
(x, y) + 
(y, x) ≤ –η‖x – y‖2 ∀x, y ∈ C;
(ii) monotone if 
(x, y) + 
(y, x) ≤ 0 ∀x, y ∈ C;
(iii) Lipschitz-type continuous with constants c1, c2 > 0 (see [15]) if 
(x, y) + 
(y, z) ≥


(x, z) – c1‖x – y‖2 – c2‖y – z‖2 ∀x, y, z ∈ C.
Also, recall that a mapping F : C →H is said to be
(i) L-Lipschitz continuous or L-Lipschitzian if ∃L > 0 s.t. ‖Fx – Fy‖ ≤ L‖x – y‖ ∀x, y ∈ C;
(ii) monotone if 〈Fx – Fy, x – y〉 ≥ 0 ∀x, y ∈ C;
(iii) pseudomonotone if 〈Fx, y – x〉 ≥ 0 ⇒ 〈Fy, y – x〉 ≥ 0 ∀x, y ∈ C;
(iv) η-strongly monotone if ∃η > 0 s.t. 〈Fx – Fy, x – y〉 ≥ η‖x – y‖2 ∀x, y ∈ C;
(v) α-inverse-strongly monotone if ∃α > 0 s.t. 〈Fx – Fy, x – y〉 ≥ α‖Fx – Fy‖2 ∀x, y ∈ C.
It is clear that every inverse-strongly monotone mapping is monotone and Lipschitz

continuous but the converse is not true. For each point x ∈ H, we know that there exists
a unique nearest point in C, denoted by PCx, such that ‖x – PCx‖ ≤ ‖x – y‖ ∀y ∈ C. The
mapping PC is said to be the metric projection of H onto C. Recall that the following
statements hold (see [17]):

(i) 〈x – y, PCx – PCy〉 ≥ ‖PCx – PCy‖2 ∀x, y ∈H;
(ii) 〈x – PCx, y – PCx〉 ≤ 0 ∀x ∈H, y ∈ C;
(iii) ‖x – y‖2 ≥ ‖x – PCx‖2 + ‖y – PCx‖2 ∀x ∈H, y ∈ C;
(iv) ‖x – y‖2 = ‖x‖2 – ‖y‖2 – 2〈x – y, y〉 ∀x, y ∈H;
(v) ‖sx + (1 – s)y‖2 = s‖x‖2 + (1 – s)‖y‖2 – s(1 – s)‖x – y‖2 ∀x, y ∈H, s ∈ [0, 1].

Definition 2.1 (see [10]) Let {Ti}∞i=1 be a countable family of nonexpansive self-mappings
on C and {ζi}∞i=1 be a sequence in [0, 1]. For any k ≥ 1, one defines a mapping Wk : C → C
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as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uk,k+1 = I,

Uk,k = ζkTkUk,k+1 + (1 – ζk)I,

Uk,k–1 = ζk–1Tk–1Uk,k + (1 – ζk–1)I,

· · ·
Uk,i = ζiTiUk,i+1 + (1 – ζi)I,

· · ·
Uk,2 = ζ2T2Uk,3 + (1 – ζ2)I,

Wk = Uk,1 = ζ1T1Uk,2 + (1 – ζ1)I.

(2.1)

Such a mapping Wk is nonexpansive, and it is called a W -mapping generated by Tk , Tk–1,
. . . , T1 and ζk , ζk–1, . . . , ζ1.

Lemma 2.1 (see [10]) Let {Ti}∞i=1 be a countable family of nonexpansive self-mappings on
C with

⋂∞
i=1 Fix(Ti) �= ∅ and {ζi}∞i=1 be a sequence in (0, 1]. Then

(i) Wk is nonexpansive and Fix(Wk) =
⋂k

i=1 Fix(Ti) ∀k ≥ 1;
(ii) The limit limk→∞ Uk,ix exists for all x ∈ C and i ≥ 1;
(iii) The mapping W defined by Wx := limk→∞ Wkx = limk→∞ Uk,1x ∀x ∈ C is a nonex-

pansive mapping satisfying Fix(W ) =
⋂∞

i=1 Fix(Ti), and it is called the W -mapping gener-
ated by T1, T2, . . . and ζ1, ζ2, . . . .

Lemma 2.2 (see [16]) Let {Ti}∞i=1 be a countable family of nonexpansive self-mappings on
C with

⋂∞
i=1 Fix(Ti) �= ∅ and {ζi}∞i=1 be a sequence in (0, l] for some l ∈ (0, 1). If D is any

bounded subset of C, then limk→∞ supx∈D ‖Wkx – Wx‖ = 0.

Throughout this paper we always assume that {ζi}∞i=1 ⊂ (0, l] for some l ∈ (0, 1). It is easy
to check that the following lemma is valid.

Lemma 2.3 Let the mapping B : H → H be α-inverse-strongly monotone. Then, for given
μ ≥ 0, ‖(I – μB)x – (I – μB)y‖2 ≤ ‖x – y‖2 – μ(2α – μ)‖Bx – By‖2. In particular, if 0 ≤ μ ≤
2α, then I – μB is nonexpansive.

Utilizing Lemma 2.3, we immediately obtain the following lemma.

Lemma 2.4 Let the mappings B1, B2 : H → H be α-inverse-strongly monotone and β-
inverse-strongly monotone, respectively. Let the mapping G : H → C be defined as G :=
PC(I – μ1B1)PC(I – μ2B2). If 0 ≤ μ1 ≤ 2α and 0 ≤ μ2 ≤ 2β , then G : H → C is nonexpan-
sive.

The following inequality is an immediate consequence of the subdifferential inequality
of the function ‖ · ‖2/2.

Lemma 2.5 The inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 ∀x, y ∈H.
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Lemma 2.6 (see [5]) Let X be a Banach space which admits a weakly continuous duality
mapping, C be a nonempty closed convex subset of X, and T : C → C be an asymptotically
nonexpansive mapping with Fix(T) �= ∅. Then I – T is demiclosed at zero, i.e., if {uk} is a
sequence in C such that uk ⇀ u ∈ C and (I – T)uk → 0, then (I – T)u = 0, where I is the
identity mapping of X.

Lemma 2.7 (see [12]) Every Hilbert space enjoys the Opial property, that is, for any se-
quence {xk} in a Hilbert space H with xk ⇀ x, the inequality

lim inf
k→∞

∥
∥xk – x

∥
∥ < lim inf

k→∞
∥
∥xk – y

∥
∥

holds for every y ∈H with y �= x.

The following lemma is very useful to analyze the convergence of the proposed algo-
rithms in this paper.

Lemma 2.8 (see [18]) Let {�k} be a sequence of real numbers that does not decrease at
infinity in the sense that there exists a subsequence {�kj} of {�k} which satisfies �kj < �kj+1

for each integer j ≥ 1. Define the sequence {τ (k)}k≥k0 of integers as follows:

τ (k) = max{j ≤ k : �j < �j+1},

where integer k0 ≥ 1 such that {j ≤ k0 : �j < �j+1} �= ∅. Then the following hold:
(i) τ (k0) ≤ τ (k0 + 1) ≤ · · · and τ (k) → ∞;
(ii) �τ (k) ≤ �τ (k)+1 and �k ≤ �τ (k)+1 ∀k ≥ k0.

On the other hand, the normal cone NC(x) of C at x ∈ C is defined as NC(x) = {z ∈ H :
〈z, y – x〉 ≤ 0 ∀y ∈ C}. The subdifferential of a convex function g : C →R∪ {+∞} at x ∈ C
is defined by

∂g(x) =
{

z ∈H : g(y) – g(x) ≥ 〈z, y – x〉 ∀y ∈ C
}

.

In this paper, we are devoted to finding a solution x∗ ∈ Sol(�,
) of the problem
EP(�,
), where � =

⋂∞
i=0 Fix(Ti) ∩ GSVI(C, B1, B2) ∩ Sol(C,�) with T0 := T . We assume

always that the following hold:
{Ti}∞i=1 is a countable family of nonexpansive self-mappings on C and T : H → C is an

asymptotically nonexpansive mapping with a sequence {θk}.
Wk is the W -mapping generated by Tk , Tk–1, . . . , T1 and ζk , ζk–1, . . . , ζ1, where {ζi}∞i=1 is a

sequence in (0, l] for some l ∈ (0, 1).
B1, B2 : H →H are α-inverse-strongly monotone and β-inverse-strongly monotone, re-

spectively, and G : H → C is defined as G := PC(I – μ1B1)PC(I – μ2B2) where μ1 ∈ (0, 2α)
and μ2 ∈ (0, 2β).

Choose the sequences {εk}, {βk}, {γk}, {δk} in (0, 1) and positive sequences {αk}, {sk} such
that

(H1) βk + γk + δk = 1 ∀k ≥ 1, 0 < lim infk→∞ βk , and 0 < lim infk→∞ δk ;
(H2) 0 < lim infk→∞ γk ≤ lim supk→∞ γk < 1 and 0 < lim infk→∞ εk ≤ lim supk→∞ εk < 1;
(H3)

∑∞
k=1 sk = ∞, limk→∞ sk = 0, limk→∞ θk/sk = 0, and

∑∞
k=1 θk < ∞;
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(H4) {αk} ⊂ (α,α) ⊂ (0, min{ 1
2c1

, 1
2c2

}) and limk→∞ αk = α̃, where c1 and c2 are Lipschitz
constants of �;

(H5) 2skν – s2
kϒ

2 < 1, 0 < λ < min{ν,ϒ} and 0 < sk < min{ 1
λ

, 2ν–2λ

ϒ2–λ2 , 2ν

ϒ2 }, where ν is the
strongly monotone constant of 
 and ϒ :=

∑m
i=1L̄iL̂i is the constant as defined in the fol-

lowing Remark 2.1.

Algorithm 2.1 Initial step: Given x1 ∈ C arbitrarily. The sequences {εk}, {βk}, {γk}, {δk}
in (0, 1) and positive sequences {αk}, {sk} satisfy conditions (H1)–(H5).

Iterative steps: Calculate xk+1 as follows:
Step 1. Compute

uk = εkxk + (1 – εk)Wkuk ,

yk = argmin

{
αk�

(
uk , y

)
+

1
2
∥
∥y – uk∥∥2 : y ∈ C

}
.

Step 2. Choose wk ∈ ∂2�(uk , yk), and compute

Ck =
{

v ∈H :
〈
uk – αkwk – yk , v – yk 〉 ≤ 0

}
,

zk = argmin

{
αk�

(
yk , z

)
+

1
2
∥∥z – uk∥∥2 : z ∈ Ck

}
.

Step 3. Compute

�k = βkxk + γkpk + δkTkzk ,

vk = PC
(
�k – μ2B2�

k),

pk = PC
(
vk – μ1B1vk).

Step 4. Compute

xk+1 = argmin

{
sk


(
�k , t

)
+

1
2
∥
∥t – �k∥∥2 : t ∈ C

}
.

Set k := k + 1 and return to Step 1.

We need the following technical propositions.

Proposition 2.1 (see [23, Theorem 2.1.3]) Let C be a convex subset of a real Hilbert space
H and g : C →R∪ {+∞} be subdifferentiable. Then x̂ is a solution to the following convex
minimization problem:

min
{

g(x) : x ∈ C
}

if and only if 0 ∈ ∂g(x̂) + NC(x̂), where ∂g denotes the subdifferential of g .

Proposition 2.2 (see [21, Proposition 23]) Let X and Y be two sets, G be a set-valued map
from Y to X, and W be a real-valued function defined on X × Y . The marginal function M
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is defined as

M(y) =
{

x∗ ∈ G(y) : W
(
x∗, y

)
= sup

{
W (x, y) : x ∈ G(y)

}}
.

If W and G are continuous, then M is upper semicontinuous.

Next, we assume that two bifunctions 
 : C × C → R ∪ {+∞} and � : H × H → R ∪
{+∞} satisfy the following conditions:

Ass�:
(�1) � =

⋂∞
i=0 Fix(Ti) ∩ GSVI(C, B1, B2) ∩ Sol(C,�) �= ∅ with T0 := T .

(�2) � is monotone and Lipschitz-type continuous with constants c1, c2 > 0, and � is
weakly continuous, i.e., {xk ⇀ x̄ andyk ⇀ ȳ} ⇒ {�(xk , yk) → �(x̄, ȳ)}.

Ass
 :
(
1) 
 is ν-strongly monotone and weakly continuous.
(
2) For each i ∈ {1, . . . , m}, there exist the mappings 
̄i, ψ̂i : C × C →H such that
(i) 
̄i(x, y) + 
̄i(y, x) = 0 and ‖
̄i(x, y)‖ ≤ L̄i‖x – y‖ for all x, y ∈ C;
(ii) ψ̂i(x, x) = 0 and ‖ψ̂i(x, y) – ψ̂i(u, v)‖ ≤ L̂i‖(x – y) – (u – v)‖ for all x, y, u, v ∈ C;
(iii) 
(x, y) + 
(y, z) ≥ 
(x, z) +

∑m
i=1〈
̄i(x, y), ψ̂i(y, z)〉 for all x, y, z ∈ C.

(
3) For any sequence {yk} ⊂ C such that yk → d, we have lim supk→∞
|
(d,yk )|
‖yk –d‖ < +∞.

Remark 2.1 Suppose that the bifunction 
 satisfies condition Ass
 (
2). Then


(x, y) + 
(y, z) ≥ 
(x, z) +
m∑

i=1

〈

̄i(x, y), ψ̂i(y, z)

〉

≥ 
(x, z) –
m∑

i=1

∣
∣〈
̄i(x, y), ψ̂i(y, z)

〉∣∣

≥ 
(x, z) –
m∑

i=1

∥∥
̄i(x, y)
∥∥∥∥ψ̂i(y, z) – ψ̂i(x, x)

∥∥

≥ 
(x, z) –
m∑

i=1

L̄iL̂i‖x – y‖∥∥y – z – (x – x)
∥∥

≥ 
(x, z) –

(
1
2

m∑

i=1

L̄iL̂i

)

‖x – y‖2 –

(
1
2

m∑

i=1

L̄iL̂i

)

‖y – z‖2

= 
(x, z) –
1
2
ϒ‖x – y‖2 –

1
2
ϒ‖y – z‖2,

where ϒ :=
∑m

i=1L̄iL̂i. Thus, 
 is Lipschitz-type continuous with constants c1 = c2 = 1
2ϒ .

3 Main results
In this section, let the CFPP indicate the common fixed point problem of a countable fam-
ily of nonexpansive self-mappings {Ti}∞i=1 on C and an asymptotically nonexpansive map-
ping T . We consider and analyze two implicit subgradient extragradient algorithms for
solving the MBEP with the GSVI and CFPP constraints, i.e., a strongly monotone equilib-
rium problem EP(�,
) over the common solution set � of another monotone equilibrium
problem EP(C,�), GSVI (1.2) and the CFPP, where � =

⋂∞
i=0 Fix(Ti) ∩ GSVI(C, B1, B2) ∩
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Sol(C,�) with T0 := T . We are now in a position to state and prove the first main result in
this paper.

Theorem 3.1 Assume that {xk} is the sequence constructed by Algorithm 2.1. Let the bi-
functions 
 ,� satisfy assumptions Ass�–Ass
 . Then, under conditions (H1)–(H5), the se-
quence {xk} converges strongly to the unique solution x∗ of the problem EP(�,
) provided
Tkxk – Tk+1xk → 0.

Proof First of all, by Lemma 2.1 we know that each Wk is a nonexpansive self-mapping
on C. Also, note that the mapping G : H → C is defined as G = PC(I – μ1B1)PC(I – μ2B2),
where μ1 ∈ (0, 2α) and μ2 ∈ (0, 2β). Then, by Lemma 2.4, we know that G is nonexpansive.
Hence, by the Banach contraction mapping principle, we deduce from {εk}, {γk} ⊂ (0, 1)
that for each k ≥ 1 there hold the following:

(i) ∃|uk ∈ C s.t. uk = εkxk + (1 – εk)Wkuk ;
(ii) ∃|�k ∈ C s.t.

�k = βkxk + γkG�k + δkTkzk . (3.1)

Choose an element q ∈ � =
⋂∞

i=0 Fix(Ti) ∩ GSVI(C, B1, B2) ∩ Sol(C,�) arbitrarily. Since
limk→∞ θk

sk
= 0, we may assume, without loss of generality, that θk ≤ 1

2λsk for all k ≥ 1. We
divide the proof into several steps as follows.

Step 1. We show that the following inequality holds:

∥∥zk – q
∥∥2 ≤ ∥∥uk – q

∥∥2 – (1 – 2αkc1)
∥∥yk – uk∥∥2 – (1 – 2αkc2)

∥∥zk – yk∥∥2 ∀k ≥ 1.

Indeed, by Proposition 2.1, we know that for yk = argmin{αk�(uk , y) + 1
2‖y – uk‖2 : y ∈ C}

there exists wk ∈ ∂2�(uk , yk) such that

αkwk + yk – uk ∈ –NC
(
yk),

which hence yields

〈
αkwk + yk – uk , x – yk 〉 ≥ 0 ∀x ∈ C.

From the definition of wk ∈ ∂2�(uk , yk), it follows that

αk
[
�
(
uk , x

)
– �

(
uk , yk)] ≥ 〈

αkwk , x – yk 〉 ∀x ∈H. (3.2)

Adding the last two inequalities, we get

αk
[
�
(
uk , x

)
– �

(
uk , yk)] +

〈
yk – uk , x – yk 〉 ≥ 0 ∀x ∈ C. (3.3)

It follows from zk ∈ Ck and the definition of Ck that

〈
uk – αkwk – yk , v – yk 〉 ≤ 0,
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and hence

αk
〈
wk , zk – yk 〉 ≥ 〈

uk – yk , zk – yk 〉. (3.4)

Putting x = zk in (3.2), we get

αk
[
�
(
uk , zk) – �

(
uk , yk)] ≥ αk

〈
wk , zk – yk 〉.

Adding (3.4) and the last inequality, we have

αk
[
�
(
uk , zk) – �

(
uk , yk)] ≥ 〈

uk – yk , zk – yk 〉. (3.5)

By Proposition 2.1, we know that for zk = argmin{αk�(yk , y) + 1
2‖y – uk‖2 : y ∈ Ck} there

exist hk ∈ ∂2�(yk , zk) and tk ∈ NCk (zk) such that

αkhk + zk – uk + tk = 0.

So, we infer that αk〈hk , y – zk〉 ≥ 〈uk – zk , y – zk〉 ∀y ∈ Ck , and

�
(
yk , y

)
– �

(
yk , zk) ≥ 〈

hk , y – zk 〉 ∀y ∈H.

Putting y = q ∈ C ⊂ Ck in two last inequalities and later adding them, we get

αk
[
�
(
yk , q

)
– �

(
yk , zk)] ≥ 〈

uk – zk , q – zk 〉.

By the monotonicity of �, q ∈ Sol(C,�) and yk ∈ C, we get

�
(
yk , q

) ≤ –�
(
q, yk) ≤ 0.

Therefore,

–αk�
(
yk , zk) ≥ 〈

uk – zk , q – zk 〉.

Combining this and the following Lipschitz-type continuity of �

�
(
uk , yk) + �

(
yk , zk) ≥ �

(
uk , zk) – c1

∥
∥uk – yk∥∥2 – c2

∥
∥yk – zk∥∥2,

we obtain that

〈
uk – zk , zk – q

〉 ≥ αk�
(
yk , zk)

≥ αk
[
�
(
uk , zk) – �

(
uk , yk)] – αkc1

∥∥uk – yk∥∥2 – αkc2
∥∥yk – zk∥∥2.

This together with (3.5) implies that

〈
uk – zk , zk – q

〉 ≥ 〈
uk – yk , zk – yk 〉 – αkc1

∥
∥uk – yk∥∥2 – αkc2

∥
∥yk – zk∥∥2. (3.6)
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Therefore, applying the equality

〈u, v〉 =
1
2
(‖u + v‖2 – ‖u‖2 – ‖v‖2) ∀u, v ∈H, (3.7)

for 〈uk – zk , zk – q〉 and 〈yk – uk , zk – yk〉 in (3.6), we obtain the desired result.
Step 2. We show that the following inequality holds:

∥
∥xk+1 – x

∥
∥2 ≤ ∥

∥�k – x
∥
∥2 –

∥
∥xk+1 – �k∥∥2 + 2sk

[


(
�k , x

)
– 


(
�k , xk+1)] ∀x ∈ C.

Indeed, since xk+1 = argmin{sk
(�k , t) + 1
2‖t – �k‖2 : t ∈ C}, there exists mk ∈ ∂2
(�k ,

xk+1) such that

0 ∈ skmk + xk+1 – �k + NC
(
xk+1).

By the definition of normal cone NC and the subgradient mk , we get

〈
skmk + xk+1 – �k , x – xk+1〉 ≥ 0 ∀x ∈ C,

sk
[


(
�k , x

)
– 


(
�k , xk+1)] ≥ 〈

skmk , x – xk+1〉 ∀x ∈ C.

Adding the last two inequalities, we get

2sk
[


(
�k , x

)
– 


(
�k , xk+1)] + 2

〈
xk+1 – �k , x – xk+1〉 ≥ 0 ∀x ∈ C. (3.8)

Putting u = xk+1 – �k and v = x – xk+1 in (3.7), we get

2sk
[


(
xk+1, x

)
– 


(
�k , xk+1)] +

∥
∥�k – x

∥
∥2 –

∥
∥xk+1 – �k∥∥2 –

∥
∥xk+1 – x

∥
∥2 ≥ 0 ∀x ∈ C.

This attains the desired result.
Step 3. We show that if x∗ is a solution of the MBEP with the GSVI and CFPP constraints,

then

∥∥xk+1 – �k
∗
∥∥ ≤ ηk

∥∥�k – x∗∥∥ ≤ (1 – λsk)
∥∥�k – x∗∥∥,

where �k∗ = argmin{sk
(x∗, v) + 1
2‖v – x∗‖2 : v ∈ C}, ηk =

√
1 – 2skν + s2

kϒ
2, 0 < λ < min{ν,

ϒ}, 0 < sk < min{ 1
λ

, 2ν–2λ

ϒ2–λ2 }, and ϒ =
∑m

i=1 L̄iL̂i.
Indeed, put �k∗ = argmin{sk
(x∗, v) + 1

2‖v – x∗‖2 : v ∈ C}. By the similar arguments to
those of (3.8), we also get

sk
[


(
x∗, x

)
– 


(
x∗,�k

∗
)]

+
〈
�k

∗ – x∗, x – �k
∗
〉 ≥ 0 ∀x ∈ C. (3.9)

Setting x = �k∗ ∈ C in (3.8) and x = xk+1 ∈ C in (3.9), respectively, we obtain that

sk
[


(
�k ,�k

∗
)

– 

(
�k , xk+1)] +

〈
xk+1 – �k ,�k

∗ – xk+1〉 ≥ 0,

sk
[


(
x∗, xk+1) – 


(
x∗,�k

∗
)]

+
〈
�k

∗ – x∗, xk+1 – �k
∗
〉 ≥ 0.
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Adding the last two inequalities, we have

0 ≤ 2sk
[


(
�k ,�k

∗
)

– 

(
�k , xk+1) + 


(
x∗, xk+1) – 


(
x∗,�k

∗
)]

+ 2
〈
xk+1 – �k – �k

∗ + x∗,�k
∗ – xk+1〉

= 2sk
[


(
�k ,�k

∗
)

– 

(
�k , xk+1) + 


(
x∗, xk+1) – 


(
x∗,�k

∗
)]

+
∥∥�k – x∗∥∥2

–
∥∥xk+1 – �k – �k

∗ + x∗∥∥2 –
∥∥xk+1 – �k

∗
∥∥2, (3.10)

where the last equality follows directly from (3.7).
Note that, under assumption Ass
 (
2), it follows that



(
�k ,�k

∗
)

– 

(
x∗,�k

∗
) ≤ 


(
�k , x∗) –

m∑

i=1

〈

̄i

(
�k , x∗), ψ̂i

(
x∗,�k

∗
)〉

,



(
x∗, xk+1) – 


(
�k , xk+1) ≤ 


(
x∗,�k) –

m∑

i=1

〈

̄i

(
x∗,�k), ψ̂i

(
�k , xk+1)〉.

Therefore, we have



(
�k ,�k

∗
)

– 

(
�k , xk+1) + 


(
x∗, xk+1) – 


(
x∗,�k

∗
)

≤ 

(
�k , x∗) + 


(
x∗,�k) –

m∑

i=1

〈

̄i

(
�k , x∗), ψ̂i

(
x∗,�k

∗
)〉

–
m∑

i=1

〈

̄i

(
x∗,�k), ψ̂i

(
�k , xk+1)〉.

Then, using Ass
 (
2) and the strong monotonicity of 
 in Ass
 (
1) that 
(x, y) +

(y, x) ≤ –ν‖x – y‖2 ∀x, y ∈ C, we get



(
�k ,�k

∗
)

– 

(
�k , xk+1) + 


(
x∗, xk+1) – 


(
x∗,�k

∗
)

≤ –ν
∥
∥�k – x∗∥∥2 +

m∑

i=1

〈

̄i

(
�k , x∗), ψ̂i

(
�k , xk+1) – ψ̂i

(
x∗,�k

∗
)〉

≤ –ν
∥∥�k – x∗∥∥2 +

m∑

i=1

∥∥
̄i
(
�k , x∗)∥∥∥∥ψ̂i

(
�k , xk+1) – ψ̂i

(
x∗,�k

∗
)∥∥

≤ –ν
∥∥�k – x∗∥∥2 +

m∑

i=1

L̄iL̂i
∥∥�k – x∗∥∥∥∥�k – xk+1 – x∗ + �k

∗
∥∥

= –ν
∥∥�k – x∗∥∥2 + ϒ

∥∥�k – x∗∥∥∥∥�k – xk+1 – x∗ + �k
∗
∥∥. (3.11)

Combining (3.10) and (3.11), we get

0 ≤ (1 – 2skν)
∥
∥�k – x∗∥∥2 + 2skϒ

∥
∥�k – x∗∥∥∥∥�k – xk+1 – x∗ + �k

∗
∥
∥

–
∥
∥xk+1 – �k – �k

∗ + x∗∥∥2 –
∥
∥xk+1 – �k

∗
∥
∥2

= (1 – 2skν)
∥
∥�k – x∗∥∥2 –

(∥∥xk+1 – �k – �k
∗ + x∗∥∥ – skϒ

∥
∥�k – x∗∥∥)2 + s2

kϒ
2∥∥�k – x∗∥∥2

–
∥
∥xk+1 – �k

∗
∥
∥2

≤ (
1 – 2skν + s2

kϒ
2)∥∥�k – x∗∥∥2 –

∥∥xk+1 – �k
∗
∥∥2.
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From

0 < λ < min{ν,ϒ} and 0 < sk < min

{
1
λ

,
2ν – 2λ

ϒ2 – λ2

}
,

it follows that 0 ≤ ηk =
√

1 – 2skν + s2
kϒ

2 < 1 – λsk . This ensures the desired result.
Step 4. We show that the sequence {xk} is bounded. In fact, putting

X := C, Y := [0, 1], G(s) := C ∀s ∈ Y ,

s := sk , W (x, s) := –s

(
x∗, x

)
–

1
2
∥
∥x – x∗∥∥2 ∀(x, s) ∈ X × Y ,

we have that

M(sk) = argmax
{

W (x, sk) : x ∈ C
}

= argmin

{
sk


(
x∗, x

)
+

1
2
∥
∥x – x∗∥∥2 : x ∈ C

}

=
{
�k

∗
}

.

Note that M is continuous and limk→∞ �k∗ = x∗. Since 
 is continuous on C, we get
limk→∞ 
(x∗,�k∗) = 
(x∗, x∗) = 0. In terms of Ass
 (
3), there exists a constant M̂(x∗) > 0
such that

∣
∣


(
x∗,�k

∗
)∣∣ ≤ M̂

(
x∗)∥∥�k

∗ – x∗∥∥ ∀k ≥ 1.

Putting x = x∗ in (3.9) and using 
(x∗, x∗) = 0, we get

–sk

(
x∗,�k

∗
)

+
〈
�k

∗ – x∗, x∗ – �k
∗
〉 ≥ 0,

which hence yields

∥
∥�k

∗ – x∗∥∥2 ≤ sk
[
–


(
x∗,�k

∗
)] ≤ skM̂

(
x∗)∥∥�k

∗ – x∗∥∥ ∀k ≥ 1.

This immediately implies that

∥
∥�k

∗ – x∗∥∥ ≤ skM̂
(
x∗) ∀k ≥ 1.

Also, according to Lemma 2.3, we know that I – μ1B1 and I – μ2B2 are nonexpansive
mappings, where μ1 ∈ (0, 2α) and μ2 ∈ (0, 2β). Moreover, by Lemma 2.4, we know that G
is nonexpansive. We write y∗ = PC(I – μ2B2)x∗. Then, by Lemma 1.1, we get x∗ = PC(I –
μ1B1)y∗ = Gx∗. So it follows that

∥∥uk – x∗∥∥ =
∥∥εk

(
xk – x∗) + (1 – εk)

(
Wkuk – x∗)∥∥

≤ εk
∥∥xk – x∗∥∥ + (1 – εk)

∥∥Wkuk – x∗∥∥

≤ εk
∥
∥xk – x∗∥∥ + (1 – εk)

∥
∥uk – x∗∥∥, (3.12)
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which immediately leads to

∥
∥uk – x∗∥∥ ≤ ∥

∥xk – x∗∥∥. (3.13)

Utilizing the result in Step 1, from (3.13) we get

∥
∥zk – x∗∥∥ ≤ ∥

∥uk – x∗∥∥ ≤ ∥
∥xk – x∗∥∥ ∀k ≥ 1. (3.14)

Since G is a nonexpansive mapping and T is asymptotically nonexpansive, we deduce from
(3.14) that

∥∥�k – x∗∥∥2

=
〈
βk

(
xk – x∗) + γk

(
G�k – x∗) + δk

(
Tkzk – x∗),�k – x∗〉

= βk
〈
xk – x∗,�k – x∗〉 + γk

〈
G�k – x∗,�k – x∗〉 + δk

〈
Tkzk – x∗,�k – x∗〉

≤ βk
∥
∥xk – x∗∥∥∥∥�k – x∗∥∥ + γk

∥
∥�k – x∗∥∥2 + δk(1 + θk)

∥
∥zk – x∗∥∥∥∥�k – x∗∥∥

≤ βk(1 + θk)
∥
∥xk – x∗∥∥∥∥�k – x∗∥∥ + γk

∥
∥�k – x∗∥∥2 + δk(1 + θk)

∥
∥xk – x∗∥∥∥∥�k – x∗∥∥

= (1 – γk)(1 + θk)
∥
∥xk – x∗∥∥∥∥�k – x∗∥∥ + γk

∥
∥�k – x∗∥∥2,

which hence yields

∥∥�k – x∗∥∥ ≤ (1 + θk)
∥∥xk – x∗∥∥.

Consequently,

∥∥xk+1 – x∗∥∥

≤ ∥∥xk+1 – �k
∗
∥∥ +

∥∥�k
∗ – x∗∥∥ ≤ (1 – λsk)

∥∥�k – x∗∥∥ +
∥∥�k

∗ – x∗∥∥

≤ (1 – λsk)(1 + θk)
∥
∥xk – x∗∥∥ + skM̂

(
x∗) ≤ [

(1 – λsk) + θk
]∥∥xk – x∗∥∥ + skM̂

(
x∗)

≤
[

(1 – λsk) +
1
2
λsk

]∥
∥xk – x∗∥∥ + skM̂

(
x∗) ≤ max

{∥
∥xk – x∗∥∥,

2M̂(x∗)
λ

}
. (3.15)

By induction, we get ‖xk – x∗‖ ≤ max{‖x1 – x∗‖, 2M̂(x∗)
λ

} ∀k ≥ 1. Thus, {xk} is bounded, and
so are the sequences {pk}, {�k}, {yk}, {zk}, {uk}, {vk}.

Step 5. We show that if xki ⇀ x̂, uki – xki → 0 and uki – yki → 0 for {ki} ⊂ {k}, then x̂ ∈
Sol(C,�).

Indeed, noticing uki – xki → 0 and uki – yki → 0, we get

∥∥xki – yki
∥∥ ≤ ∥∥xki – uki

∥∥ +
∥∥uki – yki

∥∥ → 0 (i → ∞). (3.16)

So it follows from xki ⇀ x̂ that uki ⇀ x̂ and yki ⇀ x̂. Since {yk} ⊂ C, yki ⇀ x̂ and C is weakly
closed, we know that x̂ ∈ C. By (3.3), we have

αki�
(
uki , x

) ≥ αki�
(
uki , yki

)
+
〈
yki – uki , yki – x

〉 ∀x ∈ C.
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Taking the limit as i → ∞ and using the assumptions that limk→∞ αk = α̃ > 0, �(x̂, x̂) = 0,
{yki} is bounded, and � is weakly continuous, we obtain that α̃�(x̂, x) ≥ 0 ∀x ∈ C. This
implies that x̂ ∈ sol(C,�).

Step 6. We show that xk → x∗, a unique solution of the MBEP with the GSVI and CFPP
constraints. Indeed, set �k = ‖xk – x∗‖2. Since G is nonexpansive and T is asymptotically
nonexpansive, we obtain that

∥∥�k – x∗∥∥2

= βk
〈
xk – x∗,�k – x∗〉 + γk

〈
G�k – x∗,�k – x∗〉 + δk

〈
Tkzk – x∗,�k – x∗〉

≤ βk

2
[∥∥xk – x∗∥∥2 +

∥
∥�k – x∗∥∥2 –

∥
∥xk – �k∥∥2] + γk

∥
∥�k – x∗∥∥2 +

δk

2
[∥∥Tkzk – x∗∥∥2

+
∥
∥�k – x∗∥∥2 –

∥
∥Tkzk – �k∥∥2]

=
βk

2
∥∥xk – x∗∥∥2 +

1 + γk

2
∥∥�k – x∗∥∥2 +

δk

2
∥∥Tkzk – x∗∥∥2

–
βk

2
∥∥xk – �k∥∥2 –

δk

2
∥∥Tkzk – �k∥∥2

≤ βk

2
∥
∥xk – x∗∥∥2 +

1 + γk

2
∥
∥�k – x∗∥∥2 +

δk(1 + θk)2

2
∥
∥zk – x∗∥∥2

–
βk

2
∥∥xk – �k∥∥2 –

δk

2
∥∥Tkzk – �k∥∥2

≤ βk

2
∥∥xk – x∗∥∥2 +

1 + γk

2
∥∥�k – x∗∥∥2 +

δk

2
∥∥zk – x∗∥∥2

+
θkM̃

2
–

βk

2
∥∥xk – �k∥∥2 –

δk

2
∥∥Tkzk – �k∥∥2,

where supk≥1(2 + θk)‖xk – x∗‖2 ≤ M̃ for some M̃ > 0. This implies that

∥
∥�k – x∗∥∥2 ≤ 1

1 – γk

[
βk

∥
∥xk – x∗∥∥2 + δk

∥
∥zk – x∗∥∥2

+ θkM̃ – βk
∥
∥xk – �k∥∥2 – δk

∥
∥Tkzk – �k∥∥2]. (3.17)

By the results in Steps 1 and 2 we deduce from (3.14) and (3.17) that

∥∥xk+1 – x∗∥∥2

≤ ∥∥�k – x∗∥∥2 –
∥∥xk+1 – �k∥∥2 + 2sk

[


(
�k , x∗) – 


(
�k , xk+1)]

≤ 1
1 – γk

[
βk

∥
∥xk – x∗∥∥2 + δk

∥
∥zk – x∗∥∥2 + θkM̃ – βk

∥
∥xk – �k∥∥2 – δk

∥
∥Tkzk – �k∥∥2]

–
∥
∥xk+1 – �k∥∥2 + 2sk

[


(
�k , x∗) – 


(
�k , xk+1)]

≤ 1
1 – γk

{
βk

∥
∥xk – x∗∥∥2 + δk

[∥∥uk – x∗∥∥2 – (1 – 2αkc1)
∥
∥yk – uk∥∥2

– (1 – 2αkc2)
∥
∥zk – yk∥∥2]

+ θkM̃ – βk
∥
∥xk – �k∥∥2 – δk

∥
∥Tkzk – �k∥∥2}

–
∥∥xk+1 – �k∥∥2 + 2sk

[


(
�k , x∗) – 


(
�k , xk+1)]
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≤ ∥
∥xk – x∗∥∥2 –

δk

1 – γk

[
(1 – 2αkc1)

∥
∥yk – uk∥∥2 + (1 – 2αkc2)

∥
∥zk – yk∥∥2] +

θkM̃
1 – γk

–
1

1 – γk

[
βk

∥
∥xk – �k∥∥2 + δk

∥
∥Tkzk – �k∥∥2] –

∥
∥xk+1 – �k∥∥2

+ 2sk
[


(
�k , x∗) – 


(
�k , xk+1)]

≤ ∥
∥xk – x∗∥∥2 –

δk

1 – γk

[
(1 – 2αkc1)

∥
∥yk – uk∥∥2 + (1 – 2αkc2)

∥
∥zk – yk∥∥2] +

θkM̃
1 – γk

–
1

1 – γk

[
βk

∥
∥xk – �k∥∥2 + δk

∥
∥Tkzk – �k∥∥2] –

∥
∥xk+1 – �k∥∥2 + skK , (3.18)

where supk≥1{2|
(�k , x∗) – 
(�k , xk+1)|} ≤ K for some K > 0.
Finally, we show the convergence of {�k} to zero by the following two cases.
Case 1. Suppose that there exists an integer k0 ≥ 1 such that {�k} is nonincreasing. Then

the limit limk→∞ �k = � < +∞ and

�k – �k+1 → 0 (k → ∞).

From (3.18), we get

δk
[
(1 – 2αkc1)

∥∥yk – uk∥∥2 + (1 – 2αkc2)
∥∥zk – yk∥∥2]

+ βk
∥
∥xk – �k∥∥2 + δk

∥
∥Tkzk – �k∥∥2 +

∥
∥xk+1 – �k∥∥2

≤ δk

1 – γk

[
(1 – 2αkc1)

∥∥yk – uk∥∥2 + (1 – 2αkc2)
∥∥zk – yk∥∥2]

+
1

1 – γk

[
βk

∥∥xk – �k∥∥2 + δk
∥∥Tkzk – �k∥∥2] +

∥∥xk+1 – �k∥∥2

≤ �k – �k+1 +
θkM̃

1 – γk
+ skK . (3.19)

Since sk → 0, θk → 0,�k – �k+1 → 0, 0 < lim infk→∞ βk , 0 < lim infk→∞ δk , and
0 < lim infk→∞(1 – γk), we obtain from {αk} ⊂ (α,α) ⊂ (0, min{ 1

2c1
, 1

2c2
}) that

lim
k→∞

∥
∥xk – �k∥∥ = lim

k→∞
∥
∥Tkzk – �k∥∥ = 0, (3.20)

lim
k→∞

∥
∥yk – uk∥∥ = lim

k→∞
∥
∥zk – yk∥∥ = lim

k→∞
∥
∥xk+1 – �k∥∥ = 0. (3.21)

We now show that ‖�k – pk‖ → 0 as k → ∞. Indeed, we set y∗ = PC(x∗ – μ2B2x∗). Note
that vk = PC(�k –μ2B2�

k) and pk = PC(vk –μ1B1vk). Then pk = G�k . By Lemma 2.3 we have

∥∥vk – y∗∥∥2 ≤ ∥∥�k – x∗∥∥2 – μ2(2β – μ2)
∥∥B2�

k – B2x∗∥∥2, (3.22)
∥
∥pk – x∗∥∥2 ≤ ∥

∥vk – y∗∥∥2 – μ1(2α – μ1)
∥
∥B1vk – B1y∗∥∥2. (3.23)

Substituting (3.22) for (3.23), by (3.14) and (3.17) we get

∥∥pk – x∗∥∥2
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≤ ∥∥�k – x∗∥∥2 – μ2(2β – μ2)
∥∥B2�

k – B2x∗∥∥2 – μ1(2α – μ1)
∥∥B1vk – B1y∗∥∥2

≤ ∥
∥xk – x∗∥∥2 +

θkM̃
1 – γk

– μ2(2β – μ2)
∥
∥B2�

k – B2x∗∥∥2

– μ1(2α – μ1)
∥
∥B1vk – B1y∗∥∥2. (3.24)

Also, substituting (3.24) for (3.18), we get

∥∥xk+1 – x∗∥∥2

≤ ∥∥�k – x∗∥∥2 + skK

≤ βk
∥∥xk – x∗∥∥2 + γk

∥∥pk – x∗∥∥2 + δk
∥∥Tkzk – x∗∥∥2 + skK

≤ βk(1 + θk)2∥∥xk – x∗∥∥2 + γk
∥∥pk – x∗∥∥2 + δk(1 + θk)2∥∥zk – x∗∥∥2 + skK

≤ (1 – γk)
[
1 + θk(2 + θk)

]∥∥xk – x∗∥∥2 + γk

[∥
∥xk – x∗∥∥2 +

θkM̃
1 – γk

– μ2(2β – μ2)
∥∥B2�

k – B2x∗∥∥2 – μ1(2α – μ1)
∥∥B1vk – B1y∗∥∥2

]
+ skK

≤ ∥∥xk – x∗∥∥2 + θkM̃ +
γkθkM̃
1 – γk

– γk
[
μ2(2β – μ2)

∥∥B2�
k – B2x∗∥∥2

+ μ1(2α – μ1)
∥∥B1vk – B1y∗∥∥2] + skK

=
∥
∥xk – x∗∥∥2 +

θkM̃
1 – γk

– γk
[
μ2(2β – μ2)

∥
∥B2�

k – B2x∗∥∥2

+ μ1(2α – μ1)
∥
∥B1vk – B1y∗∥∥2] + skK ,

which immediately yields

γk
[
μ2(2β – μ2)

∥
∥B2�

k – B2x∗∥∥2 + μ1(2α – μ1)
∥
∥B1vk – B1y∗∥∥2]

≤ �k – �k+1 +
θkM̃

1 – γk
+ skK .

Since μ1 ∈ (0, 2α),μ2 ∈ (0, 2β), sk → 0, θk → 0,�k – �k+1 → 0, lim infk→∞ γk > 0, and
lim infk→∞(1 – γk) > 0, we get

lim
k→∞

∥
∥B2�

k – B2x∗∥∥ = 0 and lim
k→∞

∥
∥B1vk – B1y∗∥∥ = 0. (3.25)

On the other hand, observe that

∥
∥pk – x∗∥∥2

≤ 〈
vk – y∗, pk – x∗〉 + μ1

〈
B1y∗ – B1vk , pk – x∗〉

≤ 1
2
[∥∥vk – y∗∥∥2 +

∥
∥pk – x∗∥∥2 –

∥
∥vk – pk + x∗ – y∗∥∥2] + μ1

∥
∥B1y∗ – B1vk∥∥

∥
∥pk – x∗∥∥.

This ensures that

∥∥pk – x∗∥∥2 ≤ ∥∥vk – y∗∥∥2 –
∥∥vk – pk + x∗ – y∗∥∥2 + 2μ1

∥∥B1y∗ – B1vk∥∥∥∥pk – x∗∥∥. (3.26)
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Similarly, we get

∥∥vk – y∗∥∥2 ≤ ∥∥�k – x∗∥∥2 –
∥∥�k – vk + y∗ – x∗∥∥2 + 2μ2

∥∥B2x∗ – B2�
k∥∥∥∥vk – y∗∥∥. (3.27)

Combining (3.26) and (3.27), by (3.14) and (3.17) we have

∥
∥pk – x∗∥∥2

≤ ∥
∥�k – x∗∥∥2 –

∥
∥�k – vk + y∗ – x∗∥∥2 –

∥
∥vk – pk + x∗ – y∗∥∥2

+ 2μ1
∥
∥B1y∗ – B1vk∥∥

∥
∥pk – x∗∥∥ + 2μ2

∥
∥B2x∗ – B2�

k∥∥
∥
∥vk – y∗∥∥

≤ ∥
∥xk – x∗∥∥2 +

θkM̃
1 – γk

–
∥
∥�k – vk + y∗ – x∗∥∥2 –

∥
∥vk – pk + x∗ – y∗∥∥2

+ 2μ1
∥∥B1y∗ – B1vk∥∥∥∥pk – x∗∥∥ + 2μ2

∥∥B2x∗ – B2�
k∥∥∥∥vk – y∗∥∥. (3.28)

Substituting (3.28) for (3.18), from (3.14) we get

∥
∥xk+1 – x∗∥∥2

≤ ∥
∥�k – x∗∥∥2 + skK

≤ βk(1 + θk)2∥∥xk – x∗∥∥2 + γk
∥
∥pk – x∗∥∥2 + δk(1 + θk)2∥∥zk – x∗∥∥2 + skK

≤ (1 – γk)
[
1 + θk(2 + θk)

]∥∥xk – x∗∥∥2 + γk

[∥∥xk – x∗∥∥2 +
θkM̃

1 – γk

–
∥
∥�k – vk + y∗ – x∗∥∥2 –

∥
∥vk – pk + x∗ – y∗∥∥2 + 2μ1

∥
∥B1y∗ – B1vk∥∥

× ∥∥pk – x∗∥∥ + 2μ2
∥∥B2x∗ – B2�

k∥∥∥∥vk – y∗∥∥
]

+ skK

≤ ∥
∥xk – x∗∥∥2 + θkM̃ +

γkθkM̃
1 – γk

– γk
[∥∥�k – vk + y∗ – x∗∥∥2

+
∥∥vk – pk + x∗ – y∗∥∥2] + 2μ1

∥∥B1y∗ – B1vk∥∥∥∥pk – x∗∥∥

+ 2μ2
∥
∥B2x∗ – B2�

k∥∥
∥
∥vk – y∗∥∥ + skK

=
∥∥xk – x∗∥∥2 +

θkM̃
1 – γk

– γk
[∥∥�k – vk + y∗ – x∗∥∥2 +

∥∥vk – pk + x∗ – y∗∥∥2]

+ 2μ1
∥
∥B1y∗ – B1vk∥∥

∥
∥pk – x∗∥∥ + 2μ2

∥
∥B2x∗ – B2�

k∥∥
∥
∥vk – y∗∥∥ + skK .

This immediately leads to

γk
[∥∥�k – vk + y∗ – x∗∥∥2 +

∥
∥vk – pk + x∗ – y∗∥∥2]

≤ �k – �k+1 +
θkM̃

1 – γk
+ 2μ1

∥∥B1y∗ – B1vk∥∥∥∥pk – x∗∥∥

+ 2μ2
∥
∥B2x∗ – B2�

k∥∥
∥
∥vk – y∗∥∥ + skK .



He et al. Journal of Inequalities and Applications        (2021) 2021:146 Page 19 of 37

Since sk → 0, θk → 0,�k – �k+1 → 0, lim infk→∞ γk > 0, and lim infk→∞(1 – γk) > 0, we de-
duce from (3.25) that

lim
k→∞

∥
∥�k – vk + y∗ – x∗∥∥ = 0 and lim

k→∞
∥
∥vk – pk + x∗ – y∗∥∥ = 0.

Thus,

∥∥�k – G�k∥∥ =
∥∥�k – pk∥∥

≤ ∥
∥�k – vk + y∗ – x∗∥∥ +

∥
∥vk – pk + x∗ – y∗∥∥ → 0 (k → ∞). (3.29)

Noticing uk = εkxk + (1 – εk)Wkuk , from (3.14) and the nonexpansivity of Wk we get

∥∥uk – x∗∥∥2

= εk
〈
xk – x∗, uk – x∗〉 + (1 – εk)

〈
Wkuk – x∗, uk – x∗〉

=
εk

2
[∥∥xk – x∗∥∥2 +

∥
∥uk – x∗∥∥2 –

∥
∥xk – uk∥∥2]

+
1 – εk

2
[∥∥Wkuk – x∗∥∥2 +

∥
∥uk – x∗∥∥2 –

∥
∥Wkuk – uk∥∥2]

≤ εk

2
[∥∥xk – x∗∥∥2 +

∥∥xk – x∗∥∥2 –
∥∥xk – uk∥∥2]

+
1 – εk

2
[∥∥xk – x∗∥∥2 +

∥∥xk – x∗∥∥2 –
∥∥Wkuk – uk∥∥2]

=
∥∥xk – x∗∥∥2 –

εk

2
∥∥xk – uk∥∥2 –

1 – εk

2
∥∥Wkuk – uk∥∥2.

This together with (3.14), (3.17), and (3.18) implies that

∥
∥xk+1 – x∗∥∥2

≤ ∥
∥�k – x∗∥∥2 + skK

≤ βk
∥
∥xk – x∗∥∥2 + γk

∥
∥�k – x∗∥∥2 + δk(1 + θk)2∥∥zk – x∗∥∥2 + skK

≤ βk
∥∥xk – x∗∥∥2 + γk

[∥∥xk – x∗∥∥2 +
θkM̃

1 – γk

]
+ δk(1 + θk)2

[∥∥xk – x∗∥∥2

–
εk

2
∥
∥xk – uk∥∥2 –

1 – εk

2
∥
∥Wkuk – uk∥∥2

]
+ skK

≤ (1 + θk)2∥∥xk – x∗∥∥2 +
γkθkM̃
1 – γk

– δk(1 + θk)2
[

εk

2
∥
∥xk – uk∥∥2 +

1 – εk

2
∥
∥Wkuk – uk∥∥2

]
+ skK

≤ ∥
∥xk – x∗∥∥2 + θkM̃ +

γkθkM̃
1 – γk

– δk(1 + θk)2
[

εk

2
∥∥xk – uk∥∥2 +

1 – εk

2
∥∥Wkuk – uk∥∥2

]
+ skK

=
∥
∥xk – x∗∥∥2 +

θkM̃
1 – γk

– δk(1 + θk)2
[

εk

2
∥
∥xk – uk∥∥2 +

1 – εk

2
∥
∥Wkuk – uk∥∥2

]
+ skK .
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So it follows that

δk(1 + θk)2
[

εk

2
∥∥xk – uk∥∥2 +

1 – εk

2
∥∥Wkuk – uk∥∥2

]
≤ �k – �k+1 +

θkM̃
1 – γk

+ skK .

Since sk → 0, θk → 0,�k – �k+1 → 0, 0 < lim infk→∞(1 – γk), 0 < lim infk→∞ δk , and 0 <
lim infk→∞ εk ≤ lim supk→∞ εk < 1, we obtain that

lim
k→∞

∥
∥xk – uk∥∥ = 0 and lim

k→∞
∥
∥Wkuk – uk∥∥ = 0. (3.30)

Using (3.20) and (3.21), we get

∥
∥xk – xk+1∥∥ ≤ ∥

∥xk – �k∥∥ +
∥
∥�k – xk+1∥∥ → 0 (k → ∞) (3.31)

and

∥
∥zk – uk∥∥ ≤ ∥

∥zk – yk∥∥ +
∥
∥yk – uk∥∥ → 0 (k → ∞). (3.32)

Combining (3.20) and (3.29), we have

∥
∥xk – Gxk∥∥ ≤ ∥

∥xk – �k∥∥ +
∥
∥�k – G�k∥∥ +

∥
∥G�k – Gxk∥∥

≤ 2
∥∥xk – �k∥∥ +

∥∥�k – G�k∥∥ → 0 (k → ∞). (3.33)

We claim that ‖Wkxk – xk‖ → 0 and ‖Txk – xk‖ → 0 as k → ∞. In fact, using
Lemma 2.1(i) we deduce from (3.29) and (3.30) that

∥
∥Wkxk – xk∥∥ ≤ ∥

∥Wkxk – Wkuk∥∥ +
∥
∥Wkuk – uk∥∥ +

∥
∥uk – xk∥∥

≤ 2
∥∥xk – uk∥∥ +

∥∥Wkuk – uk∥∥ → 0 (k → ∞). (3.34)

Combining (3.30) and (3.32), we have

∥∥xk – zk∥∥ ≤ ∥∥xk – uk∥∥ +
∥∥uk – zk∥∥ → 0 (k → ∞). (3.35)

Using (3.20) and (3.35), we infer from the asymptotical nonexpansivity of T that

∥
∥xk – Tkxk∥∥ ≤ ∥

∥xk – �k∥∥ +
∥
∥�k – Tkzk∥∥ +

∥
∥Tkzk – Tkxk∥∥

≤ ∥∥xk – �k∥∥ +
∥∥�k – Tkzk∥∥ + (1 + θk)

∥∥zk – xk∥∥ → 0 (k → ∞). (3.36)

This together with the assumption ‖Tkxk – Tk+1xk‖ → 0 implies that

∥∥xk – Txk∥∥ ≤ ∥∥xk – Tkxk∥∥ +
∥∥Tkxk – Tk+1xk∥∥ +

∥∥Tk+1xk – Txk∥∥

≤ (2 + θ1)
∥
∥xk – Tkxk∥∥ +

∥
∥Tkxk – Tk+1xk∥∥ → 0 (k → ∞). (3.37)

Next we claim that limk→∞ ‖xk – x∗‖ = 0. In fact, since the sequences {�k} and {xk} are
bounded, we know that there exists a subsequence {�ki} of {�k} converging weakly to x̂ ∈ C
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and satisfying the equality

lim inf
k→∞

[


(
x∗,�k) + 


(
�k , xk+1)] = lim

i→∞
[


(
x∗,�ki

)
+ 


(
�ki , xki+1)]. (3.38)

From (3.20) and (3.21) it follows that xki ⇀ x̂ and xki+1 ⇀ x̂. Then, by the result in Step 5,
we deduce that x̂ ∈ Sol(C,�).

It is clear from (3.37) that xki – Txki → 0. Note that Lemma 2.6 guarantees the demi-
closedness of I – T at zero. So, we know that x̂ ∈ Fix(T). Also, note that Lemma 2.6 guar-
antees the demiclosedness of I – G at zero. Hence, from xki ⇀ x̂ and xk – Gxk → 0 (due
to (3.33)) it follows that x̂ ∈ Fix(G) = GSVI(C, B1, B2). Let us show that x̂ ∈ ⋂∞

i=1 Fix(Ti) =
Fix(W ). As a matter of fact, on the contrary we assume that x̂ /∈ Fix(W ), i.e., W x̂ �= x̂. Then,
by Lemma 2.1(iii) and Lemma 2.7, we get

lim inf
i→∞

∥∥xki – x̂
∥∥ < lim inf

i→∞
∥∥xki – W x̂

∥∥

≤ lim inf
i→∞

(∥∥xki – Wxki
∥∥ +

∥∥xki – x̂
∥∥). (3.39)

Moreover, we have

∥∥Wxk – xk∥∥ ≤ ∥∥Wxk – Wkxk∥∥ +
∥∥Wkxk – xk∥∥ ≤ sup

x∈D
‖Wx – Wkx‖ +

∥∥Wkxk – xk∥∥,

where D = {xk : k ≥ 1}. Using Lemma 2.2 and (3.34), we obtain that limi→∞ ‖Wxk –
xk‖ = 0, which together with (3.39) yields lim infi→∞ ‖xki – x̂‖ < lim infi→∞ ‖xki – x̂‖. This
reaches a contradiction, and hence we have x̂ ∈ Fix(W ) =

⋂∞
i=1 Fix(Ti). Consequently,

x̂ ∈ ⋂∞
j=0 Fix(Tj) ∩ GSVI(C, B1, B2) ∩ Sol(C,�) = �. In terms of (3.38), we have

lim inf
k→∞

[


(
x∗,�k) + 


(
�k , xk+1)] = 


(
x∗, x̂

) ≥ 0. (3.40)

Since 
 is ν-strongly monotone, we have

lim sup
k→∞

[


(
x∗,�k) + 


(
�k , x∗)] ≤ lim sup

k→∞

(
–ν

∥
∥�k – x∗∥∥2) = –ν�. (3.41)

Combining (3.40) and (3.41), we obtain

lim sup
k→∞

[


(
�k , x∗) – 


(
�k , xk+1)]

= lim sup
k→∞

[


(
�k , x∗) + 


(
x∗,�k) – 


(
x∗,�k) – 


(
�k , xk+1)]

≤ lim sup
k→∞

[


(
�k , x∗) + 


(
x∗,�k)] + lim sup

k→∞

[
–


(
x∗,�k) – 


(
�k , xk+1)]

= lim sup
k→∞

[


(
�k , x∗) + 


(
x∗,�k)] – lim inf

k→∞
[


(
x∗,�k) + 


(
�k , xk+1)]

≤ –ν�. (3.42)
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We now claim that � = 0. On the contrary we assume � > 0. Without loss of generality
we may assume that ∃k0 ≥ 1 s.t.



(
�k , x∗) – 


(
�k , xk+1) ≤ –

ν�

2
∀k ≥ k0, (3.43)

which together with (3.18) implies that, for all k ≥ k0,

∥
∥xk+1 – x∗∥∥2

≤ ∥∥xk – x∗∥∥2 –
δk

1 – γk

[
(1 – 2αkc1)

∥∥yk – uk∥∥2

+ (1 – 2αkc2)
∥
∥zk – yk∥∥2] +

θkM̃
1 – γk

–
1

1 – γk

[
βk

∥
∥xk – �k∥∥2

+ δk
∥
∥Tkzk – �k∥∥2] –

∥
∥xk+1 – �k∥∥2 + 2sk

[


(
�k , x∗) – 


(
�k , xk+1)]

≤ ∥∥xk – x∗∥∥2 +
θkM̃

1 – γk
+ 2sk

[


(
�k , x∗) – 


(
�k , xk+1)]

≤ ∥∥xk – x∗∥∥2 +
θkM̃

1 – γk
– skν�. (3.44)

So it follows that, for all k ≥ k0,

�k – �k0 ≤ M̃
k–1∑

j=k0

θj

1 – γj
– ν�

k–1∑

j=k0

sj. (3.45)

Since
∑∞

j=1 sj = ∞,
∑∞

j=1 θj < ∞, 0 < lim infk→∞(1 – γk), and limk→∞ �k = �, taking the limit
in (3.45) as k → ∞, we get

–∞ < � – �k0 = lim
k→∞

(�k – �k0 )

≤ lim
k→∞

[

M̃
k–1∑

j=k0

θj

1 – γj
– ν�

k–1∑

j=k0

sj

]

= –∞.

This reaches a contradiction. Therefore, limk→∞ �k = 0 and hence {xk} converges strongly
to the unique solution x∗ of the problem EP(�,
).

Case 2. Suppose that ∃{�kj} ⊂ {�k} s.t. �kj < �kj+1 ∀j ∈N , where N is the set of all posi-
tive integers. Define the mapping τ : N →N by

τ (k) := max{j ≤ k : �j < �j+1}.

By Lemma 2.8, we get

�τ (k) ≤ �τ (k)+1 and �k ≤ �τ (k)+1. (3.46)

Utilizing the same inferences as in (3.21) and (3.31), we can obtain that

lim
k→∞

∥
∥xτ (k)+1 – �τ (k)∥∥ = lim

k→∞
∥
∥uτ (k) – yτ (k)∥∥ = lim

k→∞
∥
∥yτ (k) – zτ (k)∥∥ = 0, (3.47)
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lim
k→∞

∥∥xτ (k)+1 – xτ (k)∥∥ = 0. (3.48)

Since {�k} is bounded, there exists a subsequence of {�τ (k)} converging weakly to x̂. With-
out loss of generality, we may assume that �τ (k) ⇀ x̂. Then, utilizing the same infer-
ences as in Case 1, we can obtain that x̂ ∈ � =

⋂∞
i=0 Fix(Ti) ∩ GSVI(C, B1, B2) ∩ Sol(C,�).

From �τ (k) ⇀ x̂ and (3.47), we get xτ (k)+1 ⇀ x̂. Using the condition {αk} ⊂ (α,α) ⊂
(0, min{ 1

2c1
, 1

2c2
}), we have 1 – 2ατ (k)c1 > 0 and 1 – 2ατ (k)c2 > 0. So it follows from (3.18)

that

2sτ (k)
[


(
�τ (k), xτ (k)+1) – 


(
�τ (k), x∗)]

≤ �τ (k) – �τ (k)+1

–
δτ (k)

1 – γτ (k)

[
(1 – 2ατ (k)c1)

∥
∥yτ (k) – uτ (k)∥∥2 + (1 – 2ατ (k)c2)

∥
∥zτ (k) – yτ (k)∥∥2]

+
θτ (k)M̃

1 – γτ (k)
–

1
1 – γτ (k)

[
βτ (k)

∥
∥xτ (k) – �τ (k)∥∥2 + δτ (k)

∥
∥Tτ (k)zτ (k) – �τ (k)∥∥2]

–
∥
∥xτ (k)+1 – �τ (k)∥∥2

≤ θτ (k)M̃
1 – γτ (k)

,

which hence leads to



(
�τ (k), xτ (k)+1) – 


(
�τ (k), x∗) ≤ θτ (k)

sτ (k)
· M̃

2(1 – γτ (k))
. (3.49)

Since 
 is ν-strongly monotone on C, we get

ν
∥∥�τ (k) – x∗∥∥2 ≤ –


(
�τ (k), x∗) – 


(
x∗,�τ (k)). (3.50)

Combining (3.49) and (3.50), we deduce from Ass
 (
1) and x̂ ∈ � that

νlim sup
k→∞

∥
∥�τ (k) – x∗∥∥2 = lim sup

k→∞

[
–

θτ (k)

sτ (k)
· M̃

2(1 – γτ (k))
+ ν

∥
∥�τ (k) – x∗∥∥2

]

≤ lim sup
k→∞

[
–


(
�τ (k), xτ (k)+1) – 


(
x∗,�τ (k))]

= –
(x̂, x̂) – 

(
x∗, x̂

)

≤ 0. (3.51)

Hence, lim supk→∞ ‖xτ (k) – x∗‖2 ≤ 0. Thus, we get

lim
k→∞

∥∥xτ (k) – x∗∥∥2 = 0. (3.52)

From (3.48), we get

∥∥xτ (k)+1 – x∗∥∥2 –
∥∥xτ (k) – x∗∥∥2
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= 2
〈
xτ (k)+1 – xτ (k), xτ (k) – x∗〉 +

∥∥xτ (k)+1 – xτ (k)∥∥2

≤ 2
∥∥xτ (k)+1 – xτ (k)∥∥∥∥xτ (k) – x∗∥∥ +

∥∥xτ (k)+1 – xτ (k)∥∥2 → 0 (k → ∞). (3.53)

Owing to �k ≤ �τ (k)+1, we get

∥
∥xk – x∗∥∥2 ≤ ∥

∥xτ (k)+1 – x∗∥∥2

≤ ∥
∥xτ (k) – x∗∥∥2 + 2

∥
∥xτ (k)+1 – xτ (k)∥∥

∥
∥xτ (k) – x∗∥∥ +

∥
∥xτ (k)+1 – xτ (k)∥∥2. (3.54)

So it follows from (3.48) that xk → x∗ as k → ∞. This completes the proof. �

Next, we introduce another iterative algorithm by using the subgradient extragradient
implicit rule.

Algorithm 3.1 Initial step: Given x1 ∈ C arbitrarily. The sequences {εk}, {βk}, {γk}, {δk}
in (0, 1) and positive sequences {αk}, {sk} satisfy conditions (H1)–(H5).

Iterative steps: Calculate xk+1 as follows:
Step 1. Compute

uk = εkxk + (1 – εk)Wkxk ,

yk = argmin

{
αk�

(
uk , y

)
+

1
2
∥∥y – uk∥∥2 : y ∈ C

}
.

Step 2. Choose wk ∈ ∂2�(uk , yk), and compute

Ck =
{

v ∈H :
〈
uk – αkwk – yk , v – yk 〉 ≤ 0

}
,

zk = argmin

{
αk�

(
yk , z

)
+

1
2
∥∥z – uk∥∥2 : z ∈ Ck

}
.

Step 3. Compute

�k = βkuk + γkpk + δkTkzk ,

vk = PC
(
�k – μ2B2�

k),

pk = PC
(
vk – μ1B1vk).

Step 4. Compute

xk+1 = argmin

{
sk


(
�k , t

)
+

1
2
∥
∥t – �k∥∥2 : t ∈ C

}
.

Set k := k + 1 and return to Step 1.

Theorem 3.2 Assume that {xk} is the sequence constructed by Algorithm 3.1. Let the bi-
functions 
 ,� satisfy assumptions Ass�–Ass
 . Then, under conditions (H1)–(H5), the se-
quence {xk} converges strongly to the unique solution x∗ of the problem EP(�,
) provided
Tkxk – Tk+1xk → 0.
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Proof In terms of Lemma 2.4, we know that G is nonexpansive. Hence, by the Banach
contraction mapping principle, we deduce from {γk} ⊂ (0, 1) that for each k ≥ 1 there
exists a unique element �k ∈ C such that

�k = βkuk + γkG�k + δkTkzk . (3.55)

Choose an element q ∈ � =
⋂∞

i=0 Fix(Ti)∩GSVI(C, B1, B2)∩Sol(C,�) arbitrarily. Noticing
limk→∞ θk

sk
= 0, we might assume that θk ≤ 1

2λsk for all k ≥ 1. We divide the proof into
several steps as follows.

Steps 1–3. We show that the results in Steps 1–3 of the proof of Theorem 3.1 are still
valid. In fact, using the same arguments as in the proof of Theorem 3.1, we obtain the
desired results.

Step 4. We claim that the sequence {xk} is bounded. Indeed, using the similar arguments
to those in the proof of Theorem 3.1, we know that inequality (3.14) still holds. Since G
is a nonexpansive mapping and T is asymptotically nonexpansive, we deduce from (3.14)
that

∥∥�k – x∗∥∥2

= βk
〈
uk – x∗,�k – x∗〉 + γk

〈
G�k – x∗,�k – x∗〉 + δk

〈
Tkzk – x∗,�k – x∗〉

≤ βk
∥
∥uk – x∗∥∥∥∥�k – x∗∥∥ + γk

∥
∥�k – x∗∥∥2 + δk(1 + θk)

∥
∥zk – x∗∥∥∥∥�k – x∗∥∥

≤ βk(1 + θk)
∥
∥xk – x∗∥∥∥∥�k – x∗∥∥ + γk

∥
∥�k – x∗∥∥2 + δk(1 + θk)

∥
∥xk – x∗∥∥∥∥�k – x∗∥∥

≤ (1 – γk)(1 + θk)
∥
∥xk – x∗∥∥∥∥�k – x∗∥∥ + γk

∥
∥�k – x∗∥∥2,

which hence yields ‖�k – x∗‖ ≤ (1 + θk)‖xk – x∗‖. Consequently,

∥
∥xk+1 – x∗∥∥

≤ ∥∥xk+1 – �k
∗
∥∥ +

∥∥�k
∗ – x∗∥∥ ≤ (1 – λsk)

∥∥�k – x∗∥∥ +
∥∥�k

∗ – x∗∥∥

≤ (1 – λsk)(1 + θk)
∥∥xk – x∗∥∥ + skM̂

(
x∗) ≤ max

{∥∥xk – x∗∥∥,
2M̂(x∗)

λ

}
.

By induction, we get ‖xk – x∗‖ ≤ max{‖x1 – x∗‖, 2M̂(x∗)
λ

} ∀k ≥ 1. Thus, {xk} is bounded, and
so are the sequences {pk}, {�k}, {yk}, {zk}, {uk}, {vk}.

Step 5. We show that if xki ⇀ x̂, uki – xki → 0 and uki – yki → 0 for {ki} ⊂ {k}, then x̂ ∈
Sol(C,�). Indeed, using the same arguments as in the proof of Theorem 3.1, we obtain the
desired result.

Step 6. We show that xk → x∗, a unique solution of the MBEP with the GSVI and CFPP
constraints.

Indeed, set �k = ‖xk – x∗‖2. Since G is a nonexpansive mapping and T is asymptotically
nonexpansive, by Lemma 2.4 we obtain

∥
∥�k – x∗∥∥2

= βk
〈
uk – x∗,�k – x∗〉 + γk

〈
G�k – x∗,�k – x∗〉 + δk

〈
Tkzk – x∗,�k – x∗〉
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≤ βk

2
[∥∥uk – x∗∥∥2 +

∥∥�k – x∗∥∥2 –
∥∥uk – �k∥∥2] + γk

∥∥�k – x∗∥∥2

+
δk

2
[∥∥Tkzk – x∗∥∥2 +

∥
∥�k – x∗∥∥2 –

∥
∥Tkzk – �k∥∥2]

=
βk

2
∥∥uk – x∗∥∥2 +

1 + γk

2
∥∥�k – x∗∥∥2 +

δk

2
∥∥Tkzk – x∗∥∥2

–
βk

2
∥∥uk – �k∥∥2 –

δk

2
∥∥Tkzk – �k∥∥2

≤ βk

2
∥
∥uk – x∗∥∥2 +

1 + γk

2
∥
∥�k – x∗∥∥2 +

δk(1 + θk)2

2
∥
∥zk – x∗∥∥2

–
βk

2
∥∥uk – �k∥∥2 –

δk

2
∥∥Tkzk – �k∥∥2

≤ βk

2
∥∥uk – x∗∥∥2 +

1 + γk

2
∥∥�k – x∗∥∥2 +

δk

2
∥∥zk – x∗∥∥2

+
θkM̃

2
–

βk

2
∥∥uk – �k∥∥2 –

δk

2
∥∥Tkzk – �k∥∥2,

where supk≥1(2 + θk)‖xk – x∗‖2 ≤ M̃ for some M̃ > 0. This implies that

∥
∥�k – x∗∥∥2 ≤ 1

1 – γk

[
βk

∥
∥uk – x∗∥∥2 + δk

∥
∥zk – x∗∥∥2

+ θkM̃ – βk
∥
∥uk – �k∥∥2 – δk

∥
∥Tkzk – �k∥∥2]. (3.56)

By the results in Steps 1 and 2, we deduce from (3.14) and (3.56) that

∥
∥xk+1 – x∗∥∥2

≤ ∥
∥�k – x∗∥∥2 –

∥
∥xk+1 – �k∥∥2 + 2sk

[


(
�k , x∗) – 


(
�k , xk+1)]

≤ 1
1 – γk

[
βk

∥
∥uk – x∗∥∥2 + δk

∥
∥zk – x∗∥∥2 + θkM̃ – βk

∥
∥uk – �k∥∥2 – δk

∥
∥Tkzk – �k∥∥2]

–
∥
∥xk+1 – �k∥∥2 + 2sk

[


(
�k , x∗) – 


(
�k , xk+1)]

≤ 1
1 – γk

{
βk

∥∥uk – x∗∥∥2 + δk
[∥∥uk – x∗∥∥2 – (1 – 2αkc1)

∥∥yk – uk∥∥2

– (1 – 2αkc2)
∥∥zk – yk∥∥2]

+ θkM̃ – βk
∥∥uk – �k∥∥2 – δk

∥∥Tkzk – �k∥∥2} –
∥∥xk+1 – �k∥∥2

+ 2sk
[


(
�k , x∗) – 


(
�k , xk+1)]

≤ ∥
∥uk – x∗∥∥2 –

δk

1 – γk

[
(1 – 2αkc1)

∥
∥yk – uk∥∥2 + (1 – 2αkc2)

∥
∥zk – yk∥∥2] +

θkM̃
1 – γk

–
1

1 – γk

[
βk

∥∥uk – �k∥∥2 + δk
∥∥Tkzk – �k∥∥2] –

∥∥xk+1 – �k∥∥2

+ 2sk
[


(
�k , x∗) – 


(
�k , xk+1)]

≤ ∥∥xk – x∗∥∥2 –
δk

1 – γk

[
(1 – 2αkc1)

∥∥yk – uk∥∥2 + (1 – 2αkc2)
∥∥zk – yk∥∥2]

+
θkM̃

1 – γk
–

1
1 – γk

[
βk

∥∥uk – �k∥∥2 + δk
∥∥Tkzk – �k∥∥2]
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–
∥∥xk+1 – �k∥∥2 + skK , (3.57)

where supk≥1{2|
(�k , x∗) – 
(�k , xk+1)|} ≤ K for some K > 0.
Finally, we show the convergence of {�k} to zero by the following two cases.
Case 1. Suppose that there exists an integer k0 ≥ 1 such that {�k} is nonincreasing. Then

the limit limk→∞ �k = � < +∞ and limk→∞(�k – �k+1) = 0. From (3.57), we get

δk

1 – γk

[
(1 – 2αkc1)

∥∥yk – uk∥∥2 + (1 – 2αkc2)
∥∥zk – yk∥∥2]

+
1

1 – γk

[
βk

∥∥uk – �k∥∥2 + δk
∥∥Tkzk – �k∥∥2] +

∥∥xk+1 – �k∥∥2

≤ �k – �k+1 +
θkM̃

1 – γk
+ skK . (3.58)

Since sk → 0, θk → 0,�k – �k+1 → 0, 0 < lim infk→∞ βk , 0 < lim infk→∞ δk , and
0 < lim infk→∞ γk ≤ lim supk→∞ γk < 1, we obtain from {αk} ⊂ (α,α) ⊂ (0, min{ 1

2c1
, 1

2c2
})

that

lim
k→∞

∥
∥uk – �k∥∥ = lim

k→∞
∥
∥Tkzk – �k∥∥ = 0, (3.59)

lim
k→∞

∥∥yk – uk∥∥ = lim
k→∞

∥∥zk – yk∥∥ = lim
k→∞

∥∥xk+1 – �k∥∥ = 0. (3.60)

Next we show that limk→∞ ‖xk – x∗‖ = 0. In fact, utilizing the same arguments as those
of (3.24), we get

∥
∥pk – x∗∥∥2 ≤ ∥

∥xk – x∗∥∥2 +
θkM̃

1 – γk
– μ2(2β – μ2)

∥
∥B2�

k – B2x∗∥∥2

– μ1(2α – μ1)
∥
∥B1vk – B1y∗∥∥2,

which together with (3.57) leads to

∥∥xk+1 – x∗∥∥2

≤ ∥
∥�k – x∗∥∥2 + skK

≤ βk
∥
∥uk – x∗∥∥2 + γk

∥
∥pk – x∗∥∥2 + δk

∥
∥Tkzk – x∗∥∥2 + skK

≤ βk(1 + θk)2∥∥xk – x∗∥∥2 + γk
∥
∥pk – x∗∥∥2 + δk(1 + θk)2∥∥zk – x∗∥∥2 + skK

≤ (1 – γk)
[
1 + θk(2 + θk)

]∥∥xk – x∗∥∥2 + γk

[∥∥xk – x∗∥∥2 +
θkM̃

1 – γk

– μ2(2β – μ2)
∥
∥B2�

k – B2x∗∥∥2 – μ1(2α – μ1)
∥
∥B1vk – B1y∗∥∥2

]
+ skK

≤ ∥
∥xk – x∗∥∥2 +

θkM̃
1 – γk

– γk
[
μ2(2β – μ2)

∥
∥B2�

k – B2x∗∥∥2

+ μ1(2α – μ1)
∥
∥B1vk – B1y∗∥∥2] + skK ,
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which immediately yields

γk
[
μ2(2β – μ2)

∥∥B2�
k – B2x∗∥∥2 + μ1(2α – μ1)

∥∥B1vk – B1y∗∥∥2]

≤ �k – �k+1 +
θkM̃

1 – γk
+ skK .

Since μ1 ∈ (0, 2α),μ2 ∈ (0, 2β), sk → 0, θk → 0,�k – �k+1 → 0, and 0 < lim infn→∞ γk ≤
lim supn→∞ γk < 1, we get

lim
k→∞

∥∥B2�
k – B2x∗∥∥ = 0 and lim

k→∞
∥∥B1vk – B1y∗∥∥ = 0. (3.61)

On the other hand, utilizing the same arguments as those of (3.28), we get

∥
∥pk – x∗∥∥2 ≤ ∥

∥xk – x∗∥∥2 +
θkM̃

1 – γk
–
∥
∥�k – vk + y∗ – x∗∥∥2 –

∥
∥vk – pk + x∗ – y∗∥∥2

+ 2μ1
∥∥B1y∗ – B1vk∥∥∥∥pk – x∗∥∥ + 2μ2

∥∥B2x∗ – B2�
k∥∥∥∥vk – y∗∥∥,

which together with (3.57) implies that

∥∥xk+1 – x∗∥∥2

≤ ∥∥�k – x∗∥∥2 + skK

≤ βk(1 + θk)2∥∥uk – x∗∥∥2 + γk
∥
∥pk – x∗∥∥2 + δk(1 + θk)2∥∥zk – x∗∥∥2 + skK

≤ (1 – γk)
[
1 + θk(2 + θk)

]∥∥xk – x∗∥∥2 + γk

[∥
∥xk – x∗∥∥2 +

θkM̃
1 – γk

–
∥
∥�k – vk + y∗ – x∗∥∥2 –

∥
∥vk – pk + x∗ – y∗∥∥2 + 2μ1

∥
∥B1y∗ – B1vk∥∥

× ∥
∥pk – x∗∥∥ + 2μ2

∥
∥B2x∗ – B2�

k∥∥
∥
∥vk – y∗∥∥

]
+ skK

≤ ∥
∥xk – x∗∥∥2 +

θkM̃
1 – γk

– γk
[∥∥�k – vk + y∗ – x∗∥∥2 +

∥
∥vk – pk + x∗ – y∗∥∥2]

+ 2μ1
∥∥B1y∗ – B1vk∥∥∥∥pk – x∗∥∥ + 2μ2

∥∥B2x∗ – B2�
k∥∥∥∥vk – y∗∥∥ + skK .

This immediately leads to

γk
[∥∥�k – vk + y∗ – x∗∥∥2 +

∥∥vk – pk + x∗ – y∗∥∥2]

≤ �k – �k+1 +
θkM̃

1 – γk
+ 2μ1

∥
∥B1y∗ – B1vk∥∥

∥
∥pk – x∗∥∥

+ 2μ2
∥∥B2x∗ – B2�

k∥∥∥∥vk – y∗∥∥ + skK .

Since sk → 0, θk → 0,�k – �k+1 → 0, 0 < lim infk→∞ γk ≤ lim supk→∞ γk < 1, we deduce
from (3.61) that

lim
k→∞

∥∥�k – vk + y∗ – x∗∥∥ = 0 and lim
k→∞

∥∥vk – pk + x∗ – y∗∥∥ = 0.
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Thus,

∥
∥�k – G�k∥∥ =

∥
∥�k – pk∥∥

≤ ∥∥�k – vk + y∗ – x∗∥∥ +
∥∥vk – pk + x∗ – y∗∥∥ → 0 (k → ∞). (3.62)

Utilizing the similar arguments to those of (3.30), we get

lim
k→∞

∥∥xk – uk∥∥ = 0 and lim
k→∞

∥∥Wkxk – uk∥∥ = 0,

which immediately yield

∥∥xk – Wkxk∥∥ ≤ ∥∥xk – uk∥∥ +
∥∥uk – Wkxk∥∥ → 0 (k → ∞). (3.63)

In the meantime, it follows from (3.59) and (3.60) that

∥∥xk – �k∥∥ ≤ ∥∥xk – uk∥∥ +
∥∥uk – �k∥∥ → 0 (k → ∞), (3.64)

and hence

∥∥xk – xk+1∥∥ ≤ ∥∥xk – �k∥∥ +
∥∥�k – xk+1∥∥ → 0 (k → ∞). (3.65)

We claim that ‖Txk – xk‖ → 0 and ‖Gxk – xk‖ → 0 as k → ∞. In fact, since G is a
nonexpansive mapping, we deduce from (3.62) and (3.64) that

∥
∥Gxk – xk∥∥ ≤ ∥

∥Gxk – G�k∥∥ +
∥
∥G�k – �k∥∥ +

∥
∥�k – xk∥∥

≤ 2
∥
∥xk – �k∥∥ +

∥
∥G�k – �k∥∥ → 0 (k → ∞). (3.66)

From (3.59), (3.60), and (3.64), we conclude that

∥
∥zk – xk∥∥ ≤ ∥

∥zk – yk∥∥ +
∥
∥yk – uk∥∥ +

∥
∥uk – xk∥∥ → 0 (k → ∞), (3.67)

and hence

∥∥Tkxk – xk∥∥ ≤ ∥∥Tkxk – Tkzk∥∥ +
∥∥Tkzk – �k∥∥ +

∥∥�k – xk∥∥

≤ (1 + θk)
∥∥xk – zk∥∥ +

∥∥Tkzk – �k∥∥ +
∥∥�k – xk∥∥ → 0 (k → ∞). (3.68)

Utilizing the same arguments as those of (3.37), we have

lim
k→∞

∥∥xk – Txk∥∥ = 0. (3.69)

Further, utilizing the same arguments as in Case 1 of the proof of Theorem 3.1, we obtain
that limk→∞ �k = 0, and hence {xk} converges strongly to the unique solution x∗ of the
problem EP(�,
).
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Case 2. Suppose that ∃{�kj} ⊂ {�k} s.t. �kj < �kj+1 ∀j ∈N , where N is the set of all posi-
tive integers. Define the mapping τ : N →N by

τ (k) := max{j ≤ k : �j < �j+1}.

In the remainder of the proof, utilizing the same arguments as in Case 2 of the proof of
Theorem 3.1, we obtain the desired result. This completes the proof. �

Remark 3.1 Compared with the corresponding results in Ceng and Wen [3], Chang et al.
[16], Ceng et al. [22], and Anh and An [24], our results improve and extend them in the
following aspects.

(i) The problem of finding a solution of GSVI (1.2) with the CFPP constraint of a count-
able family of �-uniformly Lipschitzian pseudocontractions and an asymptotically non-
expansive mapping in [3] is extended to develop our problem of finding a solution of the
MBEP with the GSVI and CFPP constraints, i.e., a strongly monotone equilibrium prob-
lem over the common solution set of another monotone equilibrium problem, the GSVI
and the CFPP. The hybrid extragradient-like implicit method in [3] is extended to develop
our new subgradient extragradient implicit rule for solving the MBEP with the GSVI and
CFPP constraints.

(ii) The problem of finding a solution of the equilibrium problem with the VIP and CFPP
constraints in [16] is extended to develop our problem of finding a solution of the MBEP
with the GSVI and CFPP constraints, i.e., a strongly monotone equilibrium problem over
the common solution set of another monotone equilibrium problem, the GSVI and the
CFPP. The iterative algorithm based on the viscosity approximation method in [16] is ex-
tended to develop our new subgradient extragradient implicit rule for solving the MBEP
with the GSVI and CFPP constraints.

(iii) The problem of finding a solution of the VIP with the CFPP constraint of finitely
many nonexpansive mappings in [22] is extended to develop our problem of finding a so-
lution of the MBEP with the GSVI and CFPP constraints, i.e., a strongly monotone equilib-
rium problem over the common solution set of another monotone equilibrium problem,
the GSVI and the CFPP. The inertial subgradient extragradient method for solving the VIP
with the CFPP constraint in [22] is extended to develop our new subgradient extragradient
implicit rule for solving the MBEP with the GSVI and CFPP constraints.

(iv) The problem of finding a solution of the MBEP with the FPP constraint in [24] is
extended to develop our problem of finding a solution of the MBEP with the GSVI and
CFPP constraints, i.e., a strongly monotone equilibrium problem over the common solu-
tion set of another monotone equilibrium problem, the GSVI and the CFPP. The modified
subgradient extragradient method for solving the MBEP with the FPP constraint in [24] is
extended to develop our new subgradient extragradient implicit rule for solving the MBEP
with the GSVI and CFPP constraints.

4 Applications and numerical examples
In this section, we consider the applications of Theorems 3.1 and 3.2 to finding a com-
mon solution of the GSVI, VIP, and FPP. Let C be a nonempty closed convex subset of a
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real Hilbert space H. Let B1, B2 : H →H be α-inverse-strongly monotone and β-inverse-
strongly monotone, respectively. Let G : H → C be defined as G := PC(I – μ1B1)PC(I –
μ2B2), where 0 < μ1 < 2α and 0 < μ2 < 2β . Let T : H → C be an asymptotically nonexpan-
sive mapping with a sequence {θk}, and Tk = S : C → C be a nonexpansive mapping for all
k ≥ 1. An operator A : H →H is said to be

(i) monotone if 〈Ax – Ay, x – y〉 ≥ 0 ∀x, y ∈H;
(ii) L-Lipschitz continuous if ∃L > 0 s.t. ‖Ax – Ay‖ ≤ L‖x – y‖ ∀x, y ∈H.
The VIP for A is to find x∗ ∈ C s.t.

〈
Ax∗, x – x∗〉 ≥ 0 ∀x ∈ C. (4.1)

We denote by VI(C, A) the solution set of problem (4.1). Let � = Fix(S) ∩ Fix(T) ∩
GSVI(C, B1, B2) ∩ VI(C, A) �= ∅, and suppose that A satisfies the following conditions:

(B1) A is monotone;
(B2) A is weakly to strongly continuous, that is, Axk → Ax for each sequence {xk} ⊂ H

converging weakly to x;
(B3) A is L-Lipschitz continuous for some constant L > 0.
In addition, let the bifunction 
 and the positive sequences {αk}, {sk} and {εk}, {βk}, {γk},

{δk} be the same as in Algorithm 2.1. We define �(x, y) := 〈Ax, y–x〉 for each x, y ∈H. Then
EP (1.1) becomes VIP (4.1). It is easy to check that the bifunction �(x, y) = 〈Ax, y – x〉
satisfies conditions Ass�(�1)–Ass�(�2) where � is Lipschitz-type continuous with c1 =
c2 = L/2. It follows from the definitions of yk in Algorithm 2.1 and � that

yk = argmin

{
αk

〈
Auk , y – uk 〉 +

1
2
∥∥uk – y

∥∥2 : y ∈ C
}

= argmin

{
1
2
∥
∥y –

(
uk – αkAuk)∥∥2 : y ∈ C

}
–

α2
k

2
∥
∥Auk∥∥2

= PC
(
uk – αkAuk),

and similarly, zk in Algorithm 2.1 reduces to

zk = PCk

(
uk – αkAyk).

In terms of wk ∈ ∂2�(uk , yk) and the definition of the subdifferential of �, we have

〈
wk , z – yk 〉 ≤ 〈

Auk , z – uk 〉 –
〈
Auk , yk – uk 〉 =

〈
Auk , z – yk 〉 ∀z ∈H,

and hence

0 ≤ 〈
Auk – wk , z – yk 〉 ∀z ∈H.

Thus

〈
uk – αkAuk – yk , z – yk 〉 ≤ 〈

uk – αkAuk – yk , z – yk 〉 + αk
〈
Auk – wk , z – yk 〉

=
〈(

uk – αkwk) – yk , z – yk 〉.
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Therefore, the implicit subgradient extragradient Algorithm 2.1 reduces to the following
algorithm for solving the GSVI, VIP, and FPP.

Algorithm 4.1 Initial step: Given x1 ∈ C arbitrarily. The sequences {εk}, {βk}, {γk}, {δk}
in (0, 1) and positive sequences {αk}, {sk} satisfy conditions (H1)–(H5).

Iterative steps: Calculate xk+1 as follows:
Step 1. Compute

uk = εkxk + (1 – εk)Suk ,

yk = PC
(
uk – αkAuk).

Step 2. Choose wk = Auk , and compute

Ck =
{

v ∈H :
〈
uk – αkwk – yk , v – yk 〉 ≤ 0

}
,

zk = PCk

(
uk – αkAyk).

Step 3. Compute

�k = βkxk + γkpk + δkTkzk ,

vk = PC
(
�k – μ2B2�

k),

pk = PC
(
vk – μ1B1vk).

Step 4. Compute

xk+1 = argmin

{
sk


(
�k , t

)
+

1
2
∥∥t – �k∥∥2 : t ∈ C

}
.

Set k := k + 1 and return to Step 1.

Using Theorem 3.1 we obtain the following result.

Theorem 4.1 Assume that {xk} is the sequence constructed by Algorithm 4.1. Then {xk}
converges strongly to the unique solution x∗ of the problem EP(�,
) provided Tkxk –
Tk+1xk → 0, where � = Fix(S) ∩ Fix(T) ∩ GSVI(C, B1, B2) ∩ VI(C, A).

In the same way, the implicit subgradient extragradient Algorithm 3.1 reduces to the
following algorithm for solving the GSVI, VIP, and FPP.

Algorithm 4.2 Initial step: Given x1 ∈ C arbitrarily. The sequences {εk}, {βk}, {γk}, {δk}
in (0, 1) and positive sequences {αk}, {sk} satisfy conditions (H1)–(H5).

Iterative steps: Calculate xk+1 as follows:
Step 1. Compute

uk = εkxk + (1 – εk)Sxk ,

yk = PC
(
uk – αkAuk).
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Step 2. Choose wk = Auk , and compute

Ck =
{

v ∈H :
〈
uk – αkwk – yk , v – yk 〉 ≤ 0

}
,

zk = PCk

(
uk – αkAyk).

Step 3. Compute

�k = βkuk + γkpk + δkTkzk ,

vk = PC
(
�k – μ2B2�

k),

pk = PC
(
vk – μ1B1vk).

Step 4. Compute

xk+1 = argmin

{
sk


(
�k , t

)
+

1
2
∥∥t – �k∥∥2 : t ∈ C

}
.

Set k := k + 1 and return to Step 1.

Using Theorem 3.2 we derive the following result.

Theorem 4.2 Assume that {xk} is the sequence constructed by Algorithm 4.2. Then {xk}
converges strongly to the unique solution x∗ of the problem EP(�,
) provided Tkxk –
Tk+1xk → 0, where � = Fix(S) ∩ Fix(T) ∩ GSVI(C, B1, B2) ∩ VI(C, A).

In what follows, we include a numerical example of comparisons with other algorithms
(see e.g., [3, 16, 22, 24]) to strengthen the results of the article.

Theorems 4.1 and 4.2 are applied to solve the GSVI, VIP, and FPP in an illustrating ex-
ample. Let εk = λ = μ1 = μ2 = 2

9 ,αk = 1
3 ,α = 1

6 ,α = 3
7 , βk = 1

2(k+1) + 1
4 ,γk = 2k+1

2(k+1) – 1
2 , δk = 1

4 ,
and sk = 1

2(k+1) for all k ≥ 1. Let C = [–1, 1] and H = R with the inner product 〈a, b〉 = ab
and the induced norm ‖ · ‖ = | · |. For i = 1, 2, let S : C → C, T : H → C, A, Bi : H → H,

 : C × C → R, and 
̄1, ψ̂1 : C × C → H be defined as Sx = sin x, Tx = 2

3 sin x, Ax =
x – sin x, Bix = x – 1

2 sin x,
(x, y) = 〈x – 1
2 sin x, y – x〉, 
̄1(x, y) = x – y – 1

2 (sin x – sin y), and
ψ̂1(x, y) = x – y. Then S is nonexpansive with Fix(S) = {0} and T is asymptotically non-
expansive with θk = ( 2

3 )k ∀k ≥ 1, such that ‖Tk+1xk – Tkxk‖ → 0 as k → ∞. Indeed, we
observe that

∥
∥Tkx – Tky

∥
∥ ≤ 2

3
∥
∥Tk–1x – Tk–1y

∥
∥ ≤ · · · ≤

(
2
3

)k

‖x – y‖ ≤ (1 + θk)‖x – y‖,

and

∥∥Tk+1xk – Tkxk∥∥ ≤
(

2
3

)k–1∥∥T2xk – Txk∥∥

=
(

2
3

)k–1∥∥∥
∥

2
3

sin Txk –
2
3

sin xk
∥
∥∥
∥ ≤ 2

(
2
3

)k

→ 0 (k → ∞).
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It is clear that Fix(T) = {0},

lim
k→∞

θk

sk
= lim

k→∞
(2/3)k

1/2(k + 1)
= 0 and

∞∑

k=1

θk =
∞∑

k=1

(
2
3

)k

< ∞.

Moreover, A is monotone and L-Lipschitz continuous with L = 2 since ‖Ax – Ay‖ ≤ 2‖x –
y‖ and

〈Ax – Ay, x – y〉 = ‖x – y‖2 – 〈sin x – sin y, x – y〉 ≥ 0.

It is clear that c1 = c2 = L/2 = 1 and 0 ∈ VI(C, A). In the meantime, for i = 1, 2, Bi is 2
9 -

inverse-strongly monotone with α = β = 2
9 , since for all x, y ∈ H we deduce that ‖Bix –

Biy‖ ≤ 3
2‖x – y‖ and

〈Bix – Biy, x – y〉 = ‖x – y‖2 –
1
2
〈sin x – sin y, x – y〉 ≥ 1

2
‖x – y‖2.

It is clear that G(0) = PC(I – 2
9 B1)PC(I – 2

9 B2)0 = PC(I – 2
9 B1)0 = 0, and hence 0 ∈ Fix(G) =

GSVI(C, B1, B2). Therefore, � = Fix(S) ∩ Fix(T) ∩ GSVI(C, B1, B2) ∩ VI(C, A) = {0} �= ∅.
Also, it is not hard to find out that
(a) 
 is ν-strongly monotone with ν = 1

2 ;
(b) For L̄1 = 3

2 and L̂1 = 1, 
̄1 and ψ̂1 enjoy the following properties:

̄1(x, y) + 
̄1(y, x) = 0, ‖
̄1(x, y)‖ ≤ L̄1‖x – y‖, ψ̂1(x, x) = 0, ‖ψ̂1(x, y) – ψ̂1(u, v)‖ = L̂1‖(x –

y) – (u – v)‖ and


(x, y) + 
(y, z) =
〈
x –

1
2

sin x, y – x
〉

+
〈
y –

1
2

sin y, z – y
〉

=
〈
x –

1
2

sin x, z – x
〉

+
〈
x – y –

1
2

(sin x – sin y), y – z
〉

= 
(x, z) +
〈

̄1(x, y), ψ̂1(y, z)

〉

≥ 
(x, z) –
∥∥
̄1(x, y)

∥∥∥∥ψ̂1(y, z)
∥∥

= 
(x, z) – L̄1L̂1‖x – y‖‖y – z‖
= 
(x, z) – ϒ‖x – y‖‖y – z‖

≥ 
(x, z) –
1
2
ϒ‖x – y‖2 –

1
2
ϒ‖y – z‖2,

where ϒ = L̄1L̂1 = 3
2 ;

(c) For any sequence {yk} ⊂ C such that yk → d, we have

lim sup
k→∞

|
(d, yk)|
‖yk – d‖ = lim sup

k→∞

|〈d – 1
2 sin d, yk – d〉|
‖yk – d‖

≤
∥
∥∥
∥d –

1
2

sin d
∥
∥∥
∥ ≤ 3

2
< +∞.

In addition, it is clear that the sequences {εk}, {βk}, {γk}, {δk} in (0, 1) and positive se-
quences {αk}, {sk} satisfy (H1)–(H4). Next we verify that (H5) is also valid. Indeed, note
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that 2skν – s2
kϒ

2 = 1
2(k+1) (1 – 9

8 · 1
k+1 ) < 1, 0 < λ = 2

9 < 1
2 = min{ 1

2 , 3
2 } = min{ν,ϒ} and

0 < sk =
1

2(k + 1)
≤ 1

4
<

1620
6417

=
1 – 4

9
9
4 – 4

81
= min

{
9
2

,
1 – 4

9
9
4 – 4

81
,

1
9
4

}

= min

{
1
λ

,
2ν – 2λ

ϒ2 – λ2 ,
2ν

ϒ2

}
.

This ensures that (H5) is satisfied. In this case, Algorithm 4.1 can be rewritten as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk = 2
9 xk + 7

9 Suk ,

yk = PC(uk – 1
3 Auk),

zk = PCk (uk – 1
3 Ayk),

�k = ( 1
2(k+1) + 1

4 )xk + ( 2k+1
2(k+1) – 1

2 )pk + 1
4 Tkzk ,

vk = PC(�k – 2
9 B2�

k),

pk = PC(vk – 2
9 B1vk),

xk+1 = argmin{ 1
2(k+1)
(�k , t) + 1

2‖t – �k‖2 : t ∈ C},

where, for each k ≥ 1, Ck is chosen as in Algorithm 4.1. Then, by Theorem 4.1, we know
that {xk} converges to 0 ∈ � = Fix(S) ∩ Fix(T) ∩ GSVI(C, B1, B2) ∩ VI(C, A).

On the other hand, Algorithm 4.2 can be rewritten as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk = 2
9 xk + 7

9 Sxk ,

yk = PC(uk – 1
3 Auk),

zk = PCk (uk – 1
3 Ayk),

�k = ( 1
2(k+1) + 1

4 )uk + ( 2k+1
2(k+1) – 1

2 )pk + 1
4 Tkzk ,

vk = PC(�k – 2
9 B2�

k),

pk = PC(vk – 2
9 B1vk),

xk+1 = argmin{ 1
2(k+1)
(�k , t) + 1

2‖t – �k‖2 : t ∈ C},

where, for each k ≥ 1, Ck is chosen as in Algorithm 4.2. Then, by Theorem 4.2, we know
that {xk} converges to 0 ∈ � = Fix(S) ∩ Fix(T) ∩ GSVI(C, B1, B2) ∩ VI(C, A).

5 Conclusions
In a real Hilbert space, let GSVI and CFPP represent a general system of variational in-
equalities and a common fixed point problem of a countable family of nonexpansive map-
pings and an asymptotically nonexpansive mapping, respectively. In this article, we have
suggested two new iterative algorithms based on the subgradient extragradient implicit
rule for solving the monotone bilevel equilibrium problem (MBEP) with the GSVI and
CFPP constraints, i.e., a strongly monotone equilibrium problem over the common solu-
tion set of another monotone equilibrium problem, the GSVI and the CFPP. The strong
convergence results for the proposed algorithms to solve such a MBEP with the GSVI
and CFPP constraints are established under some mild assumptions. Furthermore, in the
proposed method, the second minimization problem over a closed convex set is replaced
with the subgradient projection onto some constructible half-space, and a new approach
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for solving GSVI and CFPP via Mann (implicit) iterations is presented. As a consequence,
we have obtained the iterative algorithms for solving GSVI, VIP, and FPP.
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