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1 Introduction

Quantum calculus, which is also named g-calculus, is occasionally mentioned as calcu-
lation method without limits. Herewith, one achieves g-analogues of mathematical tools
that may be got back as ¢ — 1. There are two techniques in g-addition, one of them is
the Nalli-Ward—Al-Salam g-addition (NWA) and the other is Jackson—Hahn-Cigler g-
addition (JHC). The first one is commutative and associative, at the same time as the sec-
ond one is neither. Because of this, there are multiple g-analogs from time to time. These
operators constitute the base of the method that combine hypergeometric collection with
q-hypergeometric collection and gives many formulations of g-calculus a natural shape.
The history of quantum calculus may be traced back to Euler (1707—1783), he first added
the expression ¢ in the tracks of Newton’s infinite series. Recently, a great number of re-
searchers have shown an eager hobby in studying and investigating quantum calculus and
accordingly it emerged as an interdisciplinary subject. The quantum theory has become
a cornerstone in theoretical mathematics and applied sciences, due to the fact that quan-
tum analysis is very helpful in several fields and has huge applications in various areas of
natural and applied sciences such as computer science and particle physics. Specifically,
the theory has been seen as a critical tool for researchers operating with analytic number
theory or in theoretical physics. This calculus method is a bridge that provides the con-
nection between mathematics and physics. Owing to a large numbers of applications in
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quantum group theory, the quantum calculus also has a significant role for physicists. For
some recent trends in quantum calculus the reader is referred to [1-6].

In recent decades the idea of convex functions has been drastically studied because of its
fantastic significance in numerous fields of pure and applied sciences. Theory of inequal-
ities and concept of convex functions are closely related to each other, thus they resemble
inequalities that could be obtained inside the literature which are derived for convex and
differentiable convex mappings; see [7-13].

We now consider how the convex functions of two-variables on the coordinates, which
may be also called a coordinated convex function, is defined. Dragomir [14] presented the

definition of coordinated convexity as follows.

Definition 1 For all (5¢,¢),(n,&) € Q and u,v € [0,1], a mapping ¥ : Q@ = [o, 8] x [y,5] C
R2? — R is said to be coordinated convex on €, if it satisfies the inequality

\Il(u%+(1—u)r;,v§’ +(1—v)5;’) (1.1)

<uvW(, ) +u(l-MV0Gn &)+ vl —uw)V(n,¢) + (1 —u)(1 —v)¥(n,&).

The function W is said to be coordinated concave on 2, if the inequality (1.1) holds in
reversed direction for all &, v € [0,1] and (5, ¢), (n, &) € Q.

In [14], Hermite—Hadamard type inequalities for convex function of two-variable on the

coordinates are established by Dragomir as follows.

Theorem 1 If VW : Q — R is coordinated convex, then one has the inequalities

B b
\p(a+,3’y+8)§l|: 1 / \p<%,y+8>d%+ 1 / \I’<a+ﬁ,n>dn:|
2 2 208-a /, 2 s-vyJ, 2

1 b
S — ,n)dnd .
<Gmasl, | veendrs (2
B B
Si[ﬁ%/a W (e, y) doe + —— /Q‘-I’(%,S)d%

+

1 I
/ W(a,n)dn + / v(8, ﬂ)dﬂ:|
s-vJ, d-vy Jy

- W(a,y) +W(a,8) + W(B,y) +¥(B,9)
< 2 )

The above inequalities are sharp. The inequalities in (1.2) hold in reverse direction if the

mapping V is a concave mapping on the coordinates.

For the some papers on Hermite—Hadamard type inequalities for coordinated convex

functions, please refer to [15-20].

2 Some important definitions and theorems with regard to quantum calculus
In this section, we review some valuable definitions, notations and inequalities associated

to quantum calculus.
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Definition 2 ([6]) Suppose that W : [«, 8] — R is a continuous function. Then the g-
derivative of W at x € [«, 8] is characterized by the expression

(30) = W(gs + (1 - q))
1-q)(x-a)

4
aldgWV () = , x#a. (2.1)
Because W : [, 8] — R is a continuous function, one has the equation ,d,¥(a) =
lim,., ¢ «@4¥(5¢). The mapping W is g-differentiable on [a, 8], if ,d,W(f) exists for all
€ [a, B]. If & = 0 in (2.1), then the equation od, ¥ (sc) = d, W (5) is valid. Here, d,W () is
the familiar g-derivative of W at ¢ € [«, 8] defined by the expression (see [5])

W) - Wigx)

dyV () =g

. % #0. (2.2)

Definition 3 ([6]) Assume that V¥ : [, 8] — R is a continuous function. Then, for x €
[, B], the g, -definite integral on [w, B] is defined as

/ U(t)adgt=(1-q)x-) Y q"¥(q"x+ (1-q")ax). (2.3)
o n=0

We should note that the notation of the quantum numbers (see [5]) which will be used

many times in our main results is defined by

4" -1
[/’L]q— g-1

=l+q+---+q"1

Moreover, we need to give the following lemma in order to prove our main results readily.
Lemma 1 ([21]) Omne has the identity

’ _(p-ay!
/a (e — ) odys = TSI
for w e R\{-1}.

In [7], Alp et al. established the following g,-Hermite—Hadamard inequalities by using

convex functions and quantum integral.

Theorem 2 If WV : [«, B] — R be a convex differentiable function on [«, ] and 0 < g < 1.
Then we have the q-Hermite—Hadamard inequalities

qo+ B 1 (* qV (o) + V(B)
\I’( [2]q ) < ﬁj/g \y(%)udq?ff T (2.4')

On the other side, a new definition of quantum integrals and connected Hermite—
Hadamard type inequalities are introduced by Bermudo et al.

Definition 4 ([8]) Suppose that ¥ : [«, 8] — R is a continuous function. Then, for s €
[a, B], the g”-definite integral on [«, 8] is defined by

ﬁ o0
/ () Pdgt=(1-q)(B-3) Y q"V(q"s<+ (1-q")B).

sl n=0
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Theorem 3 ([8]) If ¥ : [, B8] — R is a convex differentiable mapping on o, B] and
0< g < 1. Then, one has the q-Hermite—Hadamard inequalities

a+gf\ _ 1 [ p () +q¥(B)
lll( 2, )5 ,B—Ol/a W () dqu—[z]q . (2.5)

Now, we mention some definitions and inequalities related to our main results involving
double quantum integrals.

quy -integral and partial g-derivatives for two variables functions are defined by Latif in
[22].

Definition 5 Let ¥ : Q@ C R? — R be a continuous function. Then, for (5¢,1) € Q, the
definite g, -integral on  is defined by

P
f f W(E,E) it adyy ¢ = (1- 1)1 - g)(oe— ) (1~ )
a Jy

o0 o0
XYY didy V(g + (- g, qon + (1 - q)y).

n=0 m=0

Definition 6 ([22]) Assume that ¥ : Q € R?> — R is a continuous function of two vari-
ables. Then the partial ¢, -derivatives, g,-derivatives and q; q,-derivatives at (3¢, 7) € Q can

be given as follows:

B3y W (5,m) ) W(gyse+ (1 —q1)a,n) —W(s,n)

) % )
EW (-G —a) 7P
886]1\11(%’77) _ q’(%:qzrl‘r(l—%)y)—‘l’(%»ﬂ) 777!]/
P (1-g)(n-7v) ’ ’
‘Wa!?qu \Ij(%’ 77) 1

oo A g V@ - aagn+ (- a)y)

—W(qie+ (L-qu)a,n) = W (s6,qon + (1= q2)y) + ¥ (35, 1)),

wFoa,nFy.

For more details related to g-derivatives and integrals for the mappings of two variables,
one can refer to [22].
In addition to all these definitions, definitions of g}, g& and ¢”° integrals and related

inequalities of Hermite—Hadamard type are presented by Budak et al. in [23].

Definition 7 ([23]) Let ¥ : Q C R? — R be a continuous function. Then, for (51, 1) € &,
the ¢, ¢, and ¢” integrals on € are defined by

2 P
/ / WG, ) i adyy ¢ = (1= )1 = 2) (2= @)(6 — ) 2.6)
a Iy

[ olNe o]

XYY gy (g + (- q)es gon + (1 - 42)5),

n=0 m=0
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/j /y"xp(g,s)ydng By ¢ = (1—q)(1—-g)(B (1 —7) 2.7)
x 2261?45”‘11(611% A-q)B.qon + 1 -q)y),
and
fj/ﬁ W(¢,8)°dy,EPdy ¢ = (1 —qi)(1-q2)(B -3 1) (2.8)
x 226/{615”‘11(611%+ 1 -8, g1 + (1~ 2)5),
respectively.

Theorem 4 ([23]) Let ¥ : Q C R? — R be coordinated on 2. Then we have the inequalities

Qo+ B Yy +qaé
W([mm’ 2l,, )

1 1 B ( y+q25) 1 /6 (q1a+ﬂ >5 :|
<= W\ 3e, ——— | ody, 2 + v ) d
2 [ﬁ o / Rl, )" 5=y ), U, ) e

1 Pl
S(ﬁ—a)(ts—y)/a /y 0o doyrady

<7 5‘-IJ(ot )od, +71 /é‘l’(ﬁ )’d,
—2[2]q1(8—y) T ], G- y) 1) Gl

_— d _— ) od,
2[2]q2(ﬁ a)/ ”+2[2]q2/3 a)/ n%

6]1‘11(01 V) +q1q2¥ (0, 8) + W(B,y) + 2 (B, 6)
(214, [2]4,

(2.9)

forall 1,42 € (0,1).

Budak et al. gave two similar inequalities in addition to the above result. Also, Latif in-
troduced a quantum version of Holder’s inequality for double integrals in [22].

Theorem 5 (q;q,-Holder’s inequality for two variables functions, [22]) Letx,y > 0,0 < g,
q2 <1, p1 > 1 such thatpi1 + % =1. Then

<2 n
/ f WGy )Y (o) gy 2 gy
0 0

([ [ 196 dyed Y dy e
(] NI )’

Inspired by these ongoing studies, we establish some new quantum analogues of mid-
point type inequalities for g-differentiable coordinated convex functions. Integral inequal-
ities form a crucial branch of analysis and were combined with various types of quantum
integrals but we had never seen these before with the integrals that we use here. For this
reason, we studied the midpoint type inequalities in quantum calculus.
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3 g-Derivatives for the functions of two variables
In this section, we recall partial g-derivatives for mappings of two variables offered by Ali
et al. in [24].

Definition 8 Suppose that ¥ : @ € R? — R is a continuous function of two variables.

Then the partial ¢; -derivative, g,-derivative and ¢ g, -derivatives at (3¢, 1) € Q are defined

by
Po, W(em) _ Wlqie+ (- q1)B,n) - V(1) oy
Bog, 2 (1-q)(B-2) ’ ’
Ban\IJ(%,n) _ W (s, qon + (1 —q2)8) — V(1) 54n
39g,m (1-g2)(6-n) ’ ’
o070, Yo 1

B0 ma)G Mg gL @ - + (- q2)3)

—W(qoe+ (1= gqr)a,n) — W (56, qan + (1 - 2)8) + ¥ (55, 1)],

wZa,n#6,

B a2
Vaqlxqz\p(%’ 77) 1

By 7,0, (B—2)n—y)A—q1)(1-q2)
V(g + (1=q1)B,n) = V(55 qan + (1= q2)y) + ¥(5,1)],

x7ZBn7y,

P332, 1y W) 1
41,92 _ B ’ B s
ot~ BB M- gL+ @+ (= a0b g+ (1= )9)

—W(qe+ (L=q1)B,n) =¥ (56 g2y + (1= 2)8) + ¥(5,1)],

%7!/3’77 #61

[W(q15¢ + (1= q1)B,q2n + (1 - q2)7)

respectively.

4 Essential lemmas
In this section, we address three new identities, which are necessary to obtain our crucial
results.

Let us start with the following lemma.

Lemma 2 Let F: A C R? — R be a twice partially q,q--differentiable function on A°.
bdy2 g
If partial q,q-derivative —- 12"

“4 . is continuous and integrable on [a,b] X [c,d] C A°.
g1 ¢% g,

Then the following identity holds for q1q,-integrals:

1 1 b,daZ Elta + 1—tb,sc+ 1—9d
Db -a)d - o) / / Al g e+ A= sc+ (- 9d)
0 Jo 04, £%0,8

1 d
(G ) - s () e
[2]q1 [2]q2 d —CJe [2](]1

bd, t%dy,s (4.1)
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1 b c+qod b 1 b pd , ,
B F\ % == | g2+ F(x,9)"dg,x%d
b—a/a (’C [21@) qlx+(b—a)(d—c)_/;/c (6,9) "dgy g,y

= b’dlql,qz (61, br C7 d)(F))

where
ts, if (t5) € [0, ﬁ] x [0, ﬁ],
S(t— q—l)’ lf‘(t,S) (S (m; 1] X [0’ [2] ]’
] ]

1 1 : 1
(t_ q_l)(s_ q_2)7 l,f(tﬂg) € ([2]‘11 ’ 1] x ([Z]qg ’ 1 )
and0<qy,qz < 1.

Proof From Definition 8, we have

bda,?l g F@a+ (1 -6)b,sc+(1-s)d)
b8y, t90,,s
- 1 I
C(1-q)(1-g)(b-a)d-c)ts

- F(tqla + (1 —tq1)b,sc+ (1 - s)d) - F(m +(1-t)b,sqrc+ (1 - sqg)d)

tqra + (1 —tq1)b,sqrc + (1 - sqz)d)

+F(ta+ (1 -t)b,sc+(1-s)d)].

Also, it is easily observed that

bda2 F(ta+(1-1t)b,sc+ (1 -s)d)
7192(b — a)( / / (t,5) —2 dgrsdgt
b0, %0y, “
11 pdad
[z]ql [z]qz 0z, Fta+ (1= 8)b,sc + (1 -s)d)
= b—a)d- d
aao-axa-o [ [ e .

bd 2
o 07 F(ta+ (1-1t)b,sc+ (1-s)d)
/ / t<s - —) e dg,sdg,t
o 76 0q1 L%0g,8

bdy2  F(tg + (1 —t)b,sc+ (1 —s)d
/ / (t——) o E( b( d) (1-5) )quqult
q1 041 1%0y,8

[2lq

1\ 2402  F(ta+(1-10)b,sc+(1-s)d
TR S
ol q> 0g1L%0g,8

bdy2  F(tg+ (1 -8)b,sc+ (1 —s)d)
- 1ga(b—-a)d—o) /0 / 0 dyysdyt

b9, t%0,,s
1 bdg2  F(tg+ (1-1t)b,sc+ (1 -s)d
- a)d - c)ff naflet-0bscr Q=98
P04, 90gys
1 bdy2  P(rg 4+ (1-1)b,sc+ (1 - s)d)
71,92
—qb-a)d- // s dyysdyt

1 bdy2  F(tg+(1-t)b,sc+(1-s)d
+q2(b—a)( c)f / 192 -9 1-9 )d sd

by ¢d
gy t“9g,8
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Tlor d32 F(ta+ (1-1t)b,sc+ (1 —s)d)
‘12 91,92 ’
+q1(b - a)( c)f / Py, t99,,5 dg,sdgt
+(ba) / /11"18;” m+(1—t)b,sc+(1—s)d)d ds
ba ltd3q2S q2 q1
1bdy2  Ptg 4 (1-8)b,sc+ (1 -s)d)
—(b-a)d- )/mql / e by ¢d dgpsdy,t
0g,£%0g,5
bd F(ta+ (1 -t)b,sc+ (1 —s)d)
—(b-a)d-0) f / o dyysdy t
b0y, £ 40,5
o (ks Y F(ta+ (1 -t)b,sc+ (1 —s)d)
+(b-a)d-o) / / " o 7 dyysdg,t
0 0 aqlt 8q2s

211 —12 —13 +I4 +I5 +16 —17 _18 +19.
Now by the definition of definite g;¢,-integrals and properties of g, g»-integrals, we obtain
1 pl
h=asb-ad-o [ [ [Fnar -t spes 1-se)d)
o Jo

- F(tqla + (1 —tq1)b,sc+ (1 - S)d) - F(m + (1 =-8)b,sqrc+ (1 - qu)d)

+ F(ta +(1-t)b,sc+(1- s)d)] dg,tdg,s

o x> qn+1qm+1
= 19> |:Z Z 2 (qili+1a + (1 qn+1)b qm+1 (1 qm+1)d)
n=0 m=0 N92
o X qn+1qm
_ZZ L2 F(qia+ (1-q7")bgyc+ (1-q5')d)
n=0 m=0 7
o X qnqm+1
_ Z Z L2 F(qia+ (1-q7)b.gy" c+ (1-q5+)d)
n=0 m=0 q2

S e (- ghaies (1- qz)ao]
=41Q2[Liiﬂq2fﬂ(%“+(l 4)b,ay'c+(1-q3')d)

1 § m m m §
- F a, c+(1- d) - — nF a+(1- b Cc
D> q; ( q; ( ‘12) ) q1 ql ( ql) )

m=0

+ ﬁF(M) _— ZZqTqE”F dia+(1-g)b.qy'c+ (1-q5)d)

1nOmO
1 00
+— Y ayFlaqyc+ (1-q5)d)
T m=0
1
——ZZq 4y Fqia+ (1-g)b,qyc+ (1-q5')d)
n=0 m=0

1 oo
+ . Zq’fl-"(qi‘u +(1-4})b,c)
n=0
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+ZZ%%F dia+(1-qi)b.gyc+ (1- qz)d)]

n=0 m=0

=(1-q)(1-0) ) Y dig5F(qia+ (1-qi)bgy'c+ (1-g5)d)

n=0 m=0

~(1-q2) Y _aqyF(aqyc+(1-q3)d)

m=0

—(1-q2) ) _qiF(qia+ (1-4f)b,c) - Fla,c)
n=0

1 b pd J Y 1 d ,
) (b—a)(d—c)/ / Feoy) dey dﬂx_ﬁ/ F@ay) dpy

1 b
_b—aL. F(x,c)bdq1x+F(a,c).

By using the similar operations, one can obtain

d
I, = =F(b,c) + F(a,c) +

1 d
F(b!y) ddqzy - E/ F(ﬂry) ddqzyy

c

b 1 b
I3 =—F(a,d) + F(a,c) + F(x,d)bdqlx——f F(x,c)bdqlx,
-al, b-al,
I —F(‘”‘”h c) Flbyo) + — /dF(b )d 1 /dp<“+q1b )dd
4 [Z]ql ) ) d—C . 7)’ qu d—C . [2],]1 ,y q2y1

c+qod 1 /b 1 /b c+qod
Is=F|a, —F(a,d F(x,d)d, x — —— F|\x,——— ) d,,x,
5 (d 2, > (a )+b—a ’ (x,d)dg,x b—al X 2, X

I¢ = F(b,d) — F(a,d)— F(b,c) + F(a,c),

I = F(b,d) _F(” +‘hb,d) _F(b,0) +F<“+q1b,c>,

2l 2l
) c+qod Cc+qad
Iy = F(b,d) ~ F(a,d) ~ F (b’ W) . <“’ W)

a+qb c+q2d> <a+q1b c+q2d>
Iy =F(b,d)-F ,d ) -F|b, F , .
o= Fbd) (mql )-#( 2, )\ 2, T,

Using the calculated integrals (I;)—(ly) in (4.2), then we obtain the desired identity (4.1)
which ends the proof. d

Remark 1 Under the given conditions of Lemma 2 with ¢;,42 — 17, then we have the

following identity:

1 pl 2
b-a)d-c) /0 /0 Wz, s)%(m +(1-t)b,sc+(1- S)d) dsdt (4.3)

a+b c+d 1 b pd
:F< 272 )Wb—a)(d—c)/a | Fenavas

1 /bF c+d dis 1 /’dF(a+b J
b-al, x2 d-c )/, 2,)/ K

Page 9 of 23
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where
s, if (£,5) € [0, 3] x [0, 31,
tis—-1), if (t,5) € [0, %] x (%,1],
W(t,s) - (s-1) (t:s) €10, 5] x (3,1]
s(t-1), if (¢,5) € (5,11 x [0, 31,
t-1(s-1), if(ts)e(3,1]x (3,1,

which is proved by Latif and Dragomir in [25, Lemma 1].

Lemma 3 Let F: A C R? — R be a twice partially qq-differentiable function on A°. If

92 F(ts
the partial q1q>-derivative %Zda() is continuous and integrable on [a,b] x [¢,d] C A°,

then the following identity holds for q1q2-integrals:

Alg, s) 1122 d, td, 4.4
( ) “aq1 t daqzs nt S ( )

d
:F<q1a+b,c+q2d>_ 1 / F<q1a+b,y>ddq2y
[z]ql [2]q2 d-c [2]q1

1 b c+qod
- Flx S22 9) ady2%d
b—a/a (x [2]q2) AT a(d /f (.9 adlgy %" dayy

=1y (@, b,c,d)(F),

a2 b _a By
0192(b - a) c)// 92 g, E(th + (1 = asc + (1 - 5)d)

where 0 < q1, q2 < 1 and A is defined as in Lemma 2.

Proof If the strategy which was used in the proof of Lemma 2 are applied by taking into

F(t
account the definition of % the desired inequality (4.4) can be obtained. O
a®q1 925

Remark 2 1f we choose q1,q, — 1™ and replace tb + (1 — t)a with ta + (1 — £)a in Lemma 3,
then identity (4.4) reduces to identity (4.3).

Lemma 4 Let F: A € R? — R be a twice partially q.q,-differentiable function on A°. If

ba2  Flts
the partial q,q,-derivative %J() is continuous and integrable on [a,b] x [c,d] C A°,

q1tcOq2S
then the following identity hola}s for q1q»-integrals:
582 F(ta+ (1-1t)b,sd + (1 -s)c)
q1q2(b — a)( / / . NI dy tdg,s (4.5)
a1t g

a+qb qgc+d> 1 /d <a+q1b >
=F , - F| ———, d
( Rl Rl ) d-cl. [2]q1 V) der

1 b qac+d
— Flx, ——— d X by )
b—a/a (x [21q2> T - a) c)ff FOoy) dgy e,y

= 51‘]1#2 (ﬂ, b’ c d)(F),

where 0 < q1, q2 < 1 and A is defined as in Lemma 2.

Proof If the strategy which was used in the proof of Lemma 2 is applied by taking into

F(t
account the definition of % the desired inequality (4.5) can be obtained. O
q1 te q2

Page 10 of 23
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Remark 3 1f we choose gq1,q> — 1~ and replace sd + (1 — s)c with sc + (1 — s)d in Lemma 4,
then identity (4.5) reduces to identity (4.3).

5 Some new g;g,-Hermite-Hadamard like inequalities

For brevity, we give some calculated integrals before giving new estimates:

1 p1
v = [ [ MG, tdps 5.1)
o Jo
Ba [ Pn a1 (1
:/ ql/ - tsdqltdq2s+/ ql/ t(——s)dqltdqzs
0 0 0 ﬁ 92
1 1
2 1
+/ f ” s(——t)dqltdqzs
1
Py 0 q1
1 1 1 1
+/1 /1 (——t)(——s)dqltdqzs
Bl % q1 92

4-2[2]7 -2[2]7 + (213 [217,

(213, [213,
2010220, + 213) - 201020, 21, + @212 21 (2, =)
01921213 2],
Ba [ Plo
Ai(q1,q92) = / " / ? e dg tdg,s (5.2)
0 0
B 1
23,1212, (314, [3]g,
B (1 1
Ay(q1,q2) = / " / t25<_ —5) dg,tdg,s (5.3)
0 e 7p]
q2
_ 92+2 N 1- [2]22
[2]21 [2]‘312 [3]‘11 [2]21 [2]22 [3]q1 [3]qz
U oreg (1
As(qr, q2) = / ) / qz tS2<— - t) dqltdqzs (5.4)
Dy 0 q1
_ q1 + 2 1- [2]31

TR RE,Bl, 2B, 123,Bl, B,

1 1 1 1
/1 /1 ts(— —t> (— —S> dgtdg,s (5.5)
Py ¥ Py q1 q2

=A4(q1,92)

(1217, - (212, - 1) N 1 -[212)(212, - 1)
0192(213, 213, q1(213, [213, (31,
-0, -1 (213, -2, -1)

92(213, [213,[3]4, (23,1213, (314, [3]g,

1 1
2lq 2lgy
Bl(ql;q2)=/ ql/ ” H(1—0)s” dg t dg,s (5.6)
0 0
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= ql
212, (8], 212, 3],

B (! 1
Bz(q1;q2)=/ ql/ t(l—t)S(——S>dq1tdqu
0 1 q2

2lgy
 qlqp+2) a(1-123)
- (212, [213,[3],, (2121213, (34 (31g,”

! gy o 1
Bs(q1,92) = X Q-t)s*| — —t|dytdg,s
i 0 q1

_ arq-1 ~ @ rq-1
(213,213,314,  [212,[213,13]4, (314,

1
34(611,%):/1 /1 S(l—t)(i—t)<i—s)dqltdq2s

q2

Blgy ¥ Dlgy o

(1212, - (212, - (41 + 2))
- B213 213,

(128, - (1 +2) - [212)
(213, 1212, 131,

(28, - D@2y -1 @22, -

D@ - q1[2]g,)

22 28,Bl,Bl, 1220256,

1 1
Rl [ Clgy
Cl(éh»éh):/ " / 251 - 5)dy, tdgys
0 0
92

" [212, 81,12, 81y,

o (1, 1
Colqu,q2) = | EA=s)| — = ) dy tdg,s
0 Plgy q2

__ 2@+ (1-1213)
T 2R,RE B, | 22,2 Bl By,

L (g 1
Cs(q1,q2) = / / ts(1—s)| — —¢|dytdg,s
1 Jo 71

2lg;

_ G-l gl
(2131213, 3]y, [212,1213,[3],, (314,

1 1 1 1
Culq1,q2) = /; /; t(1 _S)<E - t) (% —S> dgytdgys

Rlgy ~ Rlgo
(217, - D(1213, - (g2 +2))
B q[213, 1213,

(23, - D((q2 +2) - [212))

(213 [213,[3],,

(213, - D(@a2(2]4, - 1)

212,213, [3],, (3],

Page 12 of 23
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0212, - D1 - g>[21,,)
212,028 Bl,

1 1
Rlqy [ Rlgy
Eqi,q) = / “ / ® t1 - 1)s(1 - s)dy tdy,s (5.14)
0 0
_ 9192
212,131, 212, (31,
1 1
21l 1
Ey(q1,92) = / / t(1-6)(1 - s)(— - s> dgtdg,s (5.15)
0 ﬁ q2
2
(217, - (g2 +2) 1-q5[2],,
“Don o TN on ’
212 1213, 31, 212 1212, [31,, 131,
U ol 1
Es(q1,92) = / / (1-t)s(1—s)| — —t)dytdys (5.16)
o Yo q1
q1
(212, - (g1 +2) 1-q:1[2]
=gy g1 D12lq

1213, 212,131, 212, 1212, 3], 131,

1 1
1:"4(6171,612)=/1 /1 (l—t)(l—s)(q—ll—t) (%_S> dgtdg,s (5.17)
Qg Plgy

12l

(1212, - (@2 + D)((212, — (@1 +2))

215, [215,
72((q1 +2) - 1217 )(qa[2]4, - 1)
(213, [217, 134,
q1(q112]g, - D((q2 +2) - [212))
(212, 1213, [3]4,

D192(q112]4, — 1)(q2(2]4, - 1)
(212, 1212, 314, 314,

Now we give some new quantum estimates by using the identities given in last section.

Let us start to find some new quantum estimates by using Lemma 2. We first examine
a new result for functions whose partially g; g,-derivatives in modulus are convex in the
following theorem.

Theorem 6 Let F: A CR? — R be a twice partially q.q,-differentiable function on A°

,d 52
3q1,q2F(t,s)

b,d
such that the partial q,q,-derivative —"3-—— is continuous and integrable on [a, b] x
q1 a2

bdy2 | F(t,
[c,d] C A°. Then we have the following inequality provided that |ﬁ2&;;)

[a,b] x [c,d]:

| is convex on

" Igs0 @b, c, A)(F)| 5.19)
b,daZ F(ﬂ, C) b,da2 F(b, C)
= b ad=o [A baql?da s haqlzzda s
q1 q2 T a0
bhoe wF@d)| %oz | F(b,d)
+Cl— e ’
g1t “ 0,8 g £%0y,5

Page 13 of 23
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where

4 4
A= ZAI‘(%,%), B= ZBL'(%,qz),

i-1 i-1
4 4

C= Z Ci(q1,92); E-= ZEi(CIl»qZ),
-1 -1

and 0< q1, g2 < 1.

Proof On taking the modulus of the identity of Lemma (4.1), because of the properties of
the modulus, we find that

P41, 0. (@, b, ¢, d)(F)| (5.19)

<q1q2(b—a)d-c)

X /O‘I/OI‘A(t,s)’

. . b33 gp Ees)
Now using the convexity of |b3q+jass |, then (5.19) becomes
)

bd
37 F(ta+(1—-0b,sc+(1-s5)d)

bd, t%d, s
b d q1 q2°*
0q1L%0g,8

P14, 4 (@, b, ¢, d)(F)| (5.20)

b,d o2
8Q1,612F(d’ C)

<qq2(b—-a)(d-c)

1 p1
X A(t,s) [ts
/0 /0 | | b9, t0,,s

bd 52
0.0, F(ad)

b9, t%9,,s

_1 _1
- (b -a)d - 0) / i / e ts[ts
0 0

bd 2
8q1yq2F(¢z,d)

by ¢d
gy £“9g,

B (1 1
+ / “ / t(— —s) [ts
0 1 q2

2lg;

b,d a2
aququ(b’ C)

b9,,6%0,,s
bdy2  F(b,d)

— 2 g td, s
b95,t49g,s H nee

bd o2
8q1yq2F(a, )

b d
04,8%04,8

+(1=1¢)s

+t(1-5s) +(1-8(1-53)

bd g2
97,5, F(byc)

+(1-1)s ba,htdaqzs

b2 F(b,d)

q1.92

b d

gyt “9g,8
b,d q2

aququ(a’ C)

b d

04,1404,

+t(1-s) +(1-t)1-5)

] dgytdg,s

bdy2  F(p, )

491,92
by ¢d
gy t“9g,8

+(1-1)s

b,d a2
aququ(a, d)

b0, 90,8

L g (1
+/ / s| ——t])|ts
1 Jo q1

2lg;

bdy2  F(b,d)

41,92
b d
04, £%04,8

+t(1-3s)

}+(1—t)(1—s)

] dyytdg,s

b2 F(qg,c) bdy2  F(p,c)

91,92
b d
04,£%04,8

q1,92

+(1-1)s
P04, 0,8

bdy2  F(b, d)

q1,92

q1,.92 d td.s
A d H ntlq
gy t“9g,8

by ¢d
g1t “9g,

bdg2  F(a,d)
+t(l-s)|——— |+ (1 -8t)(1 -5)
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1 1o/ 1 bd32  F(a,c) bdy2  F(b,c)
+ / / (— - t) (— —s) [ts — e |+ (1 - t)s| 5 —
o J gl \ 01 %@ gyt %0g,8 g, %0g,

bd 2 bd 2
492 Fla,d) 9+ F(b,d)

+t(l=8)|— ql’qzd }+(1—t)(1—s) BT re— ql’qzd qultdqzs.

04,£%04,8 04,£%04,8
This completes the proof. O

Example 1 Define a functionf : [0,1] x [0, 1] — R by f(x,y) = x2y2. Then f(x, y) is a convex
differentiable function of two variables on [0, 1] x [0,1]. For q; = ¢ = %, we have

- ’

F<a+q1b c+q2d> 1
81

2, 2, )

1 4 (a+qib \, L
F v, y= F(=,y)'d
d—c/c ([21,,1 y) g /o <3y) 2

: 1
36’
1 b d 1 )
/ Fo 8 bdqlx:/ Flx = )'dix
b-al, 21, ; 3 !
_ 1
36’
! “’ b d o 1 1
m\/; L F(JC»J’) dqlx dq2y:‘/0' /O' F(x’y) d%x d%y
3 1
T 16
Thus,
25
10 @25y, ) (F5,9)| = 557

Now, we can observe that

L132 F(¢,s)

1 F® 4 t+1 s+1 £+l 1

23 - P2 S Y o (2 ) —F( 252 ) s 9) |,
Bytlays  (1-H(I-s) 2 ' 2 2 2

L2 F(0,0))
2’2

191£10:1s 4
77 3

’2

1’18% L F(1,0) 3
11

191¢10:1s 2

77 3
M52 FO,1) 4
22 0 |_Z
191£101s 2’

SR

and

Mot F(L1)
S 1 BN
’ 191t191s ’ 4

77 3
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Finally, using the above calculated values in inequality (5.18), we have

25 377
1296 ~ 2640

which shows that the proved inequality is valid for convex functions.

Remark 4 Under the given conditions of Theorem 6 with g;,42 — 17, then we obtain the

following inequality:

b c+d
‘(b D —c)// (,y dydx+F( , > (5.21)
1 +d b
[ [ 5o [ H(550) 9

- (b—a)(d—c)[ S (@0 + 1§ @l + 1 5 (b, 0)] + |5 b, d)q

- 16 4

which is given by Latif and Dragomir in [25, Theorem 2].

Theorem 7 Let F: A € R? — R be a twice partially q.q,-differentiable function on A°

b
01,4y F(&5)

such that the partial q,q,-derivative Tagy 190y5 is continuous and integrable on [a,b] x

F(t
[c,d] C A°. Hl%?l is convex on [a, b] X [c,d] for some p1 > 1 and % + pil =1, then

we have the followmg mequallty:

"1, 40 (@, b, ¢, d)(F)| (5.22)

1 1 i
5611612(b—ﬂ)(d—0)</ /0 \A(t,s)|’1dq1tdqzs>

X |: : bdanI qu(a, o + 92 bda‘?l qu(a’ d) |
(214,214, | b8y, £%0y,s (2] [Z]qz b3, t48y,s
bd
i 01,0, F (b 0) |1 LD 33, 4, F (b, d) p1:|1’1
(214, [2]g, | 20g,t%8g,8 (214, [2]gy | 20g,t48g,8

where 0 < q1, g2 < 1.

Proof Applying the well-known Holder inequality for g;g,-integrals to the integrals on
the right side of (5.19), it is found that

P41, 0@, b, ¢, d)(F)| (5.23)

< q192(b - a)( |:(/ / A" dytd, s)
(/ /1 bdy2  F(ta+(1-1t)b,sc+ (1-s)d)

91,92
b d
04,140y,

L

p1 o
dgt dqzs)

|
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By applying convexity of Iﬁ |71, then (5.23) becomes

1, 00 (@, b, ¢, d)(F)| (5.24)
1 pl , T
sqlqzw—a)(d—c)[( / / A 1dq1tdq2s)
0
P07 g Fa o) P bdy2  Fla,d)P
d +t(1—S) bi
b0y, %0y, 0g, £ 40y, s
bdy2  F(b,c) P bdg2  F(b,d) P A
4 (1 p)s]| e 27 G ha-s o)t 2 A }dqltdqzs)pl].
0, £ 40,8 Ogy £40g,s

Now, if we apply the concept of Lemma 1 for a = 0 to the above quantum integrals, we

obtain
1 pl 1 1
/ / tsdg tdg,s = (/ tdqlt) (/ sdqzs) (5.25)
0o Jo 0 0
B 1
[2]¢, (2],
/ f t(1—s)dy tdy,s= —12— (5.26)
(2]4,[2]4,
q1
0)sdg tdg,s = ———, (5.27)
[ [a- ENEn
9192
(1= 8)dytdy,s= —. (5.28)
/ / 214, 1214,
By substituting the calculated integrals (5.25)—(5.28) in (5.24), then we obtain the desired
inequality (5.22) which finishes the proof. O

Remark 5 Under the given conditions of Theorem 7 with g;,g2 — 17, then we obtain the

following inequality:

a+b c+d
‘(b PIe —c)// (,y dydx+F( 5 > (5.29)

[ 5w [1(55)]

1
Lo c)|: PE@,0l + | ZE (a,d)t + |g;§(b,c)|m PE (p, d)|p1] H
4(7‘1 + l)ﬁ

’

which is given by Latif and Dragomir in [25, Theorem 3].

Theorem 8 Let F: A C R? — R be a twice partially q,q,-differentiable function on A°
b,d o2 (

8QIJIZ

such that the partial q,q»-derivative -4 S) is continuous and integrable on [a, b] x
q1 q2

[c,d] € A°. If|,,3;”+2;|1’1 is convex on [a,b] x [c,d] for some py > 1, then we have the
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following inequality:

|1, 4, (a, b, ¢, d)(F))| (5.30)

< (b - a)d - ) (Y(qu q) 71

bd a2 bd A2
a4 97, qu(a,c) P1 97, qZF(b,c) P1
P0y,£90q,s b0y, £40q,s
b,d 52 bd 52 L
+ I @ d) | 1.2 E(b,d) "1
b04,240g,s P0q,£ 40y, s ’

where A, B, C, E are defined in Theorem 6 and 0 < q1, g2 < 1.

Proof Applying the well-known power mean inequality for g; g, -integrals to the integrals
on the right side of (5.19), it is found that

1, 00 (@, b, ¢, d)(F)| (5.31)

sqlqzw—a)(d—c)[(f / A 5)| dyytd, )
([ [

bd92  Ftag + (1 1t)b,sc+ (1 —s)d) P! %
X q1 qzs) ]

9192
b d
04,£%04,8

By applying the convexity of | #25) |1, then (5.31) becomes

P41, 00 (a, b, ¢, d)(F)| (5.32)

<q1q2(b—a)(d - (//}Ats|d td, s) "

bdq2 bd 2
[ [MgF@ap e Fea
b9, t%0,,s b9, t90,,s
bd 2 bd g2 L
+ g, qu(“’ d) |t 951,40 E(b,d) ! "1‘
b04,2%0g,s P0g,L 40y, s

By substituting the calculated integral (5.1) in (5.32), then we obtain required inequality
(5.30), which ends the proof. O

Remark 6 Under the given conditions of Theorem 8 with g1,4, — 17, then the inequality

(5.30) reduces to the following one:

b d

-[bfa/abf(x»“éd) A (‘”b 7)o
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atds Jtos Jtds
- 16 4

’

<:®—axd—d[%%MAMM+WX£WJmm+|£ﬂhdﬁhﬂfﬁwJMM]ﬁ

which is given by Latif and Dragomir in [25, Theorem 4].

Now we use Lemma 3 to find some new quantum estimates. We first examine a new re-
sult for functions whose partially ;g -derivatives in modulus are convex in the following
theorem.

Theorem 9 Let F: A C R? — R be a twice partially q,q,-differentiable function on A°

do2
such that the partial q1q>-derivative %ng(t'? is continuous and integrable on [a,b] x
atqy q2 da2 :
[c,d] € A°. Then we have the following inequality provided that |7"2‘“‘?{£0’ )| is convex on
a%q q28
[a,b] x [c,d]: b
(#1414, (@, b, ¢, d)(F))| (5.34)
452 F(b,c) 452 F(a,c)
< quaa(b-a)(d -0 [A i alona
a0g,t “ 0y adq, 1“9,
da2 do2
ﬂaqlquF(b’ d) aaquZF(u, d) ]
a0, 0gys a0y t99gys

where A, B, C, E are defined in Theorem 6 and 0 < q1, g2 < 1.

Proof If the strategy which was used in the proof of Theorem 6 is applied by taking into
account Lemma 3, the desired inequality (5.34) can be obtained. O

Remark 7 Under the assumptions of Theorem 9 with g1,4, — 17, then inequality (5.34)
reduces to inequality (5.21).

Theorem 10 Let F: A C R? — R be a twice partially qq,-differentiable function on A°

432 F(¢, .
such that the partial q,q,-derivative % is continuous and integrable on [a,b] X
adq; 1% 9q,
dy2  F(t,
[c,d] € A°. If|%|ﬁ1 is convex on [a, b] x [c,d] for some p1 > 1 and ﬁ + pil =1. Then
atq] q2
we have the following inequality:
d
| Ig1.a0(a, b, c, d)(F)| (5.35)

1 pl A
sqlqz(b—a)(d—C)</0 /0 \A(t,s)|”dqltdqzs)

y [ 1 492 b, o) |1 . @ 492 o E(b,d) |
(214,20, | agyt?8yys (214, (24 | 28gyt %8s
1
1 gt @I qgy |a9,4,F @) p]
(214, (2], | a0qyt90yy5 (214, (2], | 29gyt?8yys

where 0 < q1, q2 < 1.

Proof If the strategy which was used in the proof of Theorem 7 is applied by taking into
account Lemma 3, the desired inequality (5.35) can be obtained. O
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Remark 8 Under the assumptions of Theorem 10 with g;,g, — 17, then inequality (5.35)
reduces to inequality (5.29).

Theorem 11 Let F: A C R? — R be a twice partially qq,-differentiable function on A°

492 F(ts) . , ,
such that the partial q1q,-derivative % is continuous and integrable on [a,b] x
adq1t%3q,
a2 F(t,
[c,d] € A°. If|%2da(?|”1 is convex on [a,b] x [c,d] for some p; > 1, then we have the
adq) t%3q,
following inequality:
d
| l41.42(@ b, ¢, d)(F)] (5.36)

<qq2(b-a)d—c)(Y(q1, qz))l_p%

AP 80 Fa@d)
a0y £ 40y, s a0, 190gy$
dg2 dg2 L
+C 09310, F B ) 11505, 4,F(@,d) ‘“]"1
a0y £ 40g, s a0y £ 90y, s

where A, B, C, E are defined in Theorem 6 and 0 < q1, g2 < 1.

Proof If the strategy which was used in the proof of Theorem 8 is applied by taking into
account Lemma 3, the desired inequality (5.36) can be obtained. O

Remark 9 Under the assumptions of Theorem 11 with g1, g, — 17, then inequality (5.36)
reduces to inequality (5.33)

Now we use Lemma 4 to find some new quantum estimates. We first examine a new re-
sult for functions whose partially ;g -derivatives in modulus are convex in the following
theorem.

Theorem 12 Let F: A € R? — R be a twice partially qq,-differentiable function on A°
by2 . F(ts)
1.0

such that the partial q,q,-derivative B s
q1°¢%q92

is continuous and integrable on [a,b] x
by2

[c,d] C A°. Then we have the following inequality provided that |4Cb3§1’qtzg(t'§)| is convex on
q1°¢%q92
[a,b] x [c,d]:
|flq1yq2 (a,b,c, d)(F)| (5.37)
b2 b2
9> F(a,d) 9> F(b,d)
<qi1q2(b—-a)(d-c) [A £ bq"qz ¢ bql’qz
g1t c0gp8 Iyt c9gp
b2 ba2
04,4, F (@) 94,5, (b: ) ]
b0yt c0gy5 b0yt c0gy8

where A, B, C, E are defined in Theorem 6 and 0 < q1, g2 < 1.

Proof If the strategy which was used in the proof of Theorem 6 are applied by taking into
account Lemma 4, the desired inequality (5.37) can be obtained. g

Remark 10 Under the assumptions of Theorem 12 with g, g, — 17, then inequality (5.37)
reduces to inequality (5.21).
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Theorem 13 Let F: A € R? — R be a twice partially qq,-differentiable function on A°

bo2
such that the partial q,q,-derivative %Zi(t) is continuous and integrable on [a,b] x
q1Lc0q28
[c,d] € A°. Ifl%lp1 is convex on [a, b] X [c,d] for some p; > 1 and ot pi =1, then
q1 te
we have following mequalzty
b
| 1414, (a, b, ¢, d)(F)| (5.38)
< q1a(b - a)(d - (/ / A9 dyytd, )
x |: 1 1:831 qu(a’ d) | + 92 5331 qu(a’ U
(2141 [21g, | 20, cdg,s (241 (21, | 9g,tc0g,s
1
+ 2 05, F B, e 91 F(,0) p1:|pl
210 2l | P0pytds | g (2| Poptedps | |

where 0 < q1, g2 < 1.

Proof If the strategy which was used in the proof of Theorem 7 is applied by taking into
account Lemma 4, the desired inequality (5.38) can be obtained. O

Remark 11 Under the assumptions of Theorem 13 with g1,g, — 17, then inequality (5.38)
reduces to inequality (5.29).

Theorem 14 Let F: A C R? — R be a twice partially q,q»-differentiable function on A°
bo2

02 . F(t,
such that the partiul q1q>-derivative Cbnga(m) is continuous and integrable on [a,b] x
q1 te 28
F(t
[c,d] € A°. I_}‘|Cb;“"[ﬁ|p1 is convex on [a,b] x [c,d] for some p1 > 1, then we have the
q q:
following mequalltly ’
b
| Lg1.0,(@ b, ¢, d)(F)| (5.39)

b—a)d- T
< %(T(qwz))1 71

b2 b2
X |:A & 8’11 qu(a’ d) |’ Caq1 q2 (b’ )
P01t c0gyS b0yt c0g,5
1
bo2 LE@c) Pt %92 F(bc) Pl]m
P04yt c0gy s P0g,t cOgyS

where A, B, CE are defined in Theorem 6 and 0 < ¢, g2 < 1.

Proof If the strategy which was used in the proof of Theorem 8 is applied by taking into
account Lemma 4, the desired inequality (5.39) can be obtained. O

Remark 12 Under the assumptions of Theorem 14 with ¢1, g, — 17, then inequality (5.39)
reduces to inequality (5.33).

6 Conclusion
In this paper, midpoint type inequalities for coordinated convex functions by applying
the notion of ¢14,-integrals are obtained. It is also shown that the results proved in this
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paper are the potential generalization of the existing comparable results in the literature.
It is an interesting and new problem that the upcoming mathematicians can derive similar
inequalities for different kinds of convexities in their future work.
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