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Abstract
We propose a method for constructing a generalized fuzzy Hausdorff distance on the
set of the nonempty compact subsets of a given generalized fuzzy metric space in
the sence of George–Veeramni and Tian–Ha–Tian. Next, we define the generalized
fuzzy fractal spaces. Morever, we obtain a fixed point theorem of a class of
generalized fuzzy contractions and present an application in integranl equation.
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1 Introduction
George and Veeramani [1, 2] have rectified in absorbing manner the structure of Menger
space and introduced a first countable Hausdorff topology on it, which is very popular in
contemporary research.

We present and discuss an appropriate concept for the generalized fuzzy Hausdorff dis-
tance of a given generalized fuzzy GV-metric space on the set of its nonempty compact
subsets. As an application, we use the concept of contraction on a generalized fuzzy GV-
metric space to define a new concept of the generalized fuzzy fractal spaces and prove an
interesting fixed point theorem in these spaces. In this paper, we present some results to
extend and get uncertain models of recent results discused in [3–5] and [6].

2 Basic notions and preliminaries
In this paper, we denote I = [0, 1], I◦ = (0, 1), J = [0,∞), and J

◦ = (0,∞).

Definition 2.1 ([7–9]) A mapping ∗ : I2 → I is called a continuous t-norm (CTN) if
(i) ∗ is associative and commutative;
(ii) ∗ is continuous;
(iii) j ∗ 1 = j for all j ∈ I;
(iv) j ∗ ı ≤ j ′ ∗ ı ′ whenever j ≤ j ′ and ı ≤ ı ′, ı, j , ı ′, j ′ ∈ I.
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Some examples of CTNs are ı∗Pj = ı · j and ı∗Mj = min{ı, j}. Note that ı ∗ j ≤ ı∗Mj for
ı, j ∈ I.

Assume that for every ß ∈ I
◦, there exists l ∈ I

◦ (which does not depend on �) such that
the following inequality holds:

�
︷ ︸︸ ︷

(1 – l) ∗ · · · ∗ (1 – l) > 1 – ß for each � ∈ {2, 3, . . .}. (2.1)

In this case, we say the CTN ∗ has the (D) property (CTND); for example, ∗M is CTND.
Now we consider a generalized fuzzy metric space in the George–Veeramani sense of
(GFGVM-space); for details and results on fuzzy metric spaces introduced by George and
Veeramani, we refer to [2, 10–13], and [14].

Definition 2.2 ([15]) The triple (S, G,∗) is a GFGVM-space if S 	= ∅, ∗ is a CTN, and G is
a fuzzy set on S × S × S × J

◦ such that for all w, x, y, z ∈ S and σ , δ in J
◦, we have:

(GGVFM-1) Gx,y,z(σ ) ∈ J
◦;

(GGVFM-2) Gx,y,z(σ ) = 1 iff x = y = z;
(GGVFM-3) Gx,y,y(σ ) ≥ Gx,y,z(σ ) for x 	= y;
(GGVFM-4) Gx,y,z(σ ) = Gx,z,y(σ ) = Gy,x,z(σ ) = · · · ;
(GGVFM-5) Gx,y,z(·) : J◦ → I

◦ is continuous;
(GGVFM-6) Gx,y,w(σ + δ) ≥ Gx,z,z(σ ) ∗ Gz,y,w(δ).

Tian et al. [15] proved that in a GFGVM-space (S, G,∗), we have that Gx,y,y(·) is increasing
for all x, y ∈ S. For ε ∈ I

◦, α ∈ J
◦, and x0 ∈ S, the set BG(x0, ε,α) = {y ∈ S : Gx0,y,y(α) > 1 –

ε, Gx0,x0,y(α) > 1 – ε} is called the neighborhood with center x0 and radius ε. Consider

τ =
{

X ⊂ S : ∀x ∈ X,∃α ∈ J
◦, ε ∈ I

◦ such that BG(x, ε,α) ⊂ X
}

.

Then τ is the topology induced by GFGVM G on S. Moreover, the local base {BG(u, 1
n , 1

n ) :
n = 1, 2, . . .} at u leads to the first countability of τ . Also, they proved that every GFGVM-
space is Hausdorff.

Now we consider Cauchy sequences and completeness in GFGVM-spaces (S, G,∗) (see
[15]).

(1) A sequence {an} in S converges to a point a ∈ S if for any α ∈ J
◦ and ε ∈ I

◦, there is
an integer Nα,ε ∈ J

◦ such that an ∈ BG(a, ε,α) whenever n > Nα,ε .
(2) A sequence {an} in S is called a GFGV-Cauchy sequence (GFGVCS) if for any α ∈ J

◦

and ε ∈ I
◦, there is an integer Nα,ε > 0 such that Gan ,am ,ap (α) > 1 –ε whenever m, n, p > Nα,ε .

(3) A GFGVM-space is said to be GFGV-complete if every GFGVCS is convergent in it.
Let {an} be a sequence in S. Then the following statements are equivalent:
(i) The sequence {an} in S converges to a point a ∈ S;
(ii) As n → ∞, Gan ,an ,a(α) → 1 for each α ∈ J

◦;
(iii) As n → ∞, Gan ,a,a(α) → 1 for each α ∈ J

◦.
Also, the following statements are equivalent:
(i) A sequence {an} in S is a GFGVCS;
(ii) For any α ∈ J

◦ and ε ∈ I
◦, there is an integer N ′

α,ε > 0 such that Gan ,am ,am (α) > 1 – ε

whenever n, m > N ′
α,ε .
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Proposition 2.3 ([15]) Consider the GFGVM-space (S, G,∗). Then the function G is con-
tinuous on S × S × S × J

◦.

Let (S, g) be a G-metric space (for more detail, we refer to [16–19] and [20]). Let Gg be
the function defined on S × S × S × J

◦ by

Gg
x,y,z(α) =

α

α + g(x, y, z)

for all x, y, z ∈ S and α ∈ J
◦. Then both (S, Gg ,∗P) and (S, Gg ,∗M) are GFGVM-spaces (stan-

dard GFGVM-spaces). Consider the GFGVM-space (S, G,∗). We denote by T0(S), F0(S),
and R0(S) the sets of nonempty subsets, of nonempty finite subsets, and of nonempty
compact subsets of (S, τG), respectively.

Let X and Y be two (nonempty) subsets of a GFGVM-space (S, G,∗). For s ∈ S and α > 0,
we define Gs,X,Y (α) := sup{Gs,x,y(α) : x ∈ X, y ∈ Y }.

Lemma 2.4 Let (S, G,∗) be a GFGVM-space. Then, for all s ∈ S, X, Y ∈R0(S), and α ∈ J
◦,

there are x0 ∈ X and y0 ∈ Y such that

Gs,X,Y (α) = Gs,x0,y0 (α).

Proof Let s ∈ S, X, Y ∈ R0(S), and α > 0. By Proposition 2.3 the functions x �→ Gs,x,y(α)
and y �→ Gs,x,y(α) are continuous. By the compactness of X and Y , there exist x0 ∈ X and
y0 ∈ Y such that

sup
x∈X,y∈Y

Gs,x,y(α) = Gs,x0,y0 (α),

and thus

Gs,X,Y (α) = Gs,x0,y0 (α). �

Lemma 2.5 Let (S, G,∗) be a GFGVM-space. Then, for all s ∈ S and X, Y ∈ R0(S), the
function α �→ Gs,X,Y (α) is continuous on J

◦.

Proof From the equality

Gs,X,Y (α) = sup
x∈X,y∈Y

Gs,x,y(α)

and the continuity of the function α �→ Gs,x,y(α) for all x ∈ X and y ∈ Y on J
◦, we get the

lower semicontinuity of α �→ Gs,X,Y (α) on J
◦.

It suffices to show that α �→ Gs,X,Y (α) is upper semicontinuous on J
◦. Consider α ∈ J

◦

and a sequence {αn}n in J
◦ converging to α. Lemma 2.4 implies that or every n ∈ N, we

can find xn ∈ X and yn ∈ Y such that Gs,X,Y (α) = Gs,xn ,yn (αn). Since X, Y ∈ R0(S), we can
find subsequences {xnk }k of {xn}n and {ynk }k of {yn}n and two points x0 ∈ X and y0 ∈ Y
such that xnk → x0 and ynk → y0 in (S, G,∗). Hence limk Gs,xnk ,ynk

(αnk ) = Gs,x0,y0 (α). Using
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Proposition 2.3, we get

lim
k

Gs,X,Y (αnk ) = Gs,x0,y0 (α)

≤ Gs,X,Y (α).

Consequently, α �→ Gs,X,Y (α) is upper semicontinuous on J
◦. �

Lemma 2.6 Consider the GFGVM-space (S, G,∗). Then for all X ∈ R0(S), Y , Z ∈ T0(S),
and α ∈ J

◦, we can find x0 ∈ X such that

inf
x∈X

Gx,Y ,Z(α) = Gx0,Y ,Z(α).

Proof Put δ = infx∈X Gx,Y ,Z(α). Then we can find a sequence {xn}n in X such that δ + 1
n >

Gxn ,Y ,Z(α) for all n ∈ N. Since X ∈ R0(S), we can find a subsequence {xnk }k of {xn}n and
x0 ∈ X such that xnk → x0 in (S, G,∗).

Let y ∈ Y and z ∈ Z. By Proposition 2.3, limk Gxnk ,y,z(α) = Gx0,y,z(α). Since δ + 1
nk

>
Gxnk ,y,z(α) for each k ∈N, we get δ ≥ Gx0,y,z(α). Hence δ = Gx0,Y ,Z(α). �

Now Lemmas 2.5 and 2.6 imply that the following result.

Corollary 2.7 Consider the GFGVM-space (S, G,∗). Let X, Y , Z ∈ R0(S) and α ∈ J
◦. Then

we can find x0 ∈ X, y0 ∈ Y , and z0 ∈ Z such that

inf
x∈X

Gx,Y ,Z(α) = Gx0,y0,z0 (α).

Proposition 2.8 Consider the GFGVM-space (S, G,∗). Then for all X, Y , Z ∈ R0(S), the
function α �→ infx∈X Gx,Y ,Z is continuous on J

◦.

Proof The continuity of α �→ Gx,Y ,Z(α) on J
◦ follows from Lemma 2.5, which implies the

upper semicontinuity of α �→ infx∈X Gx,Y ,Z(α) on J
◦.

It suffices to show that α �→ infx∈X Gx,Y ,Z(α) is lower semicontinuous on J
◦. Consider α ∈

J
◦ and a sequence {αn}n in J

◦ converging to α. Lemma 2.6 implies that we can find xn ∈ X
such that Gxn ,Y ,Z(αn) = infx∈X Gx,Y ,Z(αn). Since X ∈R0(S), we can find a subsequence {xnk }k

of {xn}n and x0 ∈ X such that xnk → x0 in (S, G,∗). Then Lemma 2.4 implies that we can
find y0 ∈ Y and z0 ∈ Z such that Gx0,y0,z0 (α) = Gx0,Y ,Z(α), and then limk Gxnk ,y0,z0 (αnk ) =
Gx0,y0,z0 (α) by Proposition 2.3. Then for ε ∈ I

◦, we can find k0 ∈ N such that Gx0,y0,z0 (α) <
ε + Gxnk ,y0,z0 (α) for every k ≥ k0. So

inf
x∈X

Gx,Y ,Z(α) ≤ Gx0,y0,z0 (α)

< ε + Gxnk ,Y ,Z(αnk )

= ε + inf
x∈X

Gx,Y ,Z(αnk )

for every k ≥ k0. Hence α �→ infx∈X Gx,Y ,Z(α) is lower semicontinuous on J
◦. �

Remark 2.9 Proposition 2.8 implies the continuity of α �→ infy∈Y GX,y,Z(α) and α �→
infz∈Z GX,Y ,z(α) on J

◦ for X, Y , Z ∈R0(S).
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3 GFGV-Hausdorff distance on R0(S)
Consider the GFGVM-space (S, G,∗). We define the function HG on R0(S) × R0(S) ×
R0(S) × J

◦ by

HG(X, Y , Z,α) = min
{

inf
x∈X

Gx,Y ,Z(α), inf
y∈Y

GX,y,Z(α), inf
z∈Z

GX,Y ,z(α)
}

for X, Y , Z ∈R0(S) and α ∈ J
◦.

Lemma 3.1 Consider the GFGVM-space (S, G,∗). Let x ∈ S, Y , Z ∈R0(S), W ∈ T0(S), and
α,β ∈ J

◦. Then

Gx,Y ,W (α + β) ≥ Gx,Z,Z(α) ∗ Gzx ,Y ,W (β),

where zx ∈ Z satisfies Gx,Z,Z(α) = Gx,zx ,zx (α).

Proof By Lemma 2.4, for zx ∈ Z, we have Gx,Z,Z(α) = Gx,zx ,zx (α). Now, for all y ∈ Y and
w ∈ W , we have

Gx,Y ,W (α + β) ≥ Gx,y,w(α + β)

≥ Gx,zx ,zx (α) ∗ Gzx ,y,w(β).

Then by the continuity of CTN ∗ we get

Gx,Y ,W (α + β) ≥ Gx,Z,Z(α) ∗ Gzx ,Y ,W (β). �

Theorem 3.2 Consider the GFGVM-space (S, G,∗). Then (R0(S), HG,∗) is a GFGVM-
space.

Proof Let X, Y , Z, W ∈ R0(S) and α,β ∈ J
◦. By Lemma 2.6 there exist x0 ∈ X, y0 ∈ Y , and

z0 ∈ Z such that

inf
x∈X

Gx,Y ,Z = Gx0,Y ,Z ,

inf
y∈Y

GX,y,Z = GX,y0,Z ,

and

inf
z∈Z

GX,Y ,z = GX,Y ,z0 .

Then HG(X, Y , Z,α) > 0. Furthermore, it is obvious that X = Y = Z if and only if
HG(X, Y , Z,α) = 1, and so we get HG(X, Y , Z,α) = HG(X, Z, Y ,α) = HG(Y , X, Z,α) = · · · .

Now by Lemma 3.1 and the continuity of CTN ∗ we have

inf
x∈X

Gx,Y ,W (α + β) ≥ inf
x∈X

Gx,Z,Z(α) ∗ inf
x∈X

Gzx ,Y ,W (β).
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Since {zx : x ∈ X} ⊆ Z, we have infx∈X Gzx ,Y ,W (β) ≥ infz∈Z Gz,Y ,W (β). Then

inf
x∈X

Gx,Y ,W (α + β) ≥ inf
x∈X

Gx,Z,Z(α) ∗ inf
z∈Z

Gz,Y ,W (β).

In the same way, we obtain

inf
y∈Y

Gx,y,W (α + β) ≥ inf
y∈Y

Gy,Z,Z(α) ∗ inf
z∈Z

Gz,X,W (β)

and

inf
w∈W

Gx,Y ,w(α + β) ≥ inf
w∈W

Gw,Z,Z(α) ∗ inf
z∈Z

Gz,X,W (β).

Then it easily follows that

HG(X, Y , W ,α + β) ≥ HG(X, Z, Z,α) ∗ HG(Z, Y , W ,β).

By Proposition 2.8 and Remark 2.9 we conclude that α �→ HG(X, Y , Z,α), is continuous on
J

◦. Then (R0(S), HG,∗) is a GFGVM-space. �

We call the GFGVM (HG,∗) the GFGV-Hausdorff distance on R0(S).

Proposition 3.3 The GFGV-Hausdorff distance (HGg ,∗P) of the standard GFGVM (Gg ,∗P)
coincides with the standard GFGVM (Ghg ,∗P) of the Hausdorff distance

hg(X, Y , Z) := max
{

sup
x∈X

g(x, Y , Z), sup
y∈Y

g(X, y, Z), sup
z∈Z

g(X, Y , z)
}

on R0(S).

Proof Let X, Y , Z ∈R0(S) and α ∈ J
◦, and let

Gg
x,Y ,Z(α) =

α

α + g(x, Y , Z)

for x ∈ X. Now we have

inf
x∈X

Gg
x,Y ,Z(α) = inf

x∈X

(

α

α + g(x, Y , Z)

)

=
α

α + supx∈X g(x, Y , Z)
.

Similarly, we obtain

inf
y∈Y

Gg
X,y,Z(α) = inf

y∈Y

(

α

α + g(X, y, Z)

)

=
α

α + supy∈Y g(X, y, Z)
,

inf
z∈Z

Gg
X,Y ,z(α) = inf

z∈Z

(

α

α + g(X, Y , z)

)

=
α

α + supz∈Z g(X, Y , z)
.

Therefore HGg (X, Y , Z,α) = Ghg
X,Y ,Z(α). �

Now we present some examples to support our idea.
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Example 3.4 Consider the discrete G-metric g on S (see [18]) with |S| ≥ 3. Let X, Y , and
Z be nonempty finite subsets of S such that X 	= Y (Y 	= Z or X 	= Z). Then hg(X, Y , Z) = 1,
and so, by Proposition 3.3, we get HGg (X, Y , Z,α) = α

α+1 for all α ∈ J
◦.

Example 3.5 Let g be the Euclidean G-metric on R (see [18]), and let X = [x1, x2], Y =
[y1, y2], and Z = [z1, z2] be compact intervals. Then

hg(X, Y , Z) = max
{|x1 – y1|, |x2 – y2|, |x1 – z1|, |x2 – z2|, |y1 – z1|, |y2 – z2|

}

.

Now by Proposition 3.3 we get

HGg (X, Y , Z,α) =
α

α + hg(X, Y , Z)

for all α ∈ J
◦.

4 GFGVCS
Now we assume that all ∗ are CTND.

Lemma 4.1 Consider the GFGVM-space (S, G,∗). For each μ ∈ I
◦, define the function

Eμ,G(x, y, z) = inf
{

α > 0, Gx,y,z(α) > 1 – μ
}

for x, y, z ∈ S. Then:
(i) For any λ ∈ I

◦, we can find μ ∈ I
◦ such that

Eλ,G(s0, sm, sm) ≤
m–1
∑

i=0

Eμ,G(si, si+1, si+1),

Eλ,G(s0, s0, sm) ≤
m–1
∑

i=0

Eμ,G(si, si, si+1) for all s0, s1, . . . , sm ∈ S.

(ii) Let {sn}n be a convergent sequence in (S, G,∗). Then we have Eλ,G(s, sn, sn) → 0 and
Eλ,G(sn, s, s) → 0 and vice versa.

Also, if {sn} is a GFGVCS in (S, G,∗), then it is a GFGVCS with Eλ,G and vice versa.

Proof (i) For every λ ∈ I
◦, we can find μ ∈ I

◦ such that

m
︷ ︸︸ ︷

(1 – μ)∗, . . . ,∗(1 – μ) > 1 – λ.

For any given m ∈ Z+, we put

Eμ,G(si, si+1, si+1) = αi, i = 0, 1, 2, . . . , m – 1.

It is obvious that for every ε > 0,

Eμ,G(si, si+1, si+1) < αi +
ε

m
.
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For i = 0, 1, . . . , m – 1, we have Gsi ,si+1,si+1 (αi + ε
m ) > 1 – μ, and so

Gs0,sm ,sm (α0 + α1 + · · · + αm–1 + ε)

≥

m
︷ ︸︸ ︷

Gs0,s1,s1

(

α0 +
ε

m

)

∗ ... ∗ Gsm–1,sm ,sm

(

αm–1 +
ε

m

)

≥
m

︷ ︸︸ ︷

(1 – μ)∗, . . . ,∗(1 – μ)

> 1 – λ.

Then

Eλ,G(s0, sm, sm) ≤ α0 + α1 + · · · + αm–1 + ε,

and so

Eλ,G(s0, sm, sm) ≤
m–1
∑

i=0

Eμ,G(si, si, si) + ε. (4.1)

Taking the limit in (4.1) as ε ↓ 0, we get

Eλ,G(s0, sm, sm) ≤
m–1
∑

i=0

Eμ,G(si, si, si) (4.2)

for all s0, s1, . . . , sm ∈ S.
Similarly, we get

Eλ,G(s0, s0, sm) ≤
m–1
∑

i=0

Eμ,G(si, si, si+1)

for all s0, s1, . . . , sm ∈ S.
(ii) We have

Gs,sn ,sn (η) > 1 – λ ⇐⇒ Eλ,G(s, sn, sn) < η

for every η > 0.
Similarly,

Gsn ,s,s(η) > 1 – λ ⇐⇒ Eλ,G(sn, s, s) < η

for every η ∈ J
◦. �

Lemma 4.2 Consider the GFGVM-space (S, G,∗). If

Gx,y,z(α) = C (4.3)

for all x, y, z ∈ S and α ∈ J
◦, then C = 1.
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Proof Taking x = y = z in (4.3), we get C = 1. �

Consider the class of mappings φ : J◦ → J
◦ that are onto, strictly increasing, and φ(α) < α

for all α ∈ J
◦.

Lemma 4.3 Consider the GFGVM-space (S, G,∗). Then

inf
{

φn(α) > 0 : Gx,y,z(α) > 1 – λ
} ≤ φn(inf

{

α > 0 : Gx,y,z(α) > 1 – λ
})

for all x, y, z ∈ S, λ ∈ I
◦, and n ∈N.

Proof Fix α ∈ J
◦ with Gx,y,z(α) > 1 – λ. Then φn(α) ∈ J

◦. Also,

φn(α) > inf
{

φn(β) > 0 : Gx,y,z(β) > 1 – λ
}

,

and so we have

α ≥ (

φn)–1(
inf

{

φn(β) > 0 : Gx,y,z(β) > 1 – λ
})

.

Then

inf
{

α > 0 : Gx,y,z(α) > 1 – λ
} ≥ (

φn)–1(
inf

{

φn(β) > 0 : Gx,y,z(β) > 1 – λ
})

,

and we conclude that

inf
{

φn(α) > 0 : Gx,y,z(α) > 1 – λ
} ≤ φn(inf

{

α > 0 : Gx,y,z(α) > 1 – λ
})

. �

Lemma 4.4 Consider the GFGVM-space (S, G,∗). Suppose that {sn} ⊆ S satisfies

Gsn ,sn+1,sn+1

(

φn(α)
) ≥ Gs0,s1,s1 (α) for all α ∈ J

◦.

Then {sn} is a GFGVCS.

Proof Using Lemma 4.3, we get

Eμ,G(sn, sn+1, sn+1)

= inf
{

φn(α) > 0 : Gsn ,sn+1,sn+1

(

φn(α)
)

> 1 – μ
}

≤ inf
{

φn(α) > 0 : Gs0,s1,s1 (α) > 1 – μ
}

≤ φn(inf
{

α > 0 : Gs0,s1,s1 (α) > 1 – μ
})

= φn(Eμ,G(s0, s1, s1)
)

for every μ ∈ I
◦.

For every λ ∈ I
◦, there exists θ ∈ I

◦ such that

Eλ,G(sn, sm, sm) (4.4)

≤ Eθ ,G(sm–1, sm, sm) + Eθ ,G(sm–2, sm–1, sm–1) + · · ·
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+ Eθ ,G(sn, sn+1, sn+1)

≤
m–1
∑

i=n

φi(Eθ ,G(s0, s1, s1)
)

→ 0

as m, n → ∞. By Lemma 4.1, {sn} is a GFGVCS. �

5 GFGV-fractal spaces
Hutchinson [21] considered the concept of fractal theory by studying the iterated function
system (IFS). This subject was generalized by Barnsley [22], Bisht [6], Imdad [23], and Ri
[5].

Definition 5.1 Consider the GFGVM-space (S, G,∗). A mapping � : S → S is said to be a
GFGV-φ-contractive mapping if

G�(x),�(y),�(z)
(

φ(α)
) ≥ Gx,y,z(α)

for all x, y, z ∈ S and α ∈ J
◦.

Definition 5.2 A GFGV iterated function system (GFGVIFS) is a finite set of GFGV-φ-
contractions {�1,�2, . . . ,�m} (m ≥ 2) defined on a complete GFGVM-space (S, G,∗).

Consider the given GFGVIFS, if there is a unique nonempty compact set � of the com-
plete GFGVM-space (S, G,∗) such that � =

⋃m
i=1 �i(�) in which � is a fractal set called the

attractor of the respective GFGVIFS. The related attractor GFGVIFS is called a GFGV-
fractal space.

Lemma 5.3 Consider the GFGVM-space (S, G,∗). Assume that � : S → S is a mapping
such that

G�(x),�(y),�(z)
(

φ(α)
) ≥ Gx,y,z(α) (5.1)

for all x, y, z ∈ S and α ∈ J
◦. Then the sequence {�n(x)}+∞

n=1 is GFGVCS.

Proof We use induction. In (5.1), taking y = z = �(x), we get

G�(x),�2(x),�2(x)
(

φ(α)
) ≥ Gx,�(x),�(x)(α).

Let G�n(x),�n+1(x),�n+1(x)(φn(α)) ≥ Gx,�(x),�(x)(α). Then

G�n+1(x),�n+2(x),�n+2(x)
(

φn+1(α)
)

= G�(�n(x)),�(�n+1(x)),�(�n+1(x))
(

φ
(

φn(α)
))

≥ G�n(x),�n+1(x),�n+1(x)
(

φn(α)
)

≥ Gx,�(x),�(x)(α).
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Put {sn}+∞
n=1 = {�n(x)}+∞

n=1. Then {sn} is a sequence that satisfies the conditions of Lemma 4.4.
Therefore

Gsn ,sn+1,sn+1

(

φn(α)
) ≥ Gs0,s1,s1 (α),

and hence {sn}+∞
n=1 = {�n(x)}+∞

n=1 is a GFGVCS. �

Lemma 5.4 Consider the GFGVM-space (S, G,∗) and GFGVF-φ-contractive map � such
that

G�(x),�(y),�(z)
(

φ(α)
) ≥ Gx,y,z(α) (5.2)

for all x, y, z ∈ S and α ∈ J
◦. Then � has a unique fixed point δ in S.

Proof Lemma 5.3 and (5.2) imply that the sequence {�n(x)}+∞
n=1 is GFGVCS for each x ∈ S

and limn→+∞ �n(x) = δ ∈ S.
Letting x0 = x and xn = �n(x) for each n ≥ 1, since limn→+∞ �n(x) = δ, we have

limn→+∞ Gxn ,δ,δ(α) = 1 for each α ∈ J
◦.

On the other hand, we have

G�(δ),xn+1,xn+1

(

φ(α)
) ≥ Gδ,xn ,xn (α)

for each n ∈ N and each α > 0. Then

G�(δ),δ,δ
(

φ(α)
)

= lim
n→+∞ G�(δ),xn+1,xn+1

(

φ(α)
) ≥ lim

n→+∞ Gδ,xn ,xn (α) = 1

for each α > 0. Therefore δ = �(δ), that is, δ is a fixed point of �.
Now we prove that δ is the unique fixed point of �. If σ is another fixed point of �, then

for any α ∈ J
◦,

Gδ,δ,σ (α) = G�(δ),�(δ),�(σ )(α) ≤ G�(δ),�(δ),�(σ )
(

φ(α)
)

.

On the other hand, since Gx,y,y(α) is nondecreasing and φ(α) < α, we have

G�(δ),�(δ),�(σ )
(

φ(α)
) ≤ G�(δ),�(δ),�(σ )(α) = Gδ,δ,σ (α).

Hence Gδ,δ,σ (α) = C for all α ∈ J
◦. From Lemma 4.2 we get C = 1. Therefore δ = σ , that is,

δ is a unique fixed point of �. �

Now we present an example illustrating our results; for more applications, we refer to
[11, 17, 24–29].

Example 5.5 Let S = C(I) be the set of all continuous functions defined on I. Define G on
S × S × S × J

0 by

Gu,v,w(α) = inf
δ∈I

(

α

α + |u(δ) – v(δ)| + |v(δ) – w(δ)| + |w(δ) – u(δ)|
)
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for u, v, w ∈ S and α ∈ J
0. Then

Gu,v,w(α) =
α

α + supδ∈I |u(δ) – v(δ)| + supδ∈I |v(δ) – w(δ)| + supδ∈I |w(δ) – u(δ)| .

We denote

g(u, v, w) = sup
δ∈I

∣

∣u(δ) – v(δ)
∣

∣ + sup
δ∈I

∣

∣v(δ) – w(δ)
∣

∣ + sup
δ∈I

∣

∣w(δ) – u(δ)
∣

∣.

It is obvious that (S, g) is a complete G-metric space [16, 27]. Then (S, G,∗M) is a GFGVM-
space.

Let φ(α) : J → J be defined as φ(α) = α
α+1 .

Consider the following integral equation:

�
(

u(δ)
)

=
∫ 1

0
p(δ,σ )f

(

σ , u(σ )
)

dσ , σ ∈ I. (5.3)

Suppose that the following conditions are satisfied:
(i) p : I× I→ R

+ is continuous.
(ii) f : I×R →R

+ is continuous.
(iii) There exists a constant λ > 0 such that

∣

∣f (δ, u) – f (δ, v)
∣

∣ ≤ λ|u – v|

for all δ ∈ I and u, v ∈R.
(iv) λ‖p‖∞ ≤ 1

α+1 , where

‖p‖∞ = sup
{

p(δ,σ ) : δ,σ ∈ I
}

.

Then, under conditions (i)–(iv), integral (5.3) has a unique solution in C(I).

Proof First, consider � : S → S. It is clear that � is well defined (i.e., for u ∈ S, we have
�(u) ∈ S). Then we have

G�(u(δ)),�(v(δ)),�(w(δ))
(

φ(α)
)

= inf
δ∈I

(

φ(α)
φ(α) + |�(u(δ)) – �(v(δ))| + |�(v(δ)) – �(w(δ))| + |�(w(δ)) – �(u(δ))|

)

=
(

φ(α)
)
/(

φ(α) + sup
δ∈I

∣

∣�
(

u(δ)
)

– �
(

v(δ)
)∣

∣

+ sup
δ∈I

∣

∣�
(

v(δ)
)

– �
(

w(δ)
)∣

∣ + sup
δ∈I

|�(

w(δ)
)

– �(u(δ)
)

|)

=
(

φ(α)
)
/

(

φ(α) +
(

sup
δ∈I

∣

∣

∣

∣

∫ 1

0
p(δ,σ )f

(

σ , u(σ )
)

dσ –
∫ 1

0
p(δ,σ )f

(

σ , v(σ )
)

dσ

∣

∣

∣

∣

+ sup
δ∈I

∣

∣

∣

∣

∫ 1

0
p(δ,σ )f

(

σ , v(σ )
)

dσ –
∫ 1

0
p(δ,σ )f

(

σ , w(σ )
)

dσ

∣

∣

∣

∣

+ sup
δ∈I

∣

∣

∣

∣

∫ 1

0
p(δ,σ )f

(

σ , w(σ )
)

dσ –
∫ 1

0
p(δ,σ )f

(

σ , u(σ )
)

dσ

∣

∣

∣

∣

))
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=
(

φ(α)
)
/

(

φ(α) +
(

sup
δ∈I

∣

∣

∣

∣

∫ 1

0
p(δ,σ )

(

f
(

σ , u(σ )
)

– f
(

σ , v(σ )
))

dσ

∣

∣

∣

∣

+ sup
δ∈I

∣

∣

∣

∣

∫ 1

0
p(δ,σ )

(

f
(

σ , v(σ )
)

– f
(

σ , w(σ )
))

dσ

∣

∣

∣

∣

+ sup
δ∈I

∣

∣

∣

∣

∫ 1

0
p(δ,σ )

(

f
(

σ , w(σ )
)

– f
(

σ , u(σ )
))

dσ

∣

∣

∣

∣

))

≥ (

φ(α)
)
/

(

φ(α) +
(

λ sup
δ∈I

∫ 1

0
p(δ,σ )

∣

∣u(σ ) – v(σ )
∣

∣dσ

+ λ sup
δ∈I

∫ 1

0
p(δ,σ )

∣

∣v(σ ) – w(σ )
∣

∣dσ

+ λ sup
δ∈I

∫ 1

0
p(δ,σ )

∣

∣w(σ ) – u(σ )
∣

∣dσ

))

. (5.4)

Using the Cauchy–Schwarz inequality, we have

∫ 1

0
p(δ,σ )

∣

∣u(σ ) – v(σ )
∣

∣dσ ≤
(∫ 1

0
p2(δ,σ ) dσ

) 1
2

(
∫ 1

0

(∣

∣u(σ ) – v(σ )
∣

∣
2 dσ

) 1
2

≤ ‖p‖∞ sup
δ∈I

∣

∣u(δ) – v(δ)
∣

∣. (5.5)

In the same way, we have

∫ 1

0
p(δ,σ )

∣

∣v(σ ) – w(σ )
∣

∣dσ ≤ ‖p‖∞ sup
δ∈I

∣

∣v(δ) – w(δ)
∣

∣ (5.6)

and

∫ 1

0
p(δ,σ )

∣

∣w(σ ) – u(σ )
∣

∣dσ ≤ ‖p‖∞ sup
δ∈I

∣

∣w(δ) – u(δ)
∣

∣. (5.7)

Replacing (5.5), (5.6), and (5.7) in (5.4), we obtain that

G�(u),�(v),�(w)
(

φ(α)
)

≥ (

φ(α)
)
/

(

φ(α) +
(

λ sup
δ∈I

∫ 1

0
p(δ,σ )

∣

∣u(σ ) – v(σ )
∣

∣dσ

+ λ sup
δ∈I

∫ 1

0
p(δ,σ )

∣

∣v(σ ) – w(σ )
∣

∣dσ

+ λ sup
δ∈I

∫ 1

0
p(δ,σ )

∣

∣w(σ ) – u(σ )
∣

∣dσ

))

≥ φ(α)
φ(α) + λ‖p‖∞(supδ∈I |u(δ) – v(δ)| + supδ∈I |v(δ) – w(δ)| + supδ∈I |w(δ) – u(δ)|)

=
φ(α)

φ(α) + λ‖p‖∞g(u, v, w)

≥
α

α+1
α

α+1 + 1
α+1 g(u, v, w)
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=
α

α + g(u, v, w)

= Gu,v,w(α).

By Lemma 5.4 � has a unique fixed point, that is, �(u) = u, and so u is the unique solution
of equation (5.3). �
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